Lassonde School of Engineering

Dept. of EECS

Professor G. Tourlakis
EEC 1028 M. Problem Set No
Posted: March 19, 2022
Due: Apr. 11, 2022; by 10:00pm, in Class.

Q: How do I submit?

A:
(1) Submission must be a SINGLE standalone file to eClass. Submission by email is not accepted.
(2) Accepted File Types: PNG, JPEG, PDF, RTE, MS WORD, OPEN OFFICE, ZIP
${ }^{(3)}$ Deadline is strict, electronically limited.
${ }^{\text {(4) }}$ MAXIMUM file size $=10 \mathrm{MB}$

It is worth remembering (from the course outline):
The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course, as you recall.

1. (5 MARKS) Prove that if A is infinite and $a \in A$, then $A-\{a\}$ is also infinite.
2. (5 MARKS) We learnt in class/Notes that $A[x] \rightarrow(\forall x) A[x]$ is NOT a theorem if x indeed occurs free in A.

Yet, I think I got a proof: First, let me use DThm and prove instead $A[x] \stackrel{\digamma(\forall x) A[x]:}{ }$

1) $A[x] \quad\langle\mathrm{hyp}\rangle$
2) $(\forall x) A[x] \quad\langle 1+\mathrm{Gen}\rangle$

Something must be wrong in my "PROOF"! What EXACTLY (not too many words please and above all don't say "it's not a theorem"!)
3. (5 MARKS) Prove that $\vdash(\exists x)(A \rightarrow B) \rightarrow(\forall x) A \rightarrow(\exists x) B$.
4. (5 MARKS) All the sets in this problem are subsets of \mathbb{N}. For any $A \subseteq \mathbb{N}$, let us use the notation

$$
\bar{A} \stackrel{\text { Def }}{=} \mathbb{N}-A
$$

Now prove by simple induction on n that

$$
\begin{equation*}
\overline{\bigcap_{1 \leq i \leq n} A_{i}}=\bigcup_{1 \leq i \leq n} \overline{A_{i}} \tag{1}
\end{equation*}
$$

5. (4 MARKS) Prove by simple induction on n that

$$
2^{n}>n
$$

6. (5 MARKS) Prove by CVI that every natural number $n \geq 2$ is a product of prime numbers.

NOTE. A prime number p is defined to satisfy (a) $p>1$ and (b) the only divisors of p are 1 and p.

Page 2
 G. Tourlakis

