Lassonde School of Engineering

Dept. of EECS Professor G. Tourlakis EECS 1028 M. Problem Set No3 Posted: Feb. 19, 2022

Due: Mar. 17, 2022; by 10:00pm, in eClass.

Q: <u>How do I submit</u>?

A:

- (1) Submission must be a SINGLE standalone file to <u>eClass</u>. Submission by email is not accepted.
- (2) Accepted File Types: PNG, JPEG, PDF, RTF, MS WORD, OPEN OFFICE, ZIP
- (3) **Deadline is strict, electronically limited**.
- (4) MAXIMUM file size = 10MB

 $\textcircled{\sc opt}$ It is worth remembering (from the course outline):

The homework **must** be each individual's <u>own work</u>. While consultations with the <u>instructor</u>, tutor, and <u>among students</u>, are part of the <u>learning</u> <u>process</u> and are encouraged, **nevertheless**, at the end of all this consultation each student will have to produce an <u>individual report</u> rather than a *copy* (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course, as you recall.

Page 1

G. Tourlakis

Ş

1. (5 MARKS) Show that it *was not necessary* to apply the *new* Principle 3 to prove that for an equivalence relation R on A, both sets, the class of equivalence classes of R - A/R is a set.

Specifically show that this follows by Principles 0–2 implicitly —via the subclass-theorem.

Hint. You will need, of course, to find a *superset* of A/R, that is, a class X that *demonstrably* is a set, and satisfies $A/R \subseteq X$.

2. (3 MARKS) Prove that if the function f is 1-1, then f^{-1} is a function.

3. (6 MARKS) Let
$$f : A \to B$$
. Then $\mathbf{1}_B f = f$ and $f\mathbf{1}_A = f$.
Hint. You may use the fact that fg , for functions f, g , means $g \circ f$.

- **4.** Let $f: A \to B$ be a 1-1 correspondence. Then
 - (2.5 MARKS) If $gf = \mathbf{1}_A$, we have $g = f^{-1}$.
 - (2.5 MARKS) If $fh = \mathbf{1}_B$, we have $h = f^{-1}$.
- **5.** (5 MARKS) Suppose we have an enumeration of A

$$a_0, a_1, a_2, \dots \tag{1}$$

without repetitions (i.e., all the a_i are distinct).

Show in <u>mathematical</u> detail how to construct a <u>new</u> enumeration from (1) where <u>each</u> element of A is enumerated infinitely many times.

6. (5 MARKS) We defined the relation \sim between sets by

 $A \sim B$ means that there there is a 1-1 correspondence $f : A \to B$

Show that \sim is symmetric and transitive.