Dept. of Computer Science

AK/CS4021.03—Problem Set No. 1

Date: Sep 23, 1999

Due: TBA; Approx. in two weeks

- (1) Show that in the presence of the *initial functions* the following operations can be simulated by composition:
 - (a) Substitution of a variable by a function
 - (b) Substitution of a variable by a constant
 - (c) Identification of any two variables
 - (d) Permutation of any two variables
 - (e) Introduction of new ("dummy") variables

(**NB.** In class we looked at special cases of each of (a)–(e), i.e., cases of up to 2 variables. You are to argue the general case here.)

(2) Prove that λxyz . if x = 0 then y else z is in \mathcal{PR} .

NOTE. For problem 2 *only*, please give the "fully (formally) dressed" primitive recursion, along with an informal primitive recursion. An example of the latter (for predecessor) is

$$0 \stackrel{\cdot}{-} 1 = 0$$
$$x + 1 \stackrel{\cdot}{-} 1 = x$$

(3) Define

$$(\mathring{\mu}y)_{\leq z}f(y,\vec{x}) \stackrel{\mathrm{def}}{=} \left\{ \begin{array}{l} \min\{y: y \leq z \& f(y,\vec{x}) = 0\} \\ 0, \text{ if the min does not exist} \end{array} \right.$$

Prove that \mathcal{PR} is closed under $(\overset{\circ}{\mu}y)_{\leq z}$.

- (4) (Tricky, but has a "one-liner proof") Prove that if a class of functions \mathcal{C} is closed under $(\stackrel{\circ}{\mu}y)_{\leq z}$ and substitution, then its corresponding class of relations \mathcal{C}_* is closed under $(\exists y)_{\leq z}$.
- (5) Show that if $\lambda \vec{x}y.y = f(\vec{x})$ is in \mathcal{PR}_* , and f is total, and $f(\vec{x}) \leq g(\vec{x})$ for all \vec{x} , where $g \in \mathcal{PR}$, then $f \in \mathcal{PR}$.
- (6) Write a loop program which computes $\lambda x.\lfloor x/4 \rfloor$. The program must only allow instruction-types X=0, X=X+1, X=Y and **Loop** $X\ldots$ **end**. It must *not* nest the Loop-end instruction!