Recurrence Relations
and their closed-form solutions

In “divide and conquer” algorithms one usually ends up with a recurrence relation that “defines” the “timing
function”, T'(n). For example, it could look like

1 ifn=1
T(n) = .
T(n/2)+1 otherwise

In order to assess the “goodness” of the proposed algorithm by comparison to either our expectations or
to another algorithm, we need to know T'(n) in “closed” form in terms of known functions such as n” for
r >0, c" for ¢ > 1, log, n for some integer b > 1.

Often a preliminary analysis need only worry about the “asymptotic behaviour” of the algorithm, i.e., the
behaviour for large inputs (n is the input size). “Big-O” notation is an excellent tool in this case, therefore
the solution of recurrences is often sought in such notation. On occasion one requires an “exact” solution
(this is much harder to achieve in general).

There is a big variety of recurrence relations and an equally big variety of solution techniques. Some
restricted cases are handled well by packages such as Mathematica or Maple V. For the mathematical
reasons that make the solutions tick the best reference is perhaps Knuth et al. “Concrete Mathematics’
(Addison-Wesley).

In this note we restrict attention to simple classes of recurrences taken from both the “additive” and
“multiplicative” cases (the latter characterizations refer to the manner of handling the “index” or argument
of the recurrence; see below).

Recurrence Relations. M2442.03 and CS3432.03. Lecture notes by George Tourlakis Page 1

2 Recurrence Relations and their closed-form solutions

1. The Additive Case

The general case here is of the formf

To=k
$nTn =vpTpo1+ f(n) if n>0

a recurrence defining the sequence T, or equivalently, the function T'(n) (both jargons and notations spell

out the same thing), in terms of the known functions (sequences) s, vy, f(n).

For the general case see Knuth cited above. Here we will restrict attention to the case s, = 1 for all n

and v, = a (a constant) for all n.
Subcase 1. (a = 1) Solve

T, =k
T,=Tn 1+ f(n)ifn>0

From (1), T, — T,,—1 = f(n), thus

n

S (T =Ti) = Zf(i)

i=1

therefore

i=1

=k+_ f0)

If we know how to get the sum in (2) in closed form, then we solved the problem.

1.1 Example. Solve

2 ifn=1
b= Pn_1+n otherwise

Here
n

Z(pz‘ —pi-1) = ZZ

=2

Note the lower bound of the summation: It is here 2, for the “basis” case in (3) is for n = 1 rather than

n = 0.
Thus,
(n+2)(n—1)

1 Note the “additivity” in the relation between indices: n vs n — 1.

1. The Additive Case 3

(Where did T get the (n + 2)(n —1)/2 from?) The above answer is the same as (verify!)

(n+1)n

obtained by writing
24+ i=1+) i
i=2 i=1
U
Subcase 2. (a # 1) Solve

To=k
T, =alp_1+ f(n)if n>0 4)

(4) is the same as

am an—1 am
To simplify notation, set
p def T,
"
thus the recurrence (4) becomes
to=k
n ()
tn:tn,l—i—f() ifn>0
an

By subcase 1, this yields

from which

(6)

1.2 Example. As an illustration, solve the recurrence that captures the “Towers of Hanoi” solution timing.

T 1 ifn=1
" | 2T,_1+1 otherwise

To avoid trouble, note that when the basis of (4) is at n = 1, the basis of (5) is t; = k/a rather than to = k.
So, the right hand side of (6) will have ka"~! instead of ka™ (Why?) and the indexing in the summation
will start at i =2 (Why?)

4 Recurrence Relations and their closed-form solutions

Thus, by (6),
1
Tn — 2n71 4 2n 4 5
=2
271)n+1 —1 1
:277,71 2”’(7—17_
+ 2% 2-1 -1 2)
1
=ovlypon2 -2 -1 5)
—2" 1
U

2. The Multiplicative Case

k ifn=1
T(n) = .
aT'(n/b)+c ifn>1

Subcase 1.

(1)

were a, b are positive integer constants (b > 1) and k, ¢ any constants. Recurrences like (1) above occur in
divide and conquer solutions to problems. For example, binary search has timing governed by the above

recurrence with b =2,a =c=k = 1.
We seek a general solution in “Big-O” notation.

First convert to an “additive indices” problem: To this end, seek a solution in the restricted set {n € N:

n =b™ for some m € N}. Next, set

t(m) =T(b™)
so that the recurrence becomes
k ifm=0
t(m) = .
attm —1)+c¢ ifm>0

hence, from the work in the previous section,
m . . m

t(i) t(i—1) _
P e e A S
i i=1

therefore

or, more simply,

(2)

(3)

2. The Multiplicative Case 5

Using O-notation, and going back to T we get:

my [Olm) ifa=1
e)_{O(am) ifa#1

or, provided we remember that this solution relies on the assumption that n has the form b™:
O(logn) ifa=1 O(logn) ifa=1
T(n) = { log, n . = log, a . (5)
O(a°&™) ifa#1 O(n'°&r) ifa#1

If @ > b then we get slower than linear “run time” O(n!°8»%). If on the other hand b > a > 1 then we get a
sublinear run time, since then log, a < 1.

Now an important observation. For functions T'(n) that are increasing,t ie., T(i) < T(j) if i < j the
restriction of n to have form ™ proves to be irrelevant in obtaining the solution. The solution is still given
by (5) for all n. Here’s why:

In the general case, n satisfies
bt < n < ™ for some m > 0 (6)

Suppose now that a = 1 (upper case in (4)). We want to establish that T'(n) = O(logn) for the general n
(of (6)). By monotonicity of T and the second inequality of (6) we get

by (6) by (4)

T(n) < T™) "2 0(m)"LY O(logn)

The last invocation of (6) above used the first inequality therein.

The case where a > 1 is handled similarly. Here we found an answer O(n") (where r = log,a > 0)
provided n = b™ (some m). Relax this proviso, and assume (6).

Now
by (6)
<

) < ™) "2V o@m) = o) "2 o) =Y o)

where again the last invocation of (6) above used the first inequality therein.

Subcase 2.

k ifn=1 ,
T(n) = { aT(n/b)+cn ifn>1 ()

were a,b are positive integer constants (b > 1) and k, ¢ any constants. Recurrences like (1’) above occur
in divide and conquer solutions to problems. For example, two-way merge sort has timing governed by the
above recurrence with a = b =2 and ¢ = 1/2. Quicksort has average run time governed, essentially, by the
above with ¢ = b = 2 and ¢ = 1. Both lead to O(nlogn) solutions. Also, Karatsuba integer multiplication
has run time recurrence as above with a = 3,b = 2.

1 Such are the “complexity” or “timing” functions of algorithms.

e

e

6 Recurrence Relations and their closed-form solutions

Setting at first (the famous initial restriction on n) n = b™ for some m € N and using (2) above we end
up with a variation on (3):
k ifm=0
t(m) = mo (3"
atfm —1) +cb™ ifm >0

thus we need do

S My o5 by

therefore

m ifa=10
(b/a)™ — 1

tm) = a™k + ca™ bfa) g o

Using O-notation, and using cases according as to a < b or a > b we get:

O(b™m) ifa=10
t(m) = ¢ a™O(1) = O(a™) ifb<a /¥ (b/a)™ — 0 as m — oo */
o™ —a™) =0@0™) ifb>a

or, in terms of T and n, which is restricted to form b™ (using same calculational “tricks” as before):

O(nlogn) ifa=5b
T(n)=< O(n'&2) ifb<a (4"
O(n) ifb>a

The above solution is valid for any n without restriction, provided T is increasing. The proof is as before,
so we will not redo it (you may wish to check the “new case” O(nlogn) as an exercise).

In terms of complexity of algorithms, the above solution says that in a divide and conquer algorithm
(governed by (1’)) we have the following cases:
e The total size of all subproblems we solve (recursively) is equal to the original problem’s size. Then we
have a O(nlogn) algorithm (e.g., merge sort).
e The total size of all subproblems we solve is more than the original problem’s size. Then we go worse
than linear (log, @ > 1 in this case). An example is Karatsuba multiplication that runs in O(n!°823) time.
e The total size of all subproblems we solve is less than the original problem’s size. Then we go in linear
time (e.g., the problem of finding the k-th smallest in a set of n elements).

L84

3. Generating Functions 7

3. Generating Functions

We saw some simple cases of recurrence relations with additive and multiplicative index structure (we
reduced the latter to the former). Now we turn to a wider class of additive index structure problems where
our previous technique of utilizing a “telescoping sum”

n

> (@) —t(i— 1)

i=1

does not apply because the right hand side still refers to (i) for some i < n. Such is the case of the well
known Fibonacci sequence F;, given by

0 ifn=0
F,_ 1+ F,_1 ifn>1

The method of generating functions that solves this harder problem also solves the previous problems we
saw.

Here’s the method in outline. We will then embark on a number of fully worked out solutions.
Given a recurrence relation

tn = tp1-tpn9...tn_3... (1)

with the appropriate “starting” (initial) conditions. We want ¢, in “closed form” in terms of known functions.
Here are the steps:

e Define a generating function of the sequence to,t1,... ,tn,...
o
G(z) = Ztizz
i=0
=to+tiz+taz® + otz e (2)

(2) is a formal power series, where formal means that we only are interested in the form of the “infinite
sum” and not in any issues of convergencef (therefore “meaning”) of the sum. It is stressed that our
disinterest in convergence matters is not a simplifying convenience but it is due to the fact that convergence
issues are irrelevant to the problem at hand.

@ In particular, we will never have to consider values of z or make substitutions in z. @

e Using the recurrence (1), find a closed form of G(z) as a function of z (this can be done prior to knowing
the ¢, in closed form!)

1 In Calculus one learns that power series converge in an interval like |z| < r for some real r > 0. The 7 = 0 case means the
series diverges for all z.

8 Recurrence Relations and their closed-form solutions

e Expand the closed form G(z) back into a power series

(o)
G(z) = Zaizi
i=0
=ag+a1z+ a2’ + -+ apz" 4 - (3)

But now we do have the a,’s in terms of known functions, because we know G(z) in closed form! We only
need to compare (2) and (3) and proclaim

t, =a, forn=0,1,...
The problem has been solved.

Steps bullet 2 and 3 embody all the real work. We will illustrate by examples how this is done in practice,
but first we need some “tools”:

The Binomial Expansion. For our purposes we will be content with just one tool, the “binomial expansion
theorem” of calculus:

For any real m, (I+2)™= Z (m) 2"

Il
+
—
3
—
N
.,
|
&

where for any r € N and m € R

r ' otherwise
r!

The expansion (4) terminates with last term

as the “binomial theorem of Algebra says, iff m is a positive integer. In all other cases (4) is non-terminating
(infinitely many terms). As we remarked before, we will not be concerned with when (4) converges.

Note that (5) gives the familiar

<m> m(m—1)-(m—[r—1])
r 7!
mm-—=1)---(m—[r—=1))(m—-r)---2-1
ri(m —r)!

m!
ri(m —r)!

3. Generating Functions 9

when m € N. In all other cases we use (5) for if m ¢ N, then “m!” is meaningless.

Let us record the very useful special case when m is a negative integer, —n (n > 0).

—n(—n—-1)---(—n—[r —1])

(L+z)" =+ . EAR Y
:”‘+(71)rn(n+l)---r(!n+[Tfl])zr_’____
:”_+(_1)T(n+[T—l]z!...(n—kl)nZT_i_.”
:”.+@4y<n+:—l)f+”” (©)

Finally, let us record important special cases of (6)

(lz)n_...+<n+rl>z’“+... (7)

T L (8)

the familiar “converging geometric progression” (converging for |z| < 1, that is, but this is the last time I'll
raise irrelevant convergence issues). Two more special cases of (6) will be helpful:

1 r+1
1—2)2=_——— _—... T,
a=a == ()
:...+(T+1)2T+... (9)
and
1 T+ 2
12y 3=__— ... T,
(1-2) EE +< . >Z +
r+2)(r+1
Z---—I-%ZT—F--- (10)
3.1 Example. Solve the recurrence
(1,0:1
an =2a,-1+1 ifn>0 (7)

Write (i) as
ay — 20y, 1 =1 (i4)

10 Recurrence Relations and their closed-form solutions

Next, form the generating function for a,, and a “shifted” copy of it (multiplied by 2) underneath it (this
was “inspired” by (i7)):

G(z) =ag+ a1z +azz? +-- +apz" + e

22G(z) = 2a0z + 2a122 + -+ +2a,_12" + - --

Subtract the above term-by-term to get

G(2) 1 —=22)=14z24+22+2%+---
1
- 1—2z
Hence
e — (iii)
(1-22)(1-2)

(797) is G(2) in closed form. To expand it back to a (known) power series we first we use the “partial
fractions” method (familiar to students of calculus) to write G(z) as the sum of two fractions with linear
denominators. Le., find constants A and B such that (iv) below is true for all z:

1 A B

(-22)0-2 (-20 0=

or

1=A(1-2)+B(1-2z)
Setting in turn z « 1 and z < 1/2 we find B = —1 and A = 2, hence

Gz) = 1—222*1;:
(e 22)) = (2 e)
:...(2n+1_1)zn...

Comparing this known expansion with the original power series above, we conclude that
a, =2""t —1

Of course, we solved this problem much easier in section 1. However due to its simplicity it was worked
out here again to illustrate this new method. Normally, you apply the method of generating functions when
there is mo other simpler way to do it. [

3.2 Example. Solve

p1 =2
Pn =Pn—1+n ifn>1 (2)

Write (i) as
Pn—Pn1=n (i)

3. Generating Functions 11

Next, form the generating function for p,, and a “shifted” copy of it underneath it (this was “inspired”
by (ii))-

Note how this sequence starts with p1 (rather than pg). Correspondingly, the constant term of the generating
function is p1.

G(z) =pr+pez+p3z®+- +pp1z"+---
zG(z): P12z +p222+... +pnz® 4

Subtract the above term-by-term to get

G(2)1—2)=2422+322+422+- + (n+1)2" +---

:1+ﬁ by (9)
Hence
G(z)—liz ﬁ
(e (2
:...<1+%>zn...

Comparing this known expansion with the original power series above, we conclude that

(n+2)(n+1)

pn+1:1+ 5

or L
n—+1)n
pn:1+%

O

3.3 Example. Here is one that cannot be handled by the techniques of section 1.

S0 = 1
S1 = 1
Sy = 48,1 — 48,9 ifn>1 (4)
Write (i) as
Sp— 48,1 +45,_2=0 (i)
to “inspire”
G(z) =s0+512+822% +--- +5,2" +---
42G(z) = 4sgz + 45122 + o0 +dsy 12"+

42°G(z) = 459z 4+ + A5, 92"+

12 Recurrence Relations and their closed-form solutions

By (i),
G()(1—4dz+42%) =1+ (1—4)z
=1-3z
Since 1 — 4z + 422 = (1 — 22)? we get
1 3 1
(1—22)2 “F(1-22)2
((n+1)(22)n) ,32(...(n+1)(22)n...)
= (- [(n+1)2" —3n2" ")

G(z) =

Thus,
8, = (n+1)2" —3n2" 1
=2""1(2n 42— 3n)
=2"(1 —n/2)
U

3.4 Example. Here is another one that cannot be handled by the techniques of section 1.
S0 = 0
S1 = 8
Sp =28,-1+38, o ifn>1

Write (i) as
Sp — 2871 —3Sp—2 =0

Next,
G(z) =50+ 512 + 5222 + - + 5,2" 4.
2:G(z) = 250z + 28122 + o0 + 28, 12" 4 -0
32°G(z) = 35022 4 v +38p_02" + - e-
By (i),

G(2)(1 -2z —32%) =82

The roots of 1 — 2z — 322 = 0 are

L_2EVIFR _ 224 (-
- 6 6 13
hence 1 — 2z — 322 = —3(2 + 1)(z — 1/3) = (1 — 32)(1 + 2), therefore
8z A

B e . .
+ spliting into partial fractions

G G s Rl e ol s

3. Generating Functions 13

By a calculation as in the previous example, A = 2 and B = —2, so
2 2
G(z) = —
(2) 1-3z 14z

:2(___(3Z)n,“)72(._.(72)71_,_)
:(...[2.3"_2(_1)"}2"...)

hence s, =2-3"—2(-1)" [O

3.5 Example. The Fibonacci recurrence.

Fy=0
Fr=1
F,=F, 1+F, , ifn>1 (i)
Write (i) as
Fy—Fy 1 —Fy5=0 (i7)
Next,
G(2) =F+Fz+FB22+- +F.2" +---
2G(z) = Foz + 22+« +Fp_12"+---
22G(z) = Foz?2 +-- +F, oz"+---
By (i),

G)(1—z—2*) =2

The roots of 1 — 2z — 22 = 0 are

—1+V5
~1£VI+4 2

Z =
2 -1-+5
2
For convenience of notation, set
~1++5 ~1-+5
b = ’ $o = ve (4i7)
2 2
Hence
1—z—22=—(z2— 1)z — ¢2)
=—(¢1—2)(¢2 — 2) (iv)
therefore

z A

B
) :¢1—Z+¢2—Z

spliting into partial fractions

1—z— 22

14 Recurrence Relations and their closed-form solutions

from which,

¢ P2
A_¢1—¢2’ B_¢2—¢1
SO
_ 1 ¢ P
G(Z)_(i’l*%[(ﬁl*z ¢2*2}
_ 1 { 1 _ 1]
pr—p2ll—z/pr 1—2z/p
! CAUSNA R SO AT
:¢1¢2<(.“[E]) (¢2} >>
therefore

1 1 1
g (@@))
Let’s simplify (v):

First, by brute force calculation, or by using the “known” relations between the roots of a 2nd degree
equation, we find

P12 = —1, ¢1—d2 =5

so that (v) gives

fn = %((«ﬁi) - (¢fb§2>n)

1, L axvE)2)t (1= VE)/2)"
¢5<(R o T))
_L(1+V5 n[l—\/gr>

V5 2 2

In particular, we find that

since

i.e., F,, grows exponentially with n, since |¢2| > 1. [

