Lassonde School of Engineering

Dept. of EECS
Professor G. Tourlakis
EELS 1028 M. Problem Set No
Posted: Feb. 19, 2022
Due: Mar. 17, 2022; by 10:00 pm, in Class.

Q: How do I submit?

A:
(1) Submission must be a SINGLE standalone file to eClass. Submission by email is not accepted.
(2) Accepted File Types: PNG, JPEG, PDF, RTE, MS WORD, OPEN OFFICE, ZIP
${ }^{(3)}$ Deadline is strict, electronically limited.
(4) MAXIMUM file size $=10 \mathrm{MB}$
(3)

It is worth remembering (from the course outline):
The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course, as you recall.

1. (5 MARKS) Show that it was not necessary to apply the new Principle 3 to prove that for an equivalence relation R on A, both sets, the class of equivalence classes of $R-A / R-$ is a set.

Specifically show that this follows by Principles 0-2 implicitly -via the subclass-theorem.

Hint. You will need, of course, to find a superset of A / R, that is, a class X that demonstrably is a set, and satisfies $A / R \subseteq X$.
2. (3 MARKS) Prove that if the function f is $1-1$, then f^{-1} is a function.
3. (6 MARKS) Let $f: A \rightarrow B$. Then $\mathbf{1}_{B} f=f$ and $f \mathbf{1}_{A}=f$.

Hint. You may use the fact that $f g$, for functions f, g, means $g \circ f$.
4. Let $f: A \rightarrow B$ be a 1-1 correspondence. Then

- (2.5 MARKS) If $g f=\mathbf{1}_{A}$, we have $g=f^{-1}$.
- (2.5 MARKS) If $f h=\mathbf{1}_{B}$, we have $h=f^{-1}$.

5. (5 MARKS) Suppose we have an enumeration of A

$$
\begin{equation*}
a_{0}, a_{1}, a_{2}, \ldots \tag{1}
\end{equation*}
$$

$\underline{\text { without repetitions (i.e., all the } a_{i} \text { are distinct). }}$

Show in mathematical detail how to construct a new enumeration from (1) where each element of A is enumerated infinitely many times.
6. (5 MARKS) We defined the relation \sim between sets by
$A \sim B$ means that there there is a 1-1 correspondence $f: A \rightarrow B$
Show that \sim is symmetric and transitive.

Page 2
G. Tourlakis

