An application of generating functions
to AVL trees

1. Definitions

1.1 Definition (Internal and External path lengths). For an extended tree of n
internal nodes we define two quantities, ezternal path length, E,, and internal
path length, I, as follows. First off, set the root level at 0.

E, = > A

A is the level
of an external node

I, = Z A

A is the level
of an internal node

d

1.2 Example. In the following extended tree we have n =3 and F3 =242+
24+3+3=12whilel3=04+1+1=2.

It is clear that if the above tree were to be used for search, then the unsuc-
cessful exits would involve 2, 2,2, 3, 3 probes (a total of 12, if we had each case of
unsuccessful exit exactly once) and the successful exits would have 1,2, 2 probes
(that is, 0+ 1,1+ 1,1+ 1, or 1 + the level number of the node where success
occurred.)

It is easy to see, in general, that F,, is the total number of probes towards
obtaining each unsuccessful exit once, while I,, +n is the total number of probes
towards having each successful exit once. [

CS3432.03-Lecture notes by George Tourlakis, @ 1996 Page 1

2 An application of generating functions to AVL trees

The above motivates the following definition, on the assumption that, when
searching a tree of n internal nodes, each of the n successful exits are equally
likely, and each of the n + 1 unsuccessful exits are equally likely.

1.3 Definition. Given an extended tree of n internal nodes, the quantities

and I I
n n

are termed average unsuccessful number of probes and average successful number
of probes respectively. [

As any search of a table of n entries that is based on comparisons only gives
rise to an extended (“decision”) tree of n internal nodes, the above concepts of
average “search times” apply to any comparison-only-based search, not just to

tree-search. @
It turns out that F,, and I,, are connected by a simple formula, and hence
so are U, and S,,. So if we know one, we know the other.

1.4 Theorem. E, = I, +2n for all n > 0.

Proof. We do induction on extended trees.
The Basis considers the tree [. For this tree, Eg = 0, Iy = 0, hence
Eq =1y +2-0is true.

We proceed to the “big” tree below, on the assumption (I.H.) that the claim
is true for “small” trees (such as T} and T below).

Let T7 have [internal nodes and 75 have r internal nodes. Then
E=1+2]

and
E. =1 +2r

CS3432.03-Lecture notes by George Tourlakis, @ 1996 Page 2

1. Definitions 3
Note that n =1+ r + 1 (total number of internal nodes of the whole tree), thus

=k -L+E.-—1,+2
=2(l+r+1)=2n

O

1.5 Corollary. U, and S, are related by

nSy +n
Up=——
n n—+1
Proof.
E,
U, =
n—+1
I, +2n
T on+1
M,since nSy, =Ip +n
n+1
O

1.6 Definition. An AVL or balanced (extended) tree is defined recursively by
(Basis) [is an AVL tree. The following tree

PANTAAN

is an AVL tree iff both Ty and Ty are AVL trees, and |hy — hz| € {0,1}, where
h; is the height of T;. [

@ “Iteratively”, one can say that a tree is AVL iff at every node the heights of left
and right subtrees differ by no more than 1. @

CS3432.03-Lecture notes by George Tourlakis, @ 1996 Page 3

4 An application of generating functions to AVL trees

2. Some theorems

A balanced tree has the nice property that its height is bounded by the logarithm
of the number of its nodes. This is good, because the height of a (search) tree
gives the worst case number of probes for search.

2.1 Theorem. Any AVL of n internal nodes and of height h satisfies h =
O(logn).

Proof. For any AVL tree of height h, let
B(h) = the minimum number of internal nodes for this height.

Clearly, B(0) = 0 (the tree is just [J) and B(1) = 1.
Look now at an AVL tree of height h (below) which has the minimum
possible number of nodes, B(h).

It is impossible for both left and right subtrees to have height (h—1), because
if they do, we can reduce one’s height (say, the right’s) by taking away internal
nodes. That would contradict the assumption that the whole tree has B(h)
internal nodes (that is, minimum). So, without loss of generality, we adopted
the above picture.

Finally, the left tree must have B(h — 1) (internal) nodes (that is, the mini-
mum possible) otherwise reducing it down to B(h — 1) would reduce the number
of nodes of the overall tree; impossible. Similarly, the right tree has B(h — 2)
nodes. Thus, we arrive at:

B(0)=0
B(1)=1
B(h)=B(h—1)+B(h—2)+1,for h >1 (1)

We can solve this recurrence easily using generating functions, but we can do
better:

For h > 0, B(h) + 1 = Fj42, where F,, is the Fibonacci sequence with
Fy =0, F1 =1 as starting conditions.}

1 No magic in this observation. It follows directly, more or less, if we add 1 at both sides

of (1).

CS3432.03-Lecture notes by George Tourlakis, @ 1996 Page 4

2. Some theorems 5

The contention can be proved by induction. For the Basis (h = 0) note that
F, =1= B(0)+ 1.

Assume the claim (I.H.) for all indices (strictly) below h, and proceed to h
(of course, whatever you do next, it must be valid for any h > 0).

Now we have two cases:

Case h > 1. Then both h — 1 and h — 2 are valid indices (arguments) for B. By
ILH., F, =B(h—2)+1and Fyy1 = B(h—1)+1. Thus

B(h)+1=B(h—-1)+1+B(h-2)+1

=Fpi1+Fy=Fhyo

Case h = 1. By direct verification, F3 = 2 = B(1) + 1.

Now, we know that F}, ~ (1/v/5)¢", where ¢ = (1++/5)/2. Thus, in view of
the connection between F' and B, for very large h we may write (approzimately)

ht1
1 (1+V5
B(h)+1=— i
) +1= (5) ()
Recall that our AVL tree of height h, really has n internal nodes. Thus, since
n > B(h),
h+1
1 (1+V56
n+1> —= | —
V5 2
hence
1 1++5
logy(n+1) >logy(—=) + (h+1)lo
ga() > gz(\/g) ()g2< 2)
or
logy(n+ 1) > —1.16 + (h + 1)0.69
and finally,

1.441og,(n + 1) + .68 > h
More fuzzily, h = O(logn). [

2.2 Corollary. For very large h, B(h)/B(h — 1) = ¢ (approximately!) and
B(h)/B(h —2) = ¢*.

Proof. Tt follows from (i) above if we omit the +1 in the left hand side, a le-
gitimate action due to the overwhelming size of the right hand (and hence left

hand) side. [

CS3432.03-Lecture notes by George Tourlakis, @ 1996 Page 5

6 An application of generating functions to AVL trees

2.3 Theorem. The average performance of search in AVL trees is about 30%
better than the worst case performance.

We work here under the simplifying assumption that all the AVL trees are
“skewed” like the minimum-node ones (an inaccurate assumption, but one that
allows the analysis to proceed, and yields results close to experimental ones).

Proof. We assume height h and number of internal nodes B(h). The height,
h, is, of course, the worst case performance for search (same for successful and
unsuccessful). The average successful performance is

_ I
NORE (1)

SB(n)

We will abuse notation in favour of the simpler

Ip,
S, = 1 2
h B + (2)
Most of the work will be to estimate
Ip,
B(h)

for very large h.
Now,
In=1Ip-1+ T2+ B(h)—

thus
I In-1 | In—o 1
B~ BW) TBM T BM
In_1 1 In_o 1 1
“Bh-Dé Bh-2# ' BMm))
_ I, 1 n Iy o 1 L1 (4)

B(h—-1)¢ ' B(h—-2)¢?

where in (3) and (4) above use was made of “h is very large!” (using Corol-
lary 2.2) to obtain the approzimate equalities (due to the size of B(h), 1/B(h)
is practically 0 for large h, so it was omitted in going from (3) to (4)).

Let us write Ay, for I,/ B(h) to simplify notation. So we have

Ag =K
Agqi=1L
Ah—Ahl +Ah2 +1,forh>H +2 (5)

¢ ¢?

CS3432.03-Lecture notes by George Tourlakis, @ 1996 Page 6

2. Some theorems 7

where H is a very large positive integer (and K, L the values of A, = I,/B(h)
at h = H and h = H + 1 respectively) from which onward the approzimation (5)
s good.

We now solve (5), to find how A}, relates to h. We can shift indices to start
from 0 (e.g., setting Cy, = Ap g, but this is not necessary).

The generating function for Ay, is

G(Z):AH+AH+IZ+AH+222+...+AH+hZh+'--

By (5), and the familiar technique,

22

G(Z)(l_%_E)=K+LZ*%KZ+Z2(1+2+22+...)

2

=K+ Sz+ 1 :
where S = L—(1/¢)K. The exact values of K, L (and hence S) are unimportant
in our analysis, as it will become clear.

The equation
2

z oz
1-———==0
o ¢

has roots z = 1 and z = —¢? (verify!), hence

z 22 1 z

1- 2 - = — -1+ =0-2)(1+=

s ¢ @)=(0-2)0+7)

Thus,
K Sz 2?2

G(z)z(liz)(lJrﬁ)—i-(172)(1+ﬁ)+(1fz)2(1+§) (6)

Splitting (6) into partial fractions we get

P Q R
l1—z (1-2)? 1+%

G(z) = (7)

for appropriate P, @, R, which yields

1
Agin =P+ Q(h+1) + R(—E)h
or Agyp = O(h) since

1
(—@)h
goes to 0 as h goes to infinity. For our “numerical” answer we only need to
find Q. From (6) and (7), multiplying out by (1 — 2)? and setting z « 1, we
obtain @ = 1/(1 + 1/¢?) = .72, hence, for large h, A, = .72h (shouldn’t T have
said “Agyp = .72R” instead?), therefore also S, = Ay + 1 = .72h and we are
done! [

CS3432.03-Lecture notes by George Tourlakis, @ 1996 Page 7

