Binary Trees;
Structure and Properties

1. Definitions

A “binary tree” is a special case of a directed graph. While it can be defined as
such, more helpful is an inductive definition given below, since then we are able
to prove properties of trees by induction on their definition (or “structure”; that
is, by structural induction).

We define trees as sets of points with “structure”. The “structure” is given
for any tree as an ordered “partition” of the set of points in the tree. First in the
partition comes what we intuitively associate with the concept of “left” subtree,
then comes the “root”, and finally comes what we understand as the “right”
subtree.

The empty set of points is conveniently thought of as a tree with the “empty
structure” (i.e., since there are no points to partition, the partition itself is
empty). We put these ideas together as:

1.1 Definition. A binary tree, in short tree, is a pair (S,T) consisting of a set
of points S with structure T' defined as follows:

(Basis) (0,0) is a tree; the empty tree.

If (S;,T;) and (S,,T,) are trees, where S; N S, = O (i.e., S; and S, are
disjoint) and if the point r ¢ S;U S, then (S; U {r} U S,, (T},r,T;)) is a tree.

r is called the root of the tree, while (S;,T;) and (S,,T) are the left and
right subtrees of r respectively. The points in S; U {r} U S, are called the nodes
of the tree. [

Let us take the mystery out of definition 1.1: It really says, in its formal way,
what we expect it to say: There are two ingredients that make a tree; the “data”,
namely, the point set S;U{r}US,, and the “geometry” (or “structure”’, or “link”-,
or “edge”-information), namely, (T}, r,T)).

One can “imagine” that there are edges introduced in trees by the inductive
construction:

(1) (#,0) has no edges.

(2) Assuming we have introduced edges to each of (S;,T;) and (S,,T)), we
introduce at most two edges to (S; U {r} US,,(1},7,T,)) as follows: One from r
to the root of (S;,T;) if S; # 0 and one from r to the root of (S,,T}) if S, # 0.

CS3432.03-Lecture notes by George Tourlakis,@ 1994, 1996 Page 1

®

2 Binary Trees; Structure and Properties

Why bother with (S,T) and not just say the tree is T (i.e., the part with the
structure subsumes the data, doesn’t it?). Well, it’s a subtle technical point.
Suppose we follow this idea and try to re-do definition 1.1 to say things like
“...risnot in either of T;...”. Loosely interpreted (i.e., “by abuse of language”)
probably we understand this as the same as “...r is not in either S;...”. But
that is not the same thing.

Here’s an example to convince you, taken from a simpler but similar context,
that of set theory: First of all, the “ordered pair” (a,b) is imposing a structure
on the set {a, b}, right?

Also, we know that (a,b) is really the set {{a},{a,b}}. So while it is the
case that a € {a,b} (ais in the “data set”) it is not correct to say that a € (a, b)!
Correspondingly, the negative statements “a not in {a,b}” and “a not in (a,b)”
do not say the same thing, technically. The second is not a substitute of the
first.

The above nit picking will not affect us, for as usual, mathematicians (and
theoretical computer scientists) make a big deal of being 100% “correct” in a
definition—on paper—but then they turn around, and in the interest of clarity,
they hand-wave and bend the rules a bit ...

Here we will, from now on, take the “data” part S (in (S,T)) for granted,
and say by abuse of language that T (of (S,T)) is a tree (instead of the correct
(S,T) is a tree).

1.2 Example. (), (#,1,0), and ((0,1,0),2,0) are trees (obviously on the data
sets 0, {1} and {1, 2} respectively).

We draw trees as follows: A “square” denotes the empty tree while a small
circle denotes any tree node (see below).

1O

Thus, the “general tree” is drawn as one of the following, where r is the
root.

Lo LB o) dt

The leftmost drawing uses the notation of a “triangle” to denote a tree. The
other three cases are used when we want to draw attention to the fact that the
right (respectively, left, both) subtree(s) is (are) empty. [

1.3 Definition. We agree that we have two types of tree-notations (Again,
abusing language we say that we have two types of trees).

CS3432.03-Lecture notes by George Tourlakis,@ 1994, 1996 Page 2

e

1. Definitions 3

Simple Trees are those drawn only with “round” nodes (i.e., we do not draw the
empty subtrees).

FExtended Trees are those that all empty subtrees are drawn as “square nodes”.
We call, in this case, the round nodes internal and the square nodes external. [

Clearly, the “external nodes” of an extended tree cannot hold any information
since they are (notations for) empty subtrees.

Alternatively, we may think of them (in implementation terms) as notations
for null links. That is, in the case of simple trees we do not draw any null links,
while in the case of extended trees we draw all null links as square nodes.

1.4 Definition. We recall standard graph theory terminology:

If node a points to node b by an edge, then b is a child of a and a is the
parent of b. If two nodes are the children of the same node, then they are siblings.

A sequence of nodes ai,as9,...,a, in a tree is a path or chain iff for all
i1=1,2,...,n—1, a; is the parent of a;;1. We say that this is a chain from a;
to an. We say that a, is a descendant of a; and that ay is an ancestor of a,,.

A node is a leaf iff it has no children. [
In an extended tree the only leaves are the external (square) nodes.

1.5 Definition. We define levels of nodes in a tree recursively (inductively):

The root has level 0 (sometimes we assign level 1 to the root, as it may
prove convenient).

If b is any child of a and a has level ¢, then b has level 7 + 1.
The highest level in a tree is called the height of the tree. [

1.6 Example. (Assignment of levels).
@ <— level =0 forroot < i
(occasionally it is set to 1)

i+1 —> <« i+l

O

1.7 Definition. A non leaf node is fertile iff it has two children. A tree is
fertile iff all its non leaves are fertile.

A tree is full iff it is fertile and all the leaves are at the same level. [

An extended tree is always fertile. The last sentence above then simplifies, if
restricted to such trees, to “All square nodes are at the same level”.

CS3432.03-Lecture notes by George Tourlakis,@ 1994, 1996 Page 3

54

4 Binary Trees; Structure and Properties

1.8 Example. (Full Trees). A “full tree” has all the possible nodes it deserves.

&
AR

R

O

1.9 Definition. A tree is complete iff it is fertile and all the leaves occupy
at most two consecutive levels (obviously, one is going to be the last (highest)

level). [

Again, for extended trees we need only ask that all square nodes occupy “at
most two consecutive levels”. @

1.10 Example. (Complete Trees).
Redraw the above so that all the square nodes are “rounded” and you get

examples of complete Simple Trees. [

CS3432.03-Lecture notes by George Tourlakis,@ 1994, 1996 Page 4

2. Some Theorems 5

1.11 Example. There is a variety of complete trees, the general case having
the nodes in the highest level scattered about in any manner. In practice we like
to deal mostly with complete trees whose highest level nodes are left justified
(left-complete) or right-justified (right-complete). See the following, where we
drew (abstractly) a full tree (special case of complete!), a left complete, a right
complete, and a “general” complete tree.

Example 1.10 provides a number of more concrete examples [] @

2. Some Theorems

2.1 Theorem. An extended tree with a total number of nodes n (this accounts
for internal and external nodes) has n — 1 edges.

Proof. We do induction with respect to the definition of trees, or as we say in
short, induction on trees.

Basis. The smallest tree is (3, i.e., exactly one “square” node. It has no
edges, so the theorem verifies in this case.

I.H. Assume the claim for “small” trees.

1.S. Consider the “big” tree below composed of two “small” trees of k and
I nodes and a root. Say the total number of nodes is n + 1.f

n+1 nodes

i,

T

T -1 edges

k-1 edges

1 No magic with n + 1. We could have called the total n, but then we would have to add
“where n > 1”7 to account for the presence of the root. The “ > 1” part is built-in if you use
n + 1 instead.

CS3432.03-Lecture notes by George Tourlakis,@ 1994, 1996 Page 5

6 Binary Trees; Structure and Properties

By LH., the left and right (small) subtrees have k — 1 and [— 1 edges
respectively. Thus the total number of edgesis k —14+1—1+2 =k + [(Note
that in an extended tree all round nodes are fertile, so both edges emanating
from the root are indeed present).

On the other hand, the total number of nodes n + 1 is k + 1+ 1. We rest
our case. []

2.2 Corollary. An extended tree of n internal nodes has n + 1 external nodes.

Proof. Let us have ¢ internal and ¢ external nodes. Given that € = n.

By the above, the tree has € + ¢ — 1 edges. That is, accounting differently,
2¢ edges since all round nodes are fertile, and the square nodes are all leaves.
Thus,

e+op—1=2

from which, ¢ = & + 1. Thus there are n + 1 square nodes as claimed. []
2.3 Corollary. A simple tree of n > 1 nodes has n — 1 edges.

Proof. Let E be the original number of edges, still to be computed in terms of
n. Add external nodes (two for each “original” leaf). What this does is:

It adds n + 1 square nodes, by the previous corollary.

It adds n + 1 new edges (one per square node). Thus,

Total Nodes = 2n + 1
Total Edges=FE +n—+1

By theorem 2.1, E + n+ 1 = 2n, hence £ =n — 1 as claimed. [

2.4 Theorem. In any nonempty fertile simple tree we have

Z 27l =1

L is a leaf’s
eve

where we assigned level 0 to the root.

Proof. Induction on trees.

Basis The smallest tree is one round node. Its level is 0 and 27° = 1, so we
are OK.

I.H. Assume for small trees, and go to the “big” case.

LS. The big case (recall that the tree is fertile, so even though simple, the
root has two children).

CS3432.03-Lecture notes by George Tourlakis,@ 1994, 1996 Page 6

2. Some Theorems 7

1

Since each of T7 and T, are “small”, [.LH. applies to give

Yoo o2t=1 (1)

L is a leaf’s
level in Ty

>oo2t=1 (2)

L is a leaf’s
level in T

and

It is understood that (1) and (2) are valid for T} and Ty “free-standing” (i.e.,
root level is 0 in each). When they are incorporated in the overall tree, call it
T, then their roots obtain a level value of 1, so that formulas (1) and (2) need

adjustment: All levels now in T3, T5 are by one larger than the previous values.
Thus,

DR S S R S RO i SV Ry !

L is a leaf’s L is a leaf’s l is a leaf’s
level in T level in T4 level in Ts
free standing free standing

2.5 Corollary. In an extended tree

Yoo o2t=1

l is a leaf’s
level

where we assigned level 0 to the root.

2.6 Corollary. In both 2.4 and 2.5, if the root is assigned level 1, then

Yoo o2t=1p2

l is a leaf’s
level

CS3432.03-Lecture notes by George Tourlakis,@ 1994, 1996 Page 7

8 Binary Trees; Structure and Properties

Next we address the relation between n, the number of nodes in a complete
tree, with its height .

<«— level 1: 2" nodes

<«— level 2: 2" nodes

<« level 1-1: 2" nodes

<«— level I 1<k<2"" nodes
Clearly,
n=20 421 4. 422 <ol 1 (A)

thus
2l 1<p<2t o1

From this follows
2l cn+1<2

or
21 <y < 2t

leading to

I = logy(n +1)] = |logyn] +1 (+)

a good formula to remember.

Of course, all this holds when counting levels from 1 up. Check to see what
happens if the root level is 0.

How does k, the number of nodes at level [, relate to n, the number of nodes
in the tree?

From (A),

k=n+1-2"1 (%)

another very important formula to remember, which can be also written (because
of (%)) as

k=mn-+1—2Mos(n+)]-1
|logs m] <B)
=n+1—298

CS3432.03-Lecture notes by George Tourlakis,@ 1994, 1996 Page 8

3. An application to summations 9

Note that (xx) or (B) hold even if some or all nodes at level [— 1 have no more
than one child (in which case the tree fails to be complete, or fertile for that

matter). @

3. An application to summations

Let us see next what happens if we label the nodes of a left-complete tree by
numbers successively, starting with label 2 for the root.

+— level 1: 2° nodes

2? < level 2: 2" nodes

Y

<+— level i: 2" nodes

v 2! 4——— level 1-1: 2'? nodes

«— level I: 1<k<2"" nodes
2"+ k

An easy induction shows that at level i we have the labels
21l p 1,207 42,20 (1)
Note that if ¢ is any of the numbers in (1), then 2071 < ¢ < 2¢, hence
[log, t] =i

@ In words, the ceiling of log, of any node-label at level i equals i. @

We are in a position now to evaluate

n+1

A= Z [logs] (2)

=2

which arises in the analysis of certain algorithms that we will encounter soon.
The figure below helps to group terms appropriately:

CS3432.03-Lecture notes by George Tourlakis,@ 1994, 1996 Page 9

10 Binary Trees; Structure and Properties

[log,2] <«— level 1 (1 node)

|—10g2 4—| <«—— level 2 (2 nodes)

<« level 1 -1 (2" nodes)

«— Jevel [(k nodes)

o

[log,(n+1)]
Clearly,
-1
A= Z 271 + k[logy(n +1)] (3)
i=1

To compute (3) we need to find k as a function of n, and to evaluate

-1
B=Y) it (4)
i=1

There are two cases at level [as in the previous figure. Regardless, k is given in
(x+) of the previous section as

k=n+1-—2"1

Thus, we only have to compute (4). Now,
-1
B=>) i

=1
-2

=> (i+1)2
=0
1—2

=Y izl —1
=0
1—2

=2) 2t 42t -1
i=1

-1
=2 2"t —(1-22"" -1
=1
=2B—(1—2)2"t -1

CS3432.03-Lecture notes by George Tourlakis,@ 1994, 1996 Page 10

3. An application to summations 11

Thus, B = (I —2)2'~! + 1, and the original becomes (recall (x), (xx)!)

A=(1-2)27 414kl
=12 2l 1 (1 -2y
=(n+1)l-2"+1
= (n+1)[logy(n + 1)] = 2Meelm DT 41
Note. A rough analysis of A would go like this: Each term of the sum is

O(log(n + 1)) and we have n terms. Therefore, A = O(nlog(n + 1)). However
we often need the exact answer. ..

CS3432.03-Lecture notes by George Tourlakis,@ 1994, 1996 Page 11

