Contents

1	Some Elementary Informal Set Theory	3
	1.1 Russell's "Paradox"	7
2	Safe Set Theory	21
	2.1 The "real sets" —Introduction to Stages	
	2.2 What caused Russell's paradox	32
	2.3 Some <u>useful</u> sets	35
	2.4 Operations on classes and sets	
	2.5 The powerset	56
3		5 9
	3.1 The Cartesian product	65
4	Relations and functions	69
	4.1 Relations	70
	4.1.1 Transitive closure	88
	4.1.2 Equivalence relations	
	4.1.3 Partial orders	24
5		5 5
	5.1 Preliminaries	
	5.2 Finite and Infinite Sets	
	5.3 Diagonalisation and uncountable sets	22
6	A Short Course on	
		37
	6.1 Enriching our proofs to manipulate quantifiers	
	6.2 Proofs and Theorems	
	6.3 Induction	
	6.3.1 Induction Practise	05
7		15
	7.1 Induction over a closure	24
	7.2 Closure vs. definition by stages	28

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Chapter 1

Some Elementary Informal Set Theory

Jan. 12, 2022

Set theory is due to Georg Cantor.

"Elementary" in the title above does not apply to the body of his work, since he went into considerable technical depth in this, his new theory.

It applies however to *our* coverage as we are going to restrict ourselves to elementary topics only.

Cantor made many technical mistakes in the process of developing set theory, some of considerable consequence. The next section is about the easiest to explain and most fundamental of his mistakes.

How come he made mistakes?

The reason is that his theory was not based on axioms and rigid rules of reasoning —a state of affairs for a theory that we loosely characterise as "informal".

At the opposite end of informal we have the *formal* theories that are based on axioms *and* logic and are thus "safer" to develop (they do not lead to *obvious* contradictions).

One cannot fault Cantor for not using <u>logic</u> in arguing his theorems—that process was not invented when he built his theory—but then, a fortiori, mathematical <u>logic</u> was not invented in <u>Euclid's time</u> either, and yet he did use axioms that stated how his building blocks, points, lines and planes interacted and behaved!

Guess what: Euclidean Geometry leads to no contradictions.

The problem with Cantor's set theory is that anything goes as to what sets *are* and *how they come about*.

He neglected to ask the most fundamental question:

"How are sets formed?" He just sidestepped this and simply said that a set is any collection.

In fact he took the term "set" as just a synonym for "collection", "class", "aggregate", etc. What you just get from a Dictionary: synonyms!

Failure to ask and answer this question leads to "trouble", which is the subject matter of the next section.

One can still do "safe" set theory —devoid of "trouble", that is—within an *informal* (non axiomatic) setting, but

we have to ask and answer how sets are built *first* and derive from our answer some *principles* that will guide (and protect!) the theory's development!

We will do so.

[†]It's amazing how much trouble could be avoided if he had asked AND investigated!

1.1. Russell's "Paradox"

Cantor's naïve (this adjective is not derogatory but is synonymous in the literature with informal and non axiomatic) set theory was plagued by paradoxes, the most famous of which (and the least "technical") being pointed out by Bertrand Russell and thus nicknamed "Russell's paradox".[†]

[†] From the Greek word "paradoxo" (παράδοξο) meaning against one's belief or knowledge; a contradiction.

His theory is the theory of collections (i.e., sets) of objects, as we mentioned above, terms that were neither defined $nor\ was\ it\ said$ how they were built.[†]

This theory studies operations on sets, properties of sets, and aims to use set theory as the foundation of all mathematics. Naturally, mathematicians "do" set theory of mathematical object collections — not collections of birds and other beasts.

[†]This is not a problem in itself. Euclid too did not say what points and lines were; but his axioms did characterise their nature and interrelationships: For example, he started from these (among a few others) a priori truths (axioms): a unique line passes through two distinct points; also, on any plane, a unique line l can be drawn parallel to another line k on the plane if we want l to pass through a given point A that is not on k.

The point is:

You cannot leave out both what the nature of your objects is and how they behave/interrelate and get away with it! Euclid omitted the former but provided the latter, so all worked out.

We have learnt some elementary aspects of set theory at high school. We will learn more in this course.

1. Variables. Like any theory, informal or not, informal set theory —a safe variety of which we will develop here— uses variables just as algebra does. There is only one type of variable that varies over set and over $atomic\ objects$ too, the latter being objects that have no set structure. For example integers. We use the names A, B, C, \ldots and a, b, c, \ldots for such variables, sometimes with primes (e.g., A'') or subscripts (e.g., x_{23}), or both (e.g., x_{22}'', Y_{42}').

2. **Notation**. Sets given by listing. For example, $\{1, 2\}$ is a set that contains precisely the objects 1 and 2, while

$$\{\overbrace{1},\overbrace{\{5,6\}}\}$$

is a set that contains precisely the objects 1 and $\{5,6\}$. The braces $\{$ and $\}$ are used to show the collection/set by outright listing.

3. Notation. Sets given by "defining property". But what if we cannot (or will not) explicitly list all the members of a set? Then we may define what objects x get in the set/collection by having them to pass an entrance requirement, P(x):

An object x gets in the set *iff* (*if and only if*) P(x) is true of said object.

Let us parse "iff":

- (a) The IF: So, IF P(x) is true, then x gets in the set (it passed the "admission requirement").
- (b) The $ONLY\ IF$: So, IF x gets in the set, then the **only** way for this to happen is for it to pass the "admission requirement"; that is, P(x) is true.

In other words, "iff" (as we probably learnt in high school or some previous university course such as calculus) is the same thing as "is equivalent":

"x is in the set" is equivalent to "P(x) is true".

We denote the collection/set[†] defined by the entrance condition P(x) by

$$\{x: P(x)\}\tag{1}$$

but also as

$$\{x \mid P(x)\}\tag{1'}$$

reading it "the set of all x such that (this "such that" is the ":" or "|") P(x) is true [or holds]"

 $^{^{\}dagger}$ We have not yet reached Russell's result, so keeping an open mind and humouring Cantor we still allow ourselves to call said collection a "set".

- 4. " $x \in A$ " is the assertion that "object x is in the set A". Of course, this assertion may be true or false or "it depends", just like the assertions of algebra 2 = 2, 3 = 2 and x = y are so (respectively).
- 5. $x \notin A$ is the negation of the assertion $x \in A$.

6. Properties

• Sets are *named* by letters of the Latin alphabet (cf. Variables, above). Naming is pervasive in mathematics as in, e.g., "let x = 5" in algebra.

So we can write "let $A = \{1, 2\}$ " and let " $c = \{1, \{1, 5, 6\}\}$ " to give the names A and c to the two example sets above, ostensibly because we are going to discuss these sets, and refer to them often, and it is cumbersome to keep writing things like $\{1, \{5, 6\}\}$. Names are *not permanent*; † they are *local* to a discussion (argument).

[†]OK, there *are* exceptions: \emptyset is the permanent name for the *empty set* —the set with no elements at all— and for that set only; \mathbb{N} is the permanent name of the set of all *natural numbers*.

• Equality of sets (repetition and permutation do not matter!) Two sets A and B are equal iff they have the same members. Thus order and multiplicity do not matter! E.g., $\{1\} = \{1, 1, 1\}, \{1, 2, 1\} = \{2, 1, 1, 1, 1, 2\}.$

• Here is the fundamental equivalence pertaining to definition of sets by "defining property":

So, if we name the set in (1) above (p.13), S, that is, if we say "let $S = \{x : P(x)\}$ ", then " $x \in S$ iff P(x) is true"

By the way, we almost *never say* "is true" unless we want to shout out this fact. We would say instead:

$$x \in S \text{ iff } P(x)$$
 (†)

Equipped with the knowledge of the previous bullet, we see that the symbol $\{x : P(x)\}$ defines a unique set/collection: Well, say A and B are so defined, that is, $A = \{x : P(x)\}$ and $B = \{x : P(x)\}$. Thus

$$x \in A \stackrel{A=\{x:P(x)\}}{\text{iff}} P(x) \stackrel{B=\{x:P(x)\}}{\text{iff}} x \in B$$

thus

$$x \in A \text{ iff } x \in B$$

and thus A = B.

Let us pursue, as Russell did, the point made in the last bullet above. Take P(x) to be specifically the assertion $x \notin x$. He then gave a name to

$$\{x:x\notin x\}$$

say, R. But then, by the last bullet above, in particular, the equivalence (\dagger) ,

$$x \in R \text{ iff } x \notin x$$
 (2)

If we now believe, \dagger as Cantor, the father of set theory did not question and went ahead with it, that every P(x) defines a set, then R is a set.

What is wrong with that?

Well, if R is a set then this object has the proper type to be plugged into the variable of type "math object", namely, x, throughout the equivalence (2) above. But this yields the contradiction

$$R \in R \text{ iff } R \notin R$$
 (3)

This contradiction is called the Russell's Paradox.

[†]Informal mathematics often relies on "I know so" or "I believe" or "it is 'obviously' true". Some people call "proofs" like this —i.e., "proofs" without justification(s)— "proofs by intimidation". Nowadays, with the ubiquitousness of the qualifier "fake", one could also call them "fake proofs".

This and similar paradoxes motivated mathematicians to develop formal symbolic logic and look to axiomatic set theory^{\dagger} as a means to avoid paradoxes like the above.

Other mathematicians who did not care to use mathematical logic and axiomatic theories found a way to do set theory *informally*, yet safely.

See, they asked and answered "how are sets formed?" ‡ Read on!

 $^{^{\}dagger}$ There are many flavours or axiomatisations of set theory, the most frequently used being the "ZF" set theory, due to Zermelo and Fraenkel.

 $^{^{\}ddagger}$ Actually, axiomatic set theory —in particular, its axioms are— is built upon the answers this group came up with. This story is told at an advanced level in [Tou03b].

Chapter 2

Safe Set Theory

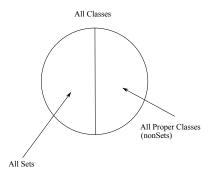
Jan. 14, 2022

So, *some* collections of <u>sets</u> and/or <u>atoms</u> are *not* —technically— sets, as the Russell Paradox taught us! How do we tell them apart?

From now on we will deal with collections that may or may not be sets, with a promise of learning how to create sets if we want to!

The modern literature uses the terminology "class" for any such collection of <u>sets</u> and/or <u>atoms</u> (and uses the term "collection" non technically and sparsely).

The above is captured by the following picture:



Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.0.1 Definition. (Classes and sets)

From now on we call *all* collections **classes**.

Definitions by defining property "Let $\mathbb{A} = \{x : P(x)\}$ " always defines a **class**, but as we saw, sometimes —e.g., if "P(x)" is specifically " $x \notin x$ "— that class is *not* a set (Section 1.1).

x is a set/atom-type variable!

Classes that are not sets are called **proper classes**. We will normally use what is known as "blackboard bold" notation and capital latin letters to denote classes by names such as $\mathbb{A}, \mathbb{B}, \mathbb{X}$. If we determine that some class \mathbb{A} is a set, we would rather write it as A, but we make an exception for the following sets:

Mathematicians use notation and results from set theory in their everyday practice. We call the sets that mathematicians use the "real sets" of our mathematical *intuition*, like the set of natural numbers, \mathbb{N} (also denoted by ω), integers \mathbb{Z} , rationals \mathbb{Q} and reals \mathbb{R} .

2.0.2 Example. Thus if R is the Russel (proper) class, then the configuration $\{R\}$ is not allowed —it is meaningless.

Of course Cantor would not care and allow this and even this

$$\{\{\{R\}\},R\}$$

Notes on Discrete MATH (EECS1028)© G. Tourlakis

In forming the class $\{x : P(x)\}$ for any property P(x) we say that we apply *comprehension*. It was the Frege/Cantor belief (explicitly or implicitly) that comprehension was safe—i.e., they believed that $\{x : P(x)\}$ always was a set. Russell proved that it was not.

It is known that set theory, using as primitives the notions of set, atom (an object that is not sub-divisible; not a collection of objects), and the relation belongs to (\in) , is sufficiently strong to serve as the foundation of all mathematics.

Mathematicians use notation and results from set theory in their everyday practice. We call the sets that mathematicians use the "real sets" of our mathematical *intuition*, like the set of natural numbers, \mathbb{N} (also denoted by omega), integers \mathbb{Z} , rationals \mathbb{Q} and reals \mathbb{R} .

2.1. The "real sets" —Introduction to Stages

So, how can we tell, or indeed *guarantee*, that a certain *class* is a *set*? Russell proposed this "recovery" from his Paradox:

Make sure that sets are built by stages, where at stage 0 all atoms are available.

Atoms are also called *urelements* in the literature, from the German *Urelemente*, which in analogy with the word "*urtext*" —meaning the earliest text— would mean that they are the "earliest" mathematical objects. Witness that they are available at stage 0!

We may then collect atoms to form all sorts of "first level" sets. We may proceed to collect any mix of atoms and first-level sets to build new collections—second-level sets— and so on.

Much of what set theory does is attempting to remove the ambiguity from this "and so on". See below, **Principles** 0–2.

Thus, at the beginning we have all the level-0, or type-0, objects available to us. For example, *atoms* such as $1, 2, 13, \sqrt{2}$ are available.

At the next level we can include any number of such atoms (from <u>none at all</u>, to <u>all</u>) to **build a set**, that is, a new mathematical object.

Allowing the usual notation, i.e., listing of what is included within braces, we may cite a few examples of level-1 sets:

L1-1. {1}.

L1-2. $\{1,1\}$.

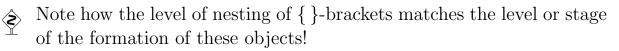
L1-3. $\{1, \sqrt{2}\}.$

L1-4. $\{\sqrt{2}, 1\}$.

L1-5. $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$.

We already can identify a level-2 object, using what (we already know) is available:

L2-1.
$$\{\{\sqrt{2},1\},42\}.$$



2.1.1 Definition. (Class and set *equality*) This definition applies to any classes, hence, in particular, to any *sets* as well.

Two classes \mathbb{A} and \mathbb{B} are equal —written $\mathbb{A} = \mathbb{B}$ — means

$$x \in \mathbb{A} \text{ iff } x \in \mathbb{B}$$
 (1)

That is, an object is in \mathbb{A} iff it is also in \mathbb{B} .

 \mathbb{A} is a *subclass* of \mathbb{B} —written $\mathbb{A} \subseteq \mathbb{B}$ — means that every element of the first class occurs also in the second, or

If
$$x \in \mathbb{A}$$
, then $x \in \mathbb{B}$ (2)

If \mathbb{A} is a *set*, then we say it is a *subset* of \mathbb{B} .

If we have $\mathbb{A} \subseteq \mathbb{B}$ but $\mathbb{A} \neq \mathbb{B}$, then we write $\mathbb{A} \subsetneq \mathbb{B}$ (some of the literature uses $\mathbb{A} \subsetneq \mathbb{B}$ or even $\mathbb{A} \subset \mathbb{B}$ instead) and say that \mathbb{A} is a *proper subclass* of \mathbb{B} .

Caution. In the terminology "proper subclass" the "proper" refers to the fact that \mathbb{A} is not all of \mathbb{B} . It does NOT say that \mathbb{A} is not a set! It may be a set and then we say that it is "proper subset" of \mathbb{B} .

If n is an integer-valued variable, then what do you understand by "2n is even"?

The normal understanding is that "no matter what the value of n is, 2n is even", or "for all values of n, 2n is even".

When we get into our logic topic in the course we will see that we can write "for all values of n, 2n is even" with less English as " $(\forall n)(2n$ is even)". So " $(\forall n)$ " says "for all (values of) n".

Mathematicians often prefer to have statements like "2n is even" with the "for all" always implied.[†] You can write a whole math book without writing \forall even once, and without overdoing the English.

Thus in (1) and (2) above the "forall x" is implied.

2.1.2 Remark. Since "iff" between two statements S_1 and S_2 means that we have *both* directions

If
$$S_1$$
, then S_2

and

If
$$S_2$$
, then S_1

we have that " $\mathbb{A}=\mathbb{B}$ " is the same as (equivalent to) " $\mathbb{A}\subseteq\mathbb{B}$ and $\mathbb{B}\subseteq\mathbb{A}$ ".

[†]An exception occurs in Induction that we will study later, where you fix an n (but keep it as a variable, not as 5 or 42) and assume the "induction hypothesis" P(n). But do not worry about this now!

2.1.3 Example. In the context of the " $\mathbb{A} = \{x : P(x)\}$ " notation we should remark that notation-by-listing can be simulated by notation-by-defining-property: For example, $\{a\} = \{x : x = a\}$ —here "P(x)" is x = a.

Also $\{A, B\} = \{x : x = A \text{ or } x = B\}$. Let us verify the latter: Say $x \in \text{lhs.}^{\dagger}$ Then x = A or x = B. But then the entrance requirement of the rhs[‡] is met, so $x \in \text{rhs.}$

Conversely, say $x \in \text{rhs}$. Then the entrance requirement is met so we have (at least) one of x = A or x = B ("true" implied) Trivially, in the first case $x \in \text{lhs}$ and ditto for the second case.

 $^{^{\}dagger}$ Left Hand Side.

[‡]Right Hand Side.

Jan. 17, 2022

We now postulate the principles of formation of sets!

Principle 0. Sets and atoms are <u>the</u> mathematical objects of our (safe) set theory.

Sets are formed by stages. At stage 0 we have (and acknowledge) the presence of atoms. They are given outright, they are not built.

At any stage Σ we are allowed to build a set, collecting together other mathematical objects (sets or atoms) <u>provided</u> these (mathematical) objects we put into our set were available at stages before Σ .

Principle 1. Every set is built at some stage. A set does not just happen!

Principle 2. If Σ is a stage of set construction, then there is a stage Φ after it.

Principle 2 makes clear that we have *infinitely many* stages of set formation in our toolbox.

"Clear"?

Can you argue that informally? (Exercise! *Hint*. Combine Property 2 statement with a "what if": What if there are only finitely many stages? and go for a contradiction from the what if.)

Incidentally the property of a stage being "before" another is exactly like "<" on the integers:

- 1. For any two integers n, m the statement "n = m or n < m or m < n" is true.
- 2. We cannot have n < n, for any n (this is the "irreflexivity" of "<").
- 3. If we have n < m and m < r, then n < r (this is the "transitivity" of "<").

For stages,

Using "<" as short for "lhs comes *before* rhs", then

- 1'. For any two stages Σ and Σ' the statement " $\Sigma = \Sigma'$ or $\Sigma < \Sigma'$ or $\Sigma' < \Sigma$ " is true.
- 2'. We cannot have Σ is before (or after) Σ , for any Σ .
- 3'. If we have $\Sigma < \Sigma'$ and $\Sigma' < \Sigma''$, then $\Sigma < \Sigma''$.

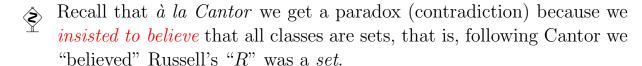
2.1.4 Remark. If some set is definable ("buildable") at some stage Σ , then it is also definable at any later stage as well, as **Principle** 0 makes clear.

The informal set-formation-by-stages Principle will guide us to build, safely, all the sets we may need in order to do mathematics.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.2. What caused Russell's paradox

How would the set-building-by-stages doctrine avoid Russell's paradox?



Principles 0–2 allow us to know a priori that R is a proper class. No contradiction is obtained!

How so?

OK, is $x \in x$ true or false? Is there any mathematical object x—say, A— for which it is true?

$$A \in A? \tag{1}$$

- 1. Well, for atom A, (1) is false since atoms have no set structure, that is, are not collections of objects. An atom A cannot contain anything, in particular it cannot contain A.
- 2. What if A is a set and $A \in A$? Then in order to build A, the <u>set</u> on the rhs, we have to wait until <u>after</u> its member, A —the set on the lhs— is built (Principle 0). So, we need (the left) A to be built <u>before</u> (the right) A in (1).

Absurd!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

So (1) is **false**. A being arbitrary, we have just demonstrated that

$$x \in x$$
 is false

thus $x \notin x$ is true (for all x), therefore R of Section 1.1 is \mathbb{U} , the universe of all sets and atoms.

$$R = \mathbb{U}$$

So?

Well,

So here is why \mathbb{U} —that is R— is not a set. Well, if it is

- $\mathbb{U} \in \mathbb{U}$ since the rhs contains *all sets* and we believe the lhs to be a *set*.
- but we just saw that the above is false if \mathbb{U} is a *set*!

So \mathbb{U} , aka R, is a *proper* class. Thus, the fact that R is not a set is neither a surprise, nor paradoxical. It is just a proper class as we just have recognised.

BTW,

A class \mathbb{A} is proper iff we have NO stage left to build it (Principles 0 and 1).

Intuitively then if we ran out of stages building \mathbb{A} it means that there are are far too many elements in \mathbb{A} —this class is "enormous", as indeed is \mathbb{U} .

Often the informal (and sloppy) literature on sets will blame "size" for a class failing to be a set. That is dangerous. Lack of set status must be connected with lack of stage at which to build said class as a set.

Incidentally not all "LARGE" classes contain "everything". We will see later that if we remove ALL atoms from \mathbb{U} , then what remains is a proper class too. So is $\mathbb{S} = \{\{x\} : x \in \mathbb{U}\}$: The class of *all 1-element sets*.

2.3. Some <u>useful</u> sets 35

2.3. Some useful sets

2.3.1 Example. (Pair) By Principles 0, 1, if A and B are sets or atoms, then let A be available at stage Σ and B at stage Σ' . Without loss of generality say Σ' is not later than (after) Σ .

For two stages Φ and Ψ we can write $\Phi \leq \Psi$ as short for $\Phi < \Psi$ or $\Phi = \Psi$.

Pick a stage Σ'' after Σ (Principle 2). This will be be after <u>both</u> (cf. Principle 2 and the remark there, on p.30) Σ, Σ' . So,

$$\Sigma' \le \Sigma < \Sigma''$$

At stage Σ'' we can build

$$\{A, B\} \tag{1}$$

as a set (because both A and B are available! cf. Principle 0).

We call (1) the (unordered) pair set.

We have just proved a theorem above:

- **2.3.2 Theorem.** If A, B are sets or atoms, then $\{A, B\}$ is a set.
- **2.3.3 Exercise.** Without referring to stages in your proof, prove that if A is a set or atom, then $\{A\}$ is a set.

2.3. Some <u>useful</u> sets 37

Jan. 19, 2022

2.3.4 Remark. A very short digression into Boolean Logic — for now. It will be convenient —but not necessary; we are doing fine so far— to use *truth tables* to handle many simple situations that we will encounter where "logical connectives" such as "not", "and", "or", "implies" and "is equivalent" enter into our arguments.

We will put on record here how to *compute* things such as " S_1 and S_2 ", " S_1 implies S_2 ", etc., where S_1 and S_2 stand for two arbitrary statements of mathematics. In the process we will introduce the *mathematical symbols* for "and", "implies", etc.

The *symbol translation table* from English to symbol is:

NOT	_
AND	\wedge
OR	V
IMPLIES (IF,THEN)	\rightarrow
IS EQUIVALENT	≡

The truth table below has a simple reading. For all possible truth values —true/false, for short \mathbf{t}/\mathbf{f} — of the "simpler" statements S_1 and S_2 we indicate the *computed truth value* of the compound (or "more complex)" statement that we obtain when we *apply* one or the other Boolean connective of the previous table to S_1 and S_2 .

S_1	S_2	$\neg S_1$	$S_1 \wedge S_2$	$S_1 \vee S_2$	$S_1 \rightarrow S_2$	$S_1 \equiv S_2$	$S_2 \rightarrow S_1$
f	f	t	f	f	t	t	t
f	t	t	f	t	t	f	f
t	f	f	f	t	f	f	t
t	t	f	t	t	t	t	t

Comment. All the computations of truth values *satisfy our intuition*, except perhaps that for " \rightarrow ": Indeed, \neg flips the truth value as it should, \land is eminently consistent with common sense, \lor is the "inclusive or" of the mathematician, and \equiv is just equality on the set $\{\mathbf{f}, \mathbf{t}\}$, as it should be.

The "problem" with \rightarrow is that there is no *causality* from left to right. The only "sane" entry is for $\mathbf{t} \rightarrow \mathbf{f}$. The outcome <u>should</u> be false for a "bad implication" † and so it is. But look at it this way:

- Looking at \rightarrow in the "red columns" see how the given table for \rightarrow is eminently consistent with that for \equiv . Intuitively \equiv means \rightarrow from left to right AND \rightarrow from right to left. It IS!
- This version of \rightarrow goes way back to Aristotle. It is the version used by the vast majority of practising mathematicians and is nicknamed "material implication" or "classical implication".

[†]A bad implication has a true premise but a false conclusion. A correct implication ought to preserve truth!

2.3. Some <u>useful</u> sets 39

Practical considerations. Thus

1. if you want to demonstrate that $S_1 \vee S_2$ is true, for any component statements S_1, S_2 , then show that *at least one* of the S_1 and S_2 is true.

- 2. If you want to demonstrate that $S_1 \wedge S_2$ is true, then show that **both** of the S_1 and S_2 are true.
 - Note, incidentally, the if we know that $S_1 \wedge S_2$ is true, then the truth table *guarantees* that each of S_1 and S_2 must be true.
- 3. If now you want to show the implication $S_1 \to S_2$ is true, then the only real work is to show that if we assume S_1 is true, then S_2 is true too.
 - If S_1 is known to be false, then <u>no work is required</u> to prove the implication because of the first two lines of the truth table!!
- 4. If you want to show $S_1 \equiv S_2$, then —because the last three columns show that this is *computed* with *the same result* as $\left(S_1 \to S_2\right) \land \left(S_2 \to S_1\right)$ it follows that you just have to *compute* and "show" that **each** of the two implications $S_1 \to S_2$ and $S_2 \to S_1$ is true.

An important variant of \rightarrow and \equiv

Pay attention to this point since almost everybody gets it wrong! In the literature and in the interest of creating a usable shorthand many practitioners of mathematical writing use sloppy notation

$$S_1 \to S_2 \to S_3 \tag{1}$$

attempting to convey the meaning

$$(S_1 \to S_2) \land (S_2 \to S_3) \tag{2}$$

Alas, (2) is not the same as (1)! But what about a < b < c for $a < b \land \overline{b < c}$? That is wrong too!

Back to \rightarrow -chains like (1) vs. chains like (2):

Take S_1 to be **t** (true), S_2 to be **f** and S_3 to be **t**. Then (1) is true because in a chain using the same Boolean connective we put brackets from right to left: (1) is $S_1 \to (S_2 \to S_3)$ and evaluates to **t**, while (2) evaluates clearly to false (**f**) since $S_1 \to S_2 = \mathbf{f}$ and $S_2 \to S_3 = \mathbf{t}$.

So we need a special symbol to denote (2) "economically". We need a *conjunctional implies*! Most people use \Longrightarrow for that:

$$S_1 \Longrightarrow S_2 \Longrightarrow S_3$$
 (3)

that means, by **definition**, (2) above.

2.3. Some <u>useful</u> sets 41

Similarly,

$$S_1 \equiv S_2 \equiv S_3 \tag{4}$$

is **NOT** conjunctional. It is **not** two equivalences —two statements—connected by an implied " \wedge ", rather it says

$$S_1 \equiv (S_2 \equiv S_3)$$

ONE formula, ONE statement.

Now if $S_1 = \mathbf{f}$, $S_2 = \mathbf{f}$ and $S_3 = \mathbf{t}$, then (4) evaluates as \mathbf{t} but the conjunctional version

$$(S_1 \equiv S_2) \land (S_2 \equiv S_3) \tag{5}$$

evaluates as \mathbf{f} since the second side of \wedge is \mathbf{f} .

So how do we denote (5) correctly without repeating the consecutive S_2 's and omitting the implied " \land "? This way:

$$S_1 \Longleftrightarrow S_2 \Longleftrightarrow S_3$$
 (4)

By definition, " \iff " —just like "iff" — is conjunctional: It applies to two statements — S_i and S_{i+1} — only and implies an \land before the adjoining next similar equivalence.

2.3.5 Theorem. (The subclass theorem) Let $\mathbb{A} \subseteq B$ (B a set). Then \mathbb{A} is a set.

Proof. Well, B being a set there is a stage Σ where it is built (Principle 1). By Principle 0, all members of B are available or built before $stage \Sigma$.

But by $\mathbb{A} \subseteq B$, all the members of \mathbb{A} are among those of B.

Hey! By Principle 0 we can build \mathbb{A} at stage Σ , so it is a set. \square

Some corollaries are useful:

2.3.6 Corollary. (Modified comprehension I) If for all x we have

$$P(x) \to x \in A \tag{1}$$

for some set A, then $\mathbb{B} = \{x : P(x)\}\$ is a set.

Proof. I will show that $\mathbb{B} \subseteq A$, that is,

$$x \in \mathbb{B} \to x \in A$$

Indeed (see 3 under **Practical considerations** in 2.3.4), let $x \in \mathbb{B}$. Then P(x) is true, hence $x \in A$ by (1). Now invoke 2.3.5.

2.3.7 Corollary. (Modified comprehension II) If A is a set, then so is $\mathbb{B} = \{x : x \in A \land P(x)\}$ for any property P(x).

Proof. The defining property here is " $(x \in A)^{\dagger} \wedge P(x)$ ". This implies $x \in A$ —by 2 in 2.3.4— that is, we have

$$(x \in A \land P(x)) \to x \in A$$

Now invoke 2.3.6.

[†]Brackets not needed; inserted for extra clarity.

2.3. Some <u>useful</u> sets 43

2.3.8 Remark. (*The* empty set) The class $\mathbb{E} = \{x : x \neq x\}$ has no members at all; it is empty. Why? Because

$$x \in \mathbb{E} \equiv x \neq x$$

but the condition $x \neq x$ is always false, therefore so is the statement

$$x \in \mathbb{E} \tag{1}$$

We do not collect anything into \mathbb{E} . Is the class \mathbb{E} a set?

Well, take $A = \{1\}$. This is a set as the atom 1 is given at stage 0, and thus we can construct the set A at stage 1.

Note that, by (1) and 3 in 2.3.4 we have that

$$x \in \mathbb{E} \to x \in \{1\}$$

is true (for all x). That is, $\mathbb{E} \subseteq \{1\}$.

By 2.3.5, \mathbb{E} is a set.

But is it *unique* so we can justify the use of the definite article "the"? Yes. The specification of an empty set is a class with no members. So if D is another empty set, then we will also have $x \in D$ always false. But then

$$x \in \mathbb{E} \equiv x \in D$$
 (both sides of \equiv are false)

and we have $\mathbb{E} = D$ by 2.1.1.

The unique empty set is denoted by the symbol \emptyset in the literature. Never use "{}" for the empty set. Incorrect notation!

2.4. Operations on classes and sets

Jan. 21, 2022

The reader probably has seen before (perhaps in calculus) the operations on sets denoted by $\cap, \cup, -$ and others. We will look into them in this section.

2.4.1 Definition. (Intersection of two classes) We define for any classes \mathbb{A} and \mathbb{B}

$$\mathbb{A} \cap \mathbb{B} \stackrel{Def}{=} \left\{ x : x \in \mathbb{A} \land x \in \mathbb{B} \right\}$$
 (1)

We call the operator \cap intersection and the result $\mathbb{A} \cap \mathbb{B}$ the intersection of \mathbb{A} and \mathbb{B} .

If $\mathbb{A} \cap \mathbb{B} = \emptyset$ —which happens precisely when the two classes have no common elements—we call the classes *disjoint*.

Taking liberties with notation (of definition by defining property) we may write instead of (1) either

$$\mathbb{A} \cap \mathbb{B} \stackrel{Def}{=} \left\{ x \in \mathbb{A} : x \in \mathbb{B} \right\} \tag{1'}$$

or

$$\mathbb{A} \cap \mathbb{B} \stackrel{Def}{=} \left\{ x \in \mathbb{B} : x \in \mathbb{A} \right\} \tag{1"}$$

It is meaningless to have \cap operate on atoms.[†]

We have the easy theorem below:

[†]The definition expects ∩ to operate on classes. As we know, atoms (by definition) have no set/class structure thus no class and no set is an atom.

2.4.2 Theorem. If B is a set, as its notation suggests, then $\mathbb{A} \cap B$ is a set.

Proof. I will prove $\mathbb{A} \cap B \subseteq B$ which will rest the case by 2.3.5. So, I want

$$x \in \mathbb{A} \cap B \to x \in B$$

To this end, let then $x \in \mathbb{A} \cap B$ (cf. 3 in 2.3.4). This says that $x \in \mathbb{A} \wedge x \in B$ is true, so $x \in B$ is true.

2.4.3 Corollary. For sets A and B, $A \cap B$ is a set.

2.4.4 Definition. (Union of two classes) We define for any classes \mathbb{A} and \mathbb{B}

$$\mathbb{A} \cup \mathbb{B} \stackrel{Def}{=} \left\{ x : x \in \mathbb{A} \lor x \in \mathbb{B} \right\}$$

We call the operator \cup union and the result $\mathbb{A} \cup \mathbb{B}$ the union of \mathbb{A} and \mathbb{B} .

It is meaningless to have \cup operate on atoms.

2.4.5 Theorem. For any sets A and B, $A \cup B$ is a set.

Proof. By assumption say A is built at stage Σ while B is built at stage Σ' . Without loss of generality (in short, "wlg") say Σ is no later than Σ' , that is, $\Sigma \leq \Sigma'$.

By Principle 2, I can pick a stage $\Sigma'' > \Sigma'$, thus (transitivity of "later")

$$\Sigma'' > \Sigma' \tag{1}$$

and

$$\Sigma'' > \Sigma \tag{2}$$

Lets us pick any item $x \in A \cup B$:

I have two (not necessarily mutually exclusive) cases (by 2.4.4):

• $x \in A$. Then x was available or built[†] at a stage $< \Sigma$,

hence, by (2),
$$x$$
 is available before Σ'' (3)

• $x \in B$. Then x was available or built at a stage $< \Sigma'$,

hence, by (1),
$$x$$
 is available before Σ'' (4)

In either case, (3) or (4), the arbitrary x from $A \cup B$ is available before Σ'' , so we can collect all those x-values at stage Σ'' in order to form a set: $A \cup B$.

[†]As x may be an atom, we allow the *possibility* that it was available with no building involved, hence we said "available or built". For A and B though we are told they are sets, so they were built at some stage, by Principle 1!

2.4.6 Definition. (Difference of two classes) We define for any classes \mathbb{A} and \mathbb{B}

$$\mathbb{A} - \mathbb{B} \stackrel{Def}{=} \left\{ x : x \in \mathbb{A} \land x \notin \mathbb{B} \right\} \tag{1}$$

We call the operator "—" difference and the result $\mathbb{A} - \mathbb{B}$ the difference of \mathbb{A} and \mathbb{B} , in that order.

Notation. As was the case for \cap (Definition 2.4.1) for "-" too we have a shorter alternative notation to (1) above:

$$\mathbb{A} - \mathbb{B} \stackrel{Def}{=} \left\{ x \in \mathbb{A} : x \notin \mathbb{B} \right\}$$

2.4.7 Theorem. For any set A and class \mathbb{B} , $A - \mathbb{B}$ is a set.

Proof. The reader is asked to verify that $A - \mathbb{B} \subseteq A$. We are done by 2.3.5.

2.4.8 Exercise. Prove that $\{\mathbb{Z}\}$ is a set, where \mathbb{Z} is the set of integer $\{\ldots, -1, 0, 1, \ldots\}$.	ers
2.4.9 Exercise. Demonstrate —using Definition 2.4.1— that for a \mathbb{A} and \mathbb{B} we have $\mathbb{A} \cap \mathbb{B} = \mathbb{B} \cap \mathbb{A}$.	ny [
2.4.10 Exercise. Demonstrate —using Definition 2.4.4— that for a \mathbb{A} and \mathbb{B} we have $\mathbb{A} \cup \mathbb{B} = \mathbb{B} \cup \mathbb{A}$.	ny
2.4.11 Exercise. By picking two particular very small sets A and show that $A - B = B - A$ is not true for all sets A and B .	В
Is it true of all classes?	

Let us generalise unions and intersections next. First a definition:

- **2.4.12 Definition.** (Family of sets) A class \mathbb{F} is called a *family of sets* iff it contains no atoms. The letter \mathbb{F} is here used generically, and a family may be given any name, usually capital (blackboard bold if we do not know that it is a set).
- **2.4.13 Example.** Thus, \emptyset is a family of sets; the empty family. So are $\{\{2\}, \{2, \{3\}\}\}\}$ and \mathbb{V} , the latter given by

$$\mathbb{V} \stackrel{Def}{=} \left\{ x : x \text{ is a set} \right\}$$

BTW, as \mathbb{V} contains all sets (but no atoms!) it is a proper class! Why? Well, if it is a set, then it is one of the x-values that we are collecting, thus $\mathbb{V} \in \mathbb{V}$. But we saw that this statement is false for sets!

Here are some classes that are *not* families: $\{1\}$, $\{2, \{\{2\}\}\}$ and \mathbb{U} , the latter being the universe of all objects —sets *and* atoms— and equals Russell's "R" as we saw in Section 2.2. These all are disqualified as they contain atoms.

2.4.14 Definition. (Intersection and union of families) Let \mathbb{F} be a family of sets. Then

(i) the symbol $\bigcap \mathbb{F}$ denotes the class that contains all the objects that are common to all $A \in \mathbb{F}$.

In symbols the definition reads:

$$\bigcap \mathbb{F} \stackrel{Def}{=} \left\{ x : \text{for all } A, A \in \mathbb{F} \to x \in A \right\}$$
 (1)

(ii) the symbol $\bigcup \mathbb{F}$ denotes the class that contains all the objects that are found among the various $A \in \mathbb{F}$. That is, imagine that the members of each $A \in \mathbb{F}$ are "emptied" into a single —originally empty— container $\{\ldots\}$. The class we get this way is what we denote by $\bigcup \mathbb{F}$.

In symbols the definition reads (and I think it is clearer):

$$\bigcup \mathbb{F} \stackrel{Def}{=} \left\{ x : \text{for some } A, A \in \mathbb{F} \land x \in A \right\}$$
 (2)

2.4.15 Example. Let $\mathbb{F} = \{\{1\}, \{1, \{2\}\}\}\}$. Then emptying all the contents of the members of \mathbb{F} into some (originally) empty container we get

$$\{1, 1, \{2\}\}\$$
 (3)

This is $\bigcup \mathbb{F}$.

Would we get the same answer from the mathematical definition (2)? Of course:

1 is in some member of \mathbb{F} , indeed in both of the members $\{1\}$ and $\{1, \{2\}\}$, and in order to emphasise this I wrote two copies of 1 —it is emptied/contributed twice. Then $\{2\}$ is the member that only $\{1, \{2\}\}$ of \mathbb{F} contributes.

We do not <u>see</u> any <u>other</u> members in the two set-members $-\{1\}$ and $\{1, \{2\}\}$ — of \mathbb{F} . So, all done!

What is $\bigcap \mathbb{F}$? Well, only 1 is common between the <u>two</u> sets —{1} and {1, {2}}— that are in \mathbb{F} . So, $\bigcap \mathbb{F} = \{1\}$.

2.4.16 Exercise.

- 1. Prove that $\bigcup \{A, B\} = A \cup B$.
- 2. Prove that $\bigcap \{A, B\} = A \cap B$.

Hint. In each of part 1. and 2. show that lhs \subseteq rhs and rhs \subseteq lhs. For that analyse membership, i.e., "assume $x \in$ lhs and prove $x \in$ rhs", and conversely (cf. 2.1.1 and 2.1.2.)

Jan. 24, 2022

2.4.17 Theorem. If the <u>set</u> F is a family of sets, then $\bigcup F$ is a set.

Proof. Let F be built at stage Σ (Princ. 1). Now,

some
$$x \in \bigcup F \equiv x \in A \in F$$

Thus x is available or built *before* A which is built *before* stage Σ since that is when F was built. x being arbitrary, all members of $\bigcup F$ are available/built *before* Σ , so we can build $\bigcup F$ as a set at stage Σ . \square

2.4.18 Theorem. If the class $\mathbb{F} \neq \emptyset$ is a family of sets, then $\bigcap \mathbb{F}$ is a set.

Proof. By assumption there is some set in \mathbb{F} . Fix one such and call it D.

First note that

$$x \in \bigcap \mathbb{F} \to x \in D \tag{*}$$

Why? Because (1) of Definition 2.4.14 says that

$$x \in \bigcap \mathbb{F} \equiv \underline{\text{for all }} A \in \mathbb{F} \text{ we have } x \in A$$

Well, D is one of those "A" sets in \mathbb{F} , so if $x \in \bigcap \mathbb{F}$ then $x \in D$. We established (*) and thus we established

$$\bigcap \mathbb{F} \subseteq D$$

by 2.1.1. We are done by 2.3.5.

2.4.19 Remark. What if $\mathbb{F} = \emptyset$? Does it affect Theorem 2.4.18? Yes, badly!

In Definition 2.4.14 we read

$$\bigcap \mathbb{F} \stackrel{Def}{=} \left\{ x : \text{for all } A, A \in \mathbb{F} \to x \in A \right\}$$
 (**)

However, as the hypothesis (i.e., lhs) of the implication in (**) is **false**, the implication itself is **true**. Thus the entrance condition "for all $A, A \in \mathbb{F} \to x \in A$ " is true for all x and thus allows ALL objects x to get into $\bigcap \mathbb{F}$,

Thus $\bigcap \mathbb{F} = \mathbb{U}$, the universe of *all* objects which we saw (cf. Section 2.2) is a proper class —i.e., *not* a set.

2.4.20 Exercise. What is $\bigcup F$ if $F = \emptyset$? Set or proper class? Can you "compute" which class it is exactly?

\$

2.4.21 Remark. (More notation)

Suppose the family of sets Q is a set of sets A_i , for i = 1, 2, ..., n where $n \geq 3$.

$$Q = \{A_1, A_2, \dots, A_n\}$$

Then we have a few alternative notations for $\bigcap Q$:

(a)

$$A_1 \cap A_2 \cap \ldots \cap A_n$$

or, more elegantly,

(b)

$$\bigcap_{i=1}^{n} A_i$$

or also

(c)

$$\bigcap_{i=1}^{n} A_i$$

Similarly for $\bigcup Q$:

(i)

$$A_1 \cup A_2 \cup \ldots \cup A_n$$

or, more elegantly,

(ii)

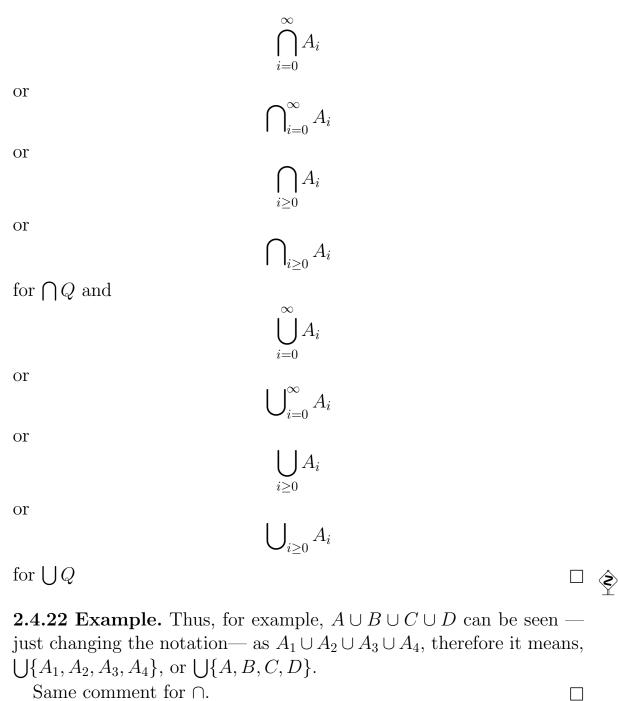
$$\bigcup_{i=1}^{n} A_i$$

or also

(iii)

$$\bigcup_{i=1}^{n} A_i$$

If the family has so many elements that all the natural numbers are needed to index the sets in the set family Q we will write



Pause. How come for the case for n = 2 we $proved^{\dagger} A \cup B = \bigcup \{A, B\}$ (2.4.16) but here we say $(n \geq 3)$ that something like the content of the previous remark and example are just notation (definitions)?

Well, we had *independent* definitions (and associated theorems reset status for each, 2.4.5 and 2.4.17) for $A \cup B$ and $\bigcup \{A, B\}$ so it makes sense to compare the two *independent* definitions after the fact and see if we can *prove* that they say the same thing.

For $n \geq 3$ we opted to NOT give a definition for $A_1 \cup ... \cup A_n$ that is independent of $\bigcup \{A_1 \cup ... \cup A_n\}$, rather we gave the definition of the former in terms of the latter.

No independent definitions, no theorem to compare the two!◀

[†]Well, you proved! Same thing :-)

2.5. The powerset

2.5.1 Definition. For any set A the symbol $\mathscr{P}(A)$ —pronounced the powerset of A— is defined to be the class

$$\mathscr{P}(A) \stackrel{Def}{=} \left\{ x : x \subseteq A \right\}$$

Thus we collect *all* the subsets x of A to form $\mathscr{P}(A)$.

The literature most frequently uses the symbol 2^A in place for of $\mathscr{P}(A)$.

- (1) The term "power set" is slightly premature, but it is apt. Under the conditions of the definition —A a set— 2^A is a set as we prove immediately below.
- (2) We said "all the subsets x of A" in the definition. This is correct. As we know from 2.3.5, if $\mathbb{X} \subseteq Y$ and Y is a set, then so is \mathbb{X} .

2.5. The powerset 57

Jan. 26, 2022

2.5.2 Theorem. For any set A, its powerset $\mathscr{P}(A)$ is a set.

Proof. Let A be built at stage Σ .

We need three steps to argue this:

- **Step 1.** By Princ. 2, pick a stage Σ' after Σ : That is, $\Sigma < \Sigma'$.
- Step 2. If $x \subseteq A$, then we can build x at stage Σ (same as A). Indeed, by Princ. 0, —and because all members of x are also members of A— they are all available $BEFORE \Sigma$ (the stage at which A was built). So we can also build x at stage Σ .
- **Step 3.** But then (Princ. 0) I can collect ALL the x satisfying $x \subseteq A$ and form 2^A as a set at stage Σ' ($>\Sigma$).

2.5.3 Example. Let $A = \{1, 2, 3\}$. Then

$$\mathscr{P}(A) = \left\{ \emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{3, 2\}, \{1, 2, 3\} \right\}$$

Thus the powerset of A has 8 elements.

We will later see that if A has n elements, for any $n \geq 0$, then 2^A has 2^n elements. This observation is at the root of the notation " 2^A ".

2.5.4 Remark. For any set A it is trivial (verify!) that we have $\emptyset \subseteq A$ and $A \subseteq A$. Thus, for any A, $\{\emptyset, A\} \subseteq 2^A$.

Chapter 3

The Ordered Pair and Cartesian Products

To introduce the concepts of cartesian product —so that, in principle, plane analytic geometry can be developed within set theory—we need an object "(A, B)" that is *like* the set pair (2.3.1) in that it contains two objects, A and B (A = B is a possibility), but in (A, B) order and length (here it is 2) matter!

That is,

We want (A, B) = (A', B') implies A = A' and B = B'. Moreover, (A, A) is not $\{A\}$! It is still an ordered pair but so happens that the first and second component, as we call the members of the ordered pair, are equal in this example.

So, are we going to accept a new <u>type</u> of object in set theory? Not at all! We will build (A, B) so that it is a set!

3.0.1 Definition. (Ordered pair) By definition, (A, B) is the abbreviation (short name) given below:

$$(A,B) \stackrel{Def}{=} \left\{ A, \{A,B\} \right\} \tag{1}$$

We call "(A, B)" an ordered pair, and A its first component, while B is its second component.

3.0.2 Remark.

1. Note that $A \neq \{A, B\}$ because we would otherwise get $A \in A$, which is false for sets or atoms A. Thus (A, B) does contain exactly two members, or has length 2:

$$A$$
 and $\{A, B\}$.

Pause. We have *not* said in 3.0.1 that A and B are sets or atoms. So what right do we have in the paragraph above to so declare?

2. What about the desired property that

$$(A,B) = (X,Y) \to A = X \land B = Y \tag{2}$$

Well, **assume the lhs** of " \rightarrow " in (2) and prove the rhs, " $A = X \wedge B = Y$ ".

From our truth table we know that we do the latter by proving each of A = X and B = Y true (separately).

The lhs that we <u>assumed</u> translates to

$$\left\{A, \{A, B\}\right\} = \left\{X, \{X, Y\}\right\} \tag{3}$$

By the remark #1 above there are two distinct members in each of the two sets that we equate in (3).

So since (3) is true (by assumption) we have (by definition of set equality) one of:

- (a) $A = \{X, Y\}$ and $\{A, B\} = X$, that is, 1st listed element in lhs of "=" equals the 2nd listed in rhs; and 2nd listed element in lhs of "=" equals the 1st listed in rhs.
- (b) A = X and $\{A, B\} = \{X, Y\}.$

Now case (a) above *cannot hold*, for it leads to $A = \{\{A, B\}, Y\}$. This in turn leads to

$$\{A,B\} \in A$$

and thus the set $\{A, B\}$ is built *before* ONE of its members, A, which contradicts Principle 0.

Let's then work with case (b).

We have

$$\{A, B\} = \{A, Y\} \tag{4}$$

Well, all the members on the lhs must also be on the rhs. I note that A is.

- What if B is also equal to A? Then we have $\{B\} = \{A, Y\}$ and thus $Y \in \{B\}$ (why?). Hence Y = B. We showed so far A = X (listed in case (b)) and B = Y (proved here); great!
- Here B is **not** equal to A. But B must be in the rhs of (4), so the only way is B = Y. All Done!

Worth noting as a theorem what we proved above:

3.0.3 Theorem. If (A, B) = (X, Y), then A = X and B = Y.

But is (A, B) a set? (atom it is not, of course!) Yes!

3.0.4 Theorem. (A, B) is a set.

Proof. Now
$$(A,B) = \{A,\{A,B\}\}$$
. By 2.3.1, $\{A,B\}$ is set. Applying 2.3.1 once more, $\{A,\{A,B\}\}$ is a set.

3.0.5 Example. So,
$$(1, 2) = \{1, \{1, 2\}\}, (1, 1) = \{1, \{1\}\}, \text{ and } (\{a\}, \{b\}) = \{\{a\}, \{\{a\}, \{b\}\}\}.$$

3.0.6 Remark. We can extend the ordered pair to ordered *triple*, ordered *quadruple*, and beyond!

We take this approach in these notes:

$$(A, B, C) \stackrel{Def}{=} ((A, B), C)$$
 (1)

$$(A, B, C, D) \stackrel{Def}{=} \left((A, B, C), D \right) \tag{2}$$

$$(A, B, C, D, E) \stackrel{Def}{=} \left((A, B, C, D), E \right) \tag{3}$$

etc. So suppose we defined what an <u>n-tuple</u> is, for some fixed unspecified n, and denote it by $(A_1, A_2, \ldots, \overline{A_n})$ for convenience. Then

$$(A_1, A_2, \dots, A_n, A_{n+1}) \stackrel{Def}{=} ((A_1, A_2, \dots, A_n), A_{n+1})$$
 (*)

This is an "inductive" or "recursive" definition, defining a concept (n + 1-tuple) in terms of a smaller instance of itself, namely, in terms of the concept for an n-tuple, and in terms of the case n = 2 that we dealt with by direct definition (not in terms of the concept itself!) in 3.0.1.

(*) is a general (for each length n that is) <u>formation rule</u> that allows us to build a tuple longer by ONE, compared to a tuple <u>we have already built</u>.

Suffice it to say this "case of n+1 in terms of case of n" provides just shorthand notation to take the mystery out of the red "etc." above. We **condense**/codify infinitely many definitions (1), (2), (3), ... into just **two**:

- 3.0.1 and
- (*)

The reader has probably seen such recursive definitions before (likely in calculus and/or high school).

The most frequent example that occurs is to define, for any natural number n and any real number a > 0, what a^n means. One goes like this:

$$a^0 = 1$$
$$a^{n+1} = a \cdot a^n$$

The above condenses infinitely many definitions such as

$$a^{0} = 1$$
 $a^{1} = a \cdot a^{0} = a$
 $a^{2} = a \cdot a^{1} = a \cdot a$
 $a^{3} = a \cdot a^{2} = a \cdot a \cdot a$
 $a^{4} = a \cdot a^{3} = a \cdot a \cdot a \cdot a$
 \vdots

into just two!

We will study inductive definitions and induction soon!

Before we exit this remark note that (A, B, C) = (A', B', C') implies A = A', B = B', C = C' because it says (3.0.6 (1))

$$((A, B), C) = ((A', B'), C')$$

and thus (3.0.3) implies

$$C = C'$$
 and $(A, B) = (A', B')$

That is, (A, B, C) is an **ordered** triple (3-tuple).

We can also prove that $(A_1, A_2, \ldots, A_n, A_{n+1})$ is an **ordered** n+1-tuple, i.e.,

$$(A_1, A_2, \dots, A_{n+1}) = (A'_1, A'_2, \dots, A'_{n+1}) \to A_1 = A'_1 \land \dots \land A_{n+1} = A'_{n+1}$$
 if we have followed the "etc." all the way to the case of (A_1, A_2, \dots, A_n) .

We will do the "etc."-argument elegantly once we learn induction!

Jan. 28, 2022

3.0.7 Definition. (Finite sequences) An n-tuple for $n \ge 1$ is called a finite sequence of length n, where we extend the concept to a one element sequence —by definition— to be

$$(A) \stackrel{Def}{=} A$$

Ś

Note that now we can redefine all sequences of lengths $n \ge 1$ —pushing the starting point of the "etc.-construction" in 3.0.6 to n = 1 (from n = 2).

Using again (*) above, but this time with starting condition that of 3.0.7, for n = 2 we rediscover (A_1, A_2) :

the "new" 2-tuple pair:
$$(A_1, A_2) \stackrel{\text{by }(*)}{=} ((A_1), A_2) \stackrel{\text{by } 3.0.7}{=} (A_1, A_2)$$

The big red brackets are applications of the ordered pair defined in 3.0.1, just as it was in the general definition (*).

3.1. The Cartesian product

We next define classes of ordered pairs.

3.1.1 Definition. (Cartesian product of classes) Let \mathbb{A} and \mathbb{B} be classes. Then we define

$$\mathbb{A} \times \mathbb{B} \stackrel{Def}{=} \left\{ (x, y) : x \in \mathbb{A} \land y \in \mathbb{B} \right\}$$

The definition requires both sides of \times to be classes. It makes no sense if one or both are atoms.

3.1.2 Theorem. If A and B are sets, then so is $A \times B$.

Proof. By 3.1.1 and 3.0.1

$$A \times B = \left\{ \left\{ x, \left\{ x, y \right\} \right\} : x \in A \land y \in B \right\}$$
 (1)

Plan: I want to "find" a *set* "X" so that the inclusion $A \times B \subseteq X$ is true. Then I can then apply the subclass theorem (2.3.5).

Thus I am starting my search with "let $\{x, \{x, y\}\} \in A \times B$ " and I am analysing this statement attempting to find a superset, X, of $A \times B$, that is, find an X such that $\{x, \{x, y\}\} \in X$.

So, for each $\{x, \{x, y\}\} \in A \times B$ we have $\underline{x \in A}$ and $\{x, y\} \subseteq A \cup B$, or $x \in A$ and $\{x, y\} \in 2^{A \cup B}$. Thus $\{x, \{x, y\}\} \subseteq A \cup 2^{A \cup B}$ and hence (changing notation) $(x, y) \in 2^{A \cup 2^{A \cup B}}$.

I found a "X" that works: $2^{A \cup 2^{A \cup B}}$

We have established that

$$A\times B\subseteq 2^{A\cup 2^{A\cup B}}$$

thus $A \times B$ is a set by 2.3.5, 2.4.5 and 2.5.2.

3.1.3 Definition. Mindful of the Remark 3.0.6 where we defined (A, B, C) as short for ((A, B), C), (A, B, C, D) as short for ((A, B, C), D), etc., we define here $A_1 \times \ldots \times A_n$ for any $n \geq 3$ to mean

$$\{(x_1, x_2, \dots x_n) : x_i \in A_i, \text{ for } i = 1, \dots, n\}$$

and do it as follows:

$$A \times B \times C = (A \times B) \times C \quad \text{justified as follows:}$$

$$= \{((x, y), z) : (x, y) \in A \times B \land z \in C\}$$

$$= \{((x, y), z) : x \in A \land y \in B \land z \in C\}$$

$$= \stackrel{\text{Def of } (x, y, z)}{=} \{(x, y, z) : x \in A \land y \in B \land z \in C\}$$

$$A \times B \times C \times D = (A \times B \times C) \times D$$

$$\vdots$$

$$A_1 \times A_2 \times \ldots \times A_n \times A_{n+1} \stackrel{Def}{=} (A_1 \times A_2 \times \ldots \times A_n) \times A_{n+1}$$

$$\vdots$$

We may write
$$\underset{i=1}{\overset{n}{\times}} A_i$$
 for $A_1 \times A_2 \times \ldots \times A_n$

If
$$A_1 = \ldots = A_n = B$$
 we may write B^n for $A_1 \times A_2 \times \ldots \times A_n$. \square

3.1.4 Remark. Thus, what we learnt in 3.1.3 is, in other words,

$$\underset{i=1}{\overset{n}{\times}} A_i \stackrel{Def}{=} \left\{ (x_1, \dots, x_n) : x_i \in A_i, \text{ for } i = 1, 2, \dots, n \right\}$$

and

$$B^n \stackrel{Def}{=} \left\{ (x_1, \dots, x_n) : x_i \in B \right\}$$

3.1.5 Theorem. If A_i , for i = 1, 2, ..., n is a set, then so is $\underset{i=1}{\overset{n}{\times}} A_i$.

Proof. $A \times B$ is a set by 3.1.2. By 3.1.3, **and in this order**, we verify that so is $A \times B \times C$ and $A \times B \times C \times D$ and . . . and $A_1 \times A_2 \times ... \times A_n$ and . . .

If we had inductive definitions available already, then Definition 3.1.3 would simply read

$$A_1 \times A_2 \stackrel{Def}{=} \left\{ (x_1, x_2) : x_1 \in A_1 \land x_2 \in A_2 \right\}$$
and, for $n \ge 2$,
$$A_1 \times A_2 \times \ldots \times A_n \times A_{n+1} \stackrel{Def}{=} (A_1 \times A_2 \times \ldots \times A_n) \times A_{n+1}$$

Correspondingly, the proof of 3.1.5 would be far more elegant, via induction.

Chapter 4

Relations and functions

Jan. 31, 2022

The topic of relations and functions is central in all *mathematics* and *computing*.

In *mathematics*, whether it is calculus, algebra or anything else, one deals with relations (notably *equivalence relations*, *order*) and all sorts of functions while in *computing* one computes relations and functions, that is, writing programs that given an input to a relation they compute the <u>response</u> (<u>true or false</u>) or given an <u>input to a function</u> they compute a response <u>which is some object</u> (number, graph, tree, matrix, other) or *nothing*, *in case there is no response* for said input (for example, there is no response to input "x, y" if what we are computing is $\frac{x}{y}$ but y = 0).

We are taking an "extensional" point of view in this course —as is customary in set theory, algebra, calculus— of relations and functions, that is, we view them as <u>classes</u> of (input, output) ordered pairs.

It is also possible to take an *intentional* point of view, *especially in computer science* and some specific areas of mathematics, viewing relations and functions as *methods* to compute outputs from given inputs.

4.1. Relations

4.1.1 Definition. (Binary relation) A binary relation is a class \mathbb{R}^{\dagger} of ordered pairs.

The statements $(x,y) \in \mathbb{R}$, $x\mathbb{R}y$ and $\mathbb{R}(x,y)$ are *equivalent*. $x\mathbb{R}y$ is the preferred "infix" notation —imitating notation such as $A \subset B$, x < y, x = y and has notational advantages.

4.1.2 Remark. \mathbb{R} contains just pairs (x, y), that is, just sets $\{x, \{x, y\}\}$, that is, it is a family of sets.

Since $(x_1, x_2, ..., x_n) = ((x_1, x_2, ..., x_{n-1}), x_n)$, it follows that binary relations (classes of ordered pairs) is all we need to study.

BTW, a class of ordered *n*-tuples, $(x_1, x_2, ..., x_n)$, is called *an n*-*ary relation*. As I said above we do not need to pay special attention to them.

[†]I write " \mathbb{R} " or " \mathbb{R} " for a relation, generically, but \mathbb{P} , \mathbb{Q} , \mathbb{S} are available to use as well. I will avoid specific names such as <, \subseteq in a general discussion. These two are apt to bring in in examples.

4.1. Relations 71

4.1.3 Example. Examples of relations:

- (i) ∅
- (ii) $\{(1,1)\}$
- (iii) $\{(1,1),(1,2)\}$
- (iv) \mathbb{N}^2 , that is $\{(x,y): x \in \mathbb{N} \land y \in \mathbb{N}\}$. This is a set by the fact that \mathbb{N} is (Why?) and thus so is $\mathbb{N} \times \mathbb{N}$ by 3.1.2.
- (v) < on \mathbb{N} , that is $\{(x,y) : x < y \land x \in \mathbb{N} \land y \in \mathbb{N}\}$. This is a set since $<\subseteq \mathbb{N}^2$.
- (vi) \in , that is,

$$\{(x,y): x \in y \land x \in \mathbb{U} \land y \in \mathbb{V}\} \tag{*}$$

This is a proper class (nonSet). Why? Well, if \in is a set, then it is built at some stage Σ .

Now examine the arbitrary (x, y) in \in . This is $\{x, \{x, y\}\}$ so it is built before Σ , but then so is its member x (available before Σ). Thus we can collect all such x into a set at stage Σ . But this "set" contains all $x \in \mathbb{U}$ due to the middle conjunct in the entrance condition in (*). That is, this "set" is \mathbb{U} . This is absurd!

[†]Hmm. Doesn't the first conjunct " $x \in y$ " reduce the number of x-values? No: For every x out there take $y = \{x\}$ thus the conjunct $x \in y$ is fulfilled for all x-values, as I showed how to find a y that works.

So, a binary relation \mathbb{R} is a table of pairs:

input: x	output: y
a	b
a'	b'
:	:
u	v
:	:

- 1. Thus one way to view R is as a device that for inputs x, valued a, a', \ldots, u, \ldots one gets the outputs y, valued b, b', \ldots, v, \ldots respectively. It is all right that a given input may yield multiple outputs (e.g., case (iii) in the previous example).
- 2. Another point of view is to see both x and y as inputs and the outputs are **true** or **false** (**t** or **f**). Such is the way we usually view the relations < and = on the natural numbers.

For example, (a, b) is in the table (that is, aRb <u>is true</u>) hence if both a and b are ordered input values, then the relation outputs \mathbf{t} .

Most of the time we will take the point of view in 1 above. This point of view compels us to define *domain* and range of a relation \mathbb{R} , that is, the class of all inputs that cause an output and the class of all caused outputs respectively.

4.1.4 Definition. (Domain and range) For any relation \mathbb{R} we define *domain*, in symbols "dom" by

$$\operatorname{dom}(\mathbb{R}) \stackrel{Def}{=} \{ x : (\exists y) x \mathbb{R} y \}$$

where we have introduced the notation " $(\exists y)$ " as short for "there exists some y such that", or "for some y".

Range, in symbols "ran", is defined also in the obvious way:

$$\operatorname{ran}(\mathbb{R}) \stackrel{Def}{=} \{ x : (\exists y) y \mathbb{R} x \}$$

We settle the following, before other things:

4.1.5 Theorem. For a set relation R, both dom(R) and ran(R) are sets.

Proof. For domain we collect all the x such that xRy, for some y, that is, all the x such that

$$\{x, \{x, y\}\} \in R \tag{1}$$

for some y.

So, R has the form

$$\left\{ \{x, \{x, y\}\}, \{x', \{x', y'\}\}, \{x'', \{x'', y''\}\}, \dots \right\}$$
$$\left\{ x, \{x, y\}, x', \{x', y'\}, x'', \{x'', y''\}, \dots \right\}$$

dom(R) is thus the collection of all the x, x', x'', \dots (4.1.4).

Thus

$$dom(R) \subseteq \bigcup R \tag{\dagger}$$

Now, R is a set-family of sets, thus $\bigcup R$ is a set. But then by (\dagger) and the subclass theorem, dom(R) is a set. This settles the domain case.

Let A be the set of all atoms in $\bigcup R$ and define

$$S \stackrel{Def}{=} \left(\bigcup R\right) - A$$

Notes on Discrete MATH (EECS1028)© G. Tourlakis

So, S is a *set family*, and it contains *all* the $\{x,y\}$ parts of *all* $\{x,\{x,y\}\} \in R$. Thus,

$$S = \{ \{x, y\}, \{x', y'\}, \{x'', y''\}, \dots; \text{ plus those } x, x', x'', \dots \text{ that are } sets \}$$

Then $\bigcup S$ contains all the y. That is, $\operatorname{ran}(R) \subseteq \bigcup S$, and that settles the range case. \Box

4.1.6 Definition. In practice we often have an *a priori decision* about what are *in principle* "legal" inputs for a relation \mathbb{R} , and where its outputs go.

Thus we have two classes, \mathbb{A} and \mathbb{B} for the class of legal inputs and possible outputs respectively. Clearly we have $\mathbb{R} \subseteq \mathbb{A} \times \mathbb{B}$.

We call \mathbb{A} and \mathbb{B} *left field* and *right field* respectively, and instead of $\mathbb{R} \subseteq \mathbb{A} \times \mathbb{B}$ we often write

$$\mathbb{R}:\mathbb{A}\to\mathbb{B}$$

and also

$$\mathbb{A} \xrightarrow{\mathbb{R}} \mathbb{B}$$

pronounced " \mathbb{R} is a relation $from \mathbb{A}$ to \mathbb{B} ".

The term *field* —without left/right qualifiers— for $\mathbb{R} : \mathbb{A} \to \mathbb{B}$ refers to $\mathbb{A} \cup \mathbb{B}$.

If $\mathbb{A} = \mathbb{B}$ then we have

$$\mathbb{R}:\mathbb{A}\to\mathbb{A}$$

but rather than pronouncing this as " \mathbb{R} is a relation from \mathbb{A} to \mathbb{A} " we $prefer^{\dagger}$ to say " \mathbb{R} is on \mathbb{A} ".

4.1.7 Example. The a priori legal inputs in *Number Theory* and in *Computability* are all the natural numbers. \Box

Notes on Discrete MATH (EECS1028)© G. Tourlakis

[†]Both ways of saying it are correct.

4.1.8 Remark. Trivially, for any $\mathbb{R} : \mathbb{A} \to \mathbb{B}$, we have $dom(\mathbb{R}) \subseteq \mathbb{A}$ and $ran(\mathbb{R}) \subseteq \mathbb{B}$ (give a quick proof of each of these inclusions).

Also, for any relation \mathbb{P} with no *a priori* specified left/right fields, \mathbb{P} is a relation from $dom(\mathbb{P}) \to ran(\mathbb{P})$.

Naturally, we say that $dom(\mathbb{P}) \cup ran(\mathbb{P})$ is the field of \mathbb{P} in this case.

4.1.9 Example. As an example, consider the *divisibility relation* on all integers (their set denoted by \mathbb{Z}) denoted by "|":

x|y means x divides y with 0 remainder

thus, for x = 0 and all y, the division is illegal, therefore

The input x = 0 to the relation "|" produces no output, in other words, "for input x = 0 the relation is undefined."

We walk away with two things from this example:

1. It **does** make sense for some relations to *a priori* choose left and right fields, here

$$|: \mathbb{Z} \to \mathbb{Z}$$

You would not have divisibility on real numbers!

2. dom(|) is the set of all inputs that produce some output. Thus, it is NOT the case <u>for all relations</u> that their domain is the same as the left field *chosen*! Note the case in this example! And forget the term "codomain" that you may find in flawed publications on discrete MATH!

4.1.10 Example. Next consider the relation < with left/right fields restricted to \mathbb{N} . Then $dom(<) = \mathbb{N}$, but $ran(<) \subsetneq \mathbb{N}$. Indeed, $0 \in \mathbb{N} - ran(<)$.

Feb. 2, 2022

Let us extract some terminology from the above examples:

4.1.11 Definition. Given

$$\mathbb{R}: \mathbb{A} \to \mathbb{B}$$

If $dom(\mathbb{R}) = \mathbb{A}$, then we call \mathbb{R} total or totally defined. If $dom(\mathbb{R}) \subsetneq \mathbb{A}$, then we say that \mathbb{R} is nontotal.

If $ran(\mathbb{R}) = \mathbb{B}$, then we call \mathbb{R} onto. If $ran(\mathbb{R}) \subsetneq \mathbb{B}$, then we say that \mathbb{R} is not onto.

So, the relation | above is nontotal, and < is not onto.

In what follows we move away from the full generality of classes (possibly proper) and *restrict attention to relations that are sets*.

4.1.12 Example. Let $A = \{1, 2\}$.

- The relation $\{(1,1)\}$ on A is neither total nor onto.
- The relation $\{(1,1),(1,2)\}$ on A is onto but not total.
- The relation $\{(1,1),(2,1)\}$ on A is total but not onto.

- \bullet The relation $\{(1,1),(2,2)\}$ on A is total and onto.
- The relation $\{(1,2),(2,1)\}$ on A is total and onto.

4.1.13 Definition. The relation Δ_A on the set A is given by

$$\Delta_A \stackrel{Def}{=} \{ (x, x) : x \in A \}$$

We call it the <u>diagonal</u> (" Δ " for "diagonal") or <u>identity</u> relation <u>on A</u>.

Consistent with the second terminology, we may also use the symbol $\mathbf{1}_A$ for this relation.

4.1.14 Definition. A relation R (not a priori restricted to have predetermined left or right fields) is

- 1. Transitive: Iff $xRy \wedge yRz$ implies xRz.
- 2. Symmetric: Iff xRy implies yRx.
- 3. Antisymmetric: Iff $xRy \wedge yRx$ implies x = y.
- 4. Irreflexive: Iff xRy implies $x \neq y$. Also said this way: For NO x can we have xRx.
- 5. Now assume R is on a set A. Then we call it reflexive iff $\Delta_A \subseteq R$.

4.1.15 Example.

- (i) Transitive examples: \emptyset (vacuously), $\{(1,1)\}$, $\{(1,2), (2,3), (1,3)\}$, $<, \leq, =, \mathbb{N}^2$.
- (ii) Symmetric examples: \emptyset (vacuously), $\{(1,1)\}$, $\{(1,2),(2,1)\}$, =, \mathbb{N}^2 .
- (iii) Antisymmetric examples: \emptyset (vacuously), $\{(1,1)\}, =, \leq, \subseteq$.
- (iv) Irreflexive examples: \emptyset (vacuously), $\{(1,2)\}$, \subsetneq , the relations "<" and " \neq " on \mathbb{N} .
- (v) Reflexive examples: $\mathbf{1}_A$ on A, $\{(1,1)\}$ on $\{1\}$, $\{(1,2),(2,1),(1,1),(2,2)\}$ on $\{1,2\}$, = on \mathbb{N} , \leq on \mathbb{N} .

We can compose relations:

4.1.16 Definition. (Relational composition) Let R and S be (set) relations. Then, their composition, in that order, denoted by $R \circ S$ is defined for all x and y by:

$$xR \circ Sy \stackrel{Def}{=} (\exists z) \Big(xRz \wedge zSy \Big)$$

It is *customary* (lazy and incorrect, though) to *abuse* notation and write "xRzSy" for " $xRz \wedge zSy$ " just as one writes x < y < z for $x < y \wedge y < z$.

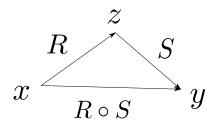
The definition unchanged applies to any class relations $\mathbb R$ and $\mathbb S$ as well.

4.1.17 Example. Here is whence the emphasis "in that order" above. Say, $R = \{(1,2)\}$ and $S = \{(2,1)\}$. Thus, $R \circ S = \{(1,1)\}$ while $S \circ R = \{(2,2)\}$. Thus, $R \circ S \neq S \circ R$ in general.

4.1.18 Example. For any R, we diagrammatically indicate xRy by

$$x \xrightarrow{R} y$$

Thus, the situation where we have that $xR \circ Sy$ means, for some z, xRzSy is depicted as:



4.1.19 Theorem. The composition of two (set) relations R and S in that order is also a set.

Proof. Trivially, $R \circ S \subseteq \text{dom}(R) \times \text{ran}(S)$ because

$$xR \circ Sy$$

means

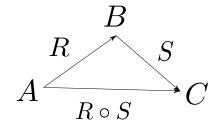
Moreover, we proved in 4.1.5 that dom(R) and ran(S) are sets. Thus so is $dom(R) \times ran(S)$ (3.1.2).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1.20 Corollary. If we have $R:A\to B$ and $S:B\to C$, then $R\circ S:A\to C$.

Proof. From $R \circ S \subseteq \text{dom}(R) \times \text{ran}(S)$ above and $\text{dom}(R) \subseteq A$ and $\text{ran}(S) \subseteq C$.

 $\ \ \,$ The result of the corollary is depicted diagrammatically as



4.1.21 Theorem. (Associativity of composition) For any relations \mathbb{R} , \mathbb{S} and \mathbb{T} , we have

$$(\mathbb{R} \circ \mathbb{S}) \circ \mathbb{T} = \mathbb{R} \circ (\mathbb{S} \circ \mathbb{T})$$

We state and prove this central result for any class relations.

Proof. We have two directions:

 \rightarrow : Fix x and y and let $x(\mathbb{R} \circ \mathbb{S}) \circ \mathbb{T}y$.

Then, for some z, we have $x(\mathbb{R} \circ \mathbb{S})z\mathbb{T}y$ and hence for some w, the above becomes

$$x\mathbb{R}w\mathbb{S}z\mathbb{T}y\tag{1}$$

But wSzTy means $wS \circ Ty$, hence we rewrite (1) as

$$x\mathbb{R}w(\mathbb{S}\circ\mathbb{T})y$$

Finally, the above says $x\mathbb{R} \circ (\mathbb{S} \circ \mathbb{T})y$.

 \leftarrow : Fix x and y and let $x\mathbb{R} \circ (\mathbb{S} \circ \mathbb{T})y$.

Then, for some z, we have $x\mathbb{R}z(\mathbb{S}\circ\mathbb{T})y$ and hence for some u, the above becomes

$$x\mathbb{R}z\mathbb{S}u\mathbb{T}y$$
 (2)

But $x\mathbb{R}z\mathbb{S}u$ means $x\mathbb{R}\circ\mathbb{S}u$, hence we rewrite (2) as

$$x(\mathbb{R} \circ \mathbb{S})u\mathbb{T}y$$

Finally, the above says $x(\mathbb{R} \circ \mathbb{S}) \circ \mathbb{T}y$.

The following is almost unnecessary, but offered for emphasis:

4.1.22 Corollary. If R, S and T are (set) relations, all on some set $A,^{\dagger}$ then " $R \circ S \circ T$ " has a meaning independent of how brackets are inserted.

The corollary allows us to just omit brackets in a chain of compositions, even longer than the above. It also leads to the definition of relational exponentiation, below:

4.1.23 Definition. (Powers of a binary relation) Let R be a (set) relation. We define R^n , for n > 0, as

$$\underbrace{R \circ R \circ \cdots \circ R}_{n,R} \tag{1}$$

Note that the resulting relation in (1) is independent of how brackets are inserted (4.1.22).

If moreover we have defined R to be on a set A, then we also define the 0-th power: R^0 stands for Δ_A or $\mathbf{1}_A$.

[†]Recall that "R is on a set A" means $R \subseteq A^2$, which is the same as $R: A \to A$.

Feb. 4, 2022

4.1.24 Remark. Say aR^nb .

Then, viewing R^n as $R \circ R^{n-1}$ I have

$$aR^{n}b \iff aRa_{1}R^{n-1}b$$
 for some a_{1} $\iff aRa_{1}Ra_{2}R^{n-2}b$ similarly, for some a_{2} $\iff aRa_{1}Ra_{2}Ra_{3}R^{n-3}b$ similarly, for some a_{3} : $\Leftrightarrow aRa_{1}Ra_{2}Ra_{3}Ra_{4}\dots a_{n-1}Rb$ similarly, for some a_{n-1}

Summarising:

Thus aR^nb means that for some $a_1, a_2, \ldots, a_{n-1}$ we have

$$\underbrace{a}_{\in \text{dom}(R)} Ra_1 Ra_2 Ra_3 Ra_4 \dots a_{n-1} R \underbrace{b}_{\in \text{ran}(R)}$$

$$\tag{1}$$

4.1.25 Exercise. Let R be a relation on A. Then for all $n \geq 0$, R^n is a set.

Hint. See (1) above

4.1.26 Example. Let $R = \{(1, 2), (2, 3)\}$. What is R^2 ?

Well, when can we have xR^2y ? Precisely if/when we can find x, y, z that satisfy xRzRy. The values x = 1, y = 3 and z = 2 are the *only ones* that satisfy xRzRy.

Thus $1R^23$, or $(1,3) \in R^2$. We conclude $R^2 = \{(1,3)\}$ by the "only ones" above.

4.1.27 Exercise. Show that if for a relation R we know that $R^2 \subseteq R$, then R is transitive and conversely.

4.1.1. Transitive closure

4.1.28 Definition. (Transitive closure of R) \underline{A} transitive closure of a relation R —if it exists— is the \subseteq -smallest transitive T that contains R as a subset.

More precisely,

- 1. T is transitive, and $R \subseteq T$.
- 2. If S is also transitive and $R \subseteq S$, then $T \subseteq S$. This makes the term " \subseteq -smallest" precise.

Note that we *hedged twice* in the definition, because at this point we do not know yet:

- If every relation has a transitive closure; hence the "if it exists".
- We do not know *if it is unique* either, hence the emphasised indefinite article "<u>A</u>".

4.1.29 Remark. Uniqueness can be settled immediately from the definition above: Suppose T and T' fulfil Definition 4.1.28, that is, suppose both are transitive closures of some R. Thus,

- 1. $R \subseteq T$ and
- $2. R \subseteq T'$

since both are closures.

But now think of T as a closure and T' as the "S" of 4.1.28 (it includes R all right!)

Hence $T \subseteq T'$.

Now reverse the role-playing and think of T' as a closure, while T plays the role of "S". We get $T' \subseteq T$. Hence, T = T'.

4.1.30 Definition. The unique transitive closure, *if it exists*, is denoted by R^+ .

4.1.31 Exercise. If R is transitive, then R^+ exists. In fact, $R^+ = R$.

The above exercise is hardly exciting, but learning that R^+ exists for every R and also learning how to "compute" R^+ is exciting. We do this next.

4.1.32 Lemma. Given a (set) relation R. Then $\bigcup_{n=1}^{\infty} R^n$ is a transitive (set) relation.

Proof. We have two things to do.

- 1. $\bigcup_{n=1}^{\infty} R^n$ is a set.
- 2. $\bigcup_{n=1}^{\infty} R^n$ is a transitive relation.
- Proof of **1.** By (1) in 4.1.24, $aR^{n+1}b$ implies $a \in \text{dom}(R)$ and $b \in \text{ran}(R)$.

Thus

$$R^{n+1} \subseteq \operatorname{dom}(R) \times \operatorname{ran}(R)$$

for $n \geq 0$.

 So^{\dagger}

$$X \in \mathbb{F} = \{R^i : i = 1, 2, 3, \ldots\} \Longrightarrow X \subseteq \operatorname{dom}(R) \times \operatorname{ran}(R)$$

 $\Longrightarrow X \in 2^{\operatorname{dom}(R) \times \operatorname{ran}(R)}$

Thus, $\mathbb{F} \subseteq 2^{\text{dom}(R) \times \text{ran}(R)}$ is a *set* family of sets R^n , for $n \ge 1$ (apply 2.3.5) and we can use the notation from 2.4.21

$$\bigcup_{i=1}^{\infty} R^i = \bigcup \mathbb{F}$$

 $a \ set$, as we know (2.4.17)

Notes on Discrete MATH (EECS1028)© G. Tourlakis

[†]Recall that "⇒" says "implies" just like →, but the former is conjunctional!

Proof of 2. Now, $\bigcup_{i=1}^{\infty} R^i$ is a set (by part 1) but also, of course, a binary relation since trivially it is a set of ordered pairs.

Next, we prove it is *transitive*.

Let

$$x \bigcup_{i=1}^{\infty} R^i y \bigcup_{i=1}^{\infty} R^i z$$

Thus for some n and m we have

$$x R^n y^{\dagger} R^m z$$

this says the same thing as

$$x \ \overrightarrow{R \circ R \circ \cdots R} \ y \ \overrightarrow{R \circ R \circ \cdots R} \ z$$

or

$$x \stackrel{n}{\overbrace{R \circ R \circ \cdots R}} \circ \stackrel{m}{\overbrace{R \circ R \circ \cdots R}} z$$

or

$$x \overbrace{R \circ R \circ \cdots R}^{n+m} z$$

hence, since $(x, z) \in \mathbb{R}^{n+m}$ from above, we have

$$(x,z) \in \bigcup \left\{ \dots, R^{n+m}, \dots \right\}, \text{ that is, } (2.4.21), \ x \bigcup_{i=1}^{\infty} R^{i} z$$

 $^{^{\}dagger}x\bigcup_{i=1}^{\infty}R^{i}y$ means $(x,y)\in\bigcup_{i=1}^{\infty}R^{i}$, therefore $(x,y)\in R^{n}$ for some n by definition of $\bigcup_{n=1}^{\infty}$.

4.1.33 Remark. Read me! Why all this work for Part 1 of the proof above? Why not just use 2.4.21 right away? Because 2.4.21 offers only notation provided we know that

$$\mathbb{F} = \{A_0, A_1, A_2, A_3, \ldots\} \tag{3}$$

is a set! Cf. "Suppose the family of sets Q is a <u>set</u> of sets", the opening statement in the passage 2.4.21 on notation.

Here we do not know (yet) if every family of sets like (3) is indeed a set —but in this case it turns out that we do not care because every member of $\mathbb{F} = \{R^i : i = 1, 2, 3, ...\}$ is included (as a subset) in $dom(R) \times ran(R)$ (a set), which allows us to sidestep the issue!

Whether every family of sets like \mathbb{F} in (3) is a set will be answered affirmatively in 4.1.42. For now note that we cannot recklessly say that after any sequence of construction by stages there is a stage after all those stages. Why? Well, take all the objects in set theory. Each is given outright (atom; stage 0) or is constructed at some stage (set). If we could prove there is a stage after all these stages then we could also prove that \mathbb{U} is a set, a claim we refuted with two methods so far!

Feb. 7, 2022

Since $R \subseteq \bigcup_{i=1}^{\infty} R^i$ due to $R = R^1$, all that remains to show is that $\bigcup_{i=1}^{\infty} R^i$ is a transitive closure of R is to show the Lemma below.

4.1.34 Lemma. If $R \subseteq S$ and S is transitive, then $\bigcup_{i=1}^{\infty} R^i \subseteq S$. Proof. I will just show that for all $n \ge 1$, $R^n \subseteq S$.

- (1) OK, $R \subseteq S$ is our assumption, thus $R^1 \subseteq S$ is true.
- (2) For $R^2 \subseteq S$ let xR^2y , thus (for some z), xRzRy hence xSzSy. But S is transitive, so xSy. Done.
- (3) For $R^3 \subseteq S$ let xR^3y , thus (for some z), xR^2zRy hence xSz Sy. But S is transitive, so the last expression gives xSy. Done.
- (n+1) You see the pattern: Pretend we proved up to some fixed unspecified n:

$$R^n \subseteq S \tag{\ddagger}$$

Thus, for the n + 1 case, for the same n we just fixed,

$$xR^{n+1}y \Leftrightarrow xR^n \circ Ry \Leftrightarrow xR^n zRy \text{ (some } z \text{)} \overset{by}{\Rightarrow} xSzSy \Rightarrow xSy^{\dagger}$$

 $^{\dagger}S$ is transitive.

We have proved:

4.1.35 Theorem. (*The* transitive closure exists) For any relation R, its transitive closure R^+ exists and is unique. We have that $R^+ = \bigcup_{i=1}^{\infty} R^i$.

An interesting corollary that will lend a computational flavour to 4.1.35 is the following.

4.1.36 Corollary. If R is on the set $A = \{a_1, a_2, \dots, a_n\}$ where, for $i = 1, \dots, n$, the a_i are distinct, then $R^+ = \bigcup_{i=1}^n R^i$.

Proof. By 4.1.35, all we have to do is prove

$$\bigcup_{i=1}^{\infty} R^i \subseteq \bigcup_{i=1}^n R^i \tag{1}$$

since the \supseteq part is obvious.

So let $x \bigcup_{i=1}^{\infty} R^i y$. This means that

$$xR^qy$$
, for some $q \ge 1$ (2)

Thus, I have two cases for (2):

Case 1. $q \le n$. Then $x \bigcup_{i=1}^n R^i y$ since $R^q \subseteq \bigcup_{i=1}^n R^i$, R^q being one of the " R^i ", $1 \le i \le n$.

Case 2. q > n. In this case I will show that there is also a $k \le n$ such that xR^ky , which sends me back to the "easy Case 1".

Well, if there is one q > n that satisfies (2) there are probably more. Let us pretend that our q is the smallest > n that gives us (2).

Wait! Why is there a smallest q such that

$$xR^q y \text{ and } q > n?$$
 (3)

Because among those "q" that fit $(3)^{\dagger}$ imagine we fix attention to <u>one</u> such.

Now, if it is not the smallest such, then go down to the *next* smaller one that still satisfies (3), call it q'.

Now go down to the next smaller, q'' > n, if q' is not smallest.

Continue like this. Can I do this forever? That is, can we have the following?

$$n < \ldots < q^{(k)\ddagger} < \ldots < q''' < \ldots < q'' < q' < q$$

If yes, then I will have an infinite "descending" chain of distinct natural numbers between q and n.

Absurd!

[†]There is at least one, else we would **not** be in **Case 2**.

[‡]By " $q^{(n)}$ " I mean q with k primes.

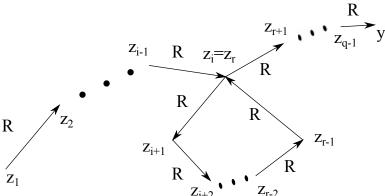
Back to the proof. So let the q we are working with be the smallest that satisfies (3). Then we have the configuration (see Remark 4.1.24 (1))

$$xRz_1Rz_2Rz_3\dots \boxed{\mathbf{z_i}Rz_{i+1}\dots \mathbf{z_r}Rz_{r+1}\dots z_{q-1}Ry}$$
 (4)

Now the sequence

$$z_1, z_2, z_3 \dots z_i, z_{i+1}, \dots z_r, z_{r+1}, \dots, z_{q-1}, y$$

in (4) above contains q > n members and can also be depicted as



As they all come from A, **not all are distinct**. So let $z_i = z_r$ (the z_r could be as late in the sequence as y, i.e., equal to y). Now omit the boxed part in (4) —that is, the loop in the figure above. We obtain

$$xRz_1Rz_2Rz_3\dots z_rRz_{r+1}\dots z_{q-1}Ry$$

$$\parallel$$

$$z_i$$

$$(5)$$

which contains at least **one** "R" less than the sequence (4) does—the entry " z_iRz_{i+1} " (and everything else in the "..." part in the box) was removed. That is, (5) states

$$xR^{q'}y$$

Notes on Discrete MATH (EECS1028)© G. Tourlakis

with q' < q. Since the q in (3) was smallest > n, we must have $q' \le n$ (Why?) which sends us to **Case 1** and we are done.

4.1.2. Equivalence relations

Feb. 9, 2022

Equivalence relations must be *on some set A*, since we require reflexivity. They play a significant role in many branches of *mathematics* and even in *computer* science. For example, the minimisation process of finite automata (a topic that we will not cover) relies on the concept of equivalence relations.

- **4.1.37 Definition.** A relation R on A is an equivalence relation, provided it is all of
 - 1. Reflexive
 - 2. Symmetric
 - 3. Transitive
- An equivalence relation on A has the effect, *intuitively*, of "grouping" elements that we view as *interchangeable in their roles*, or "equivalent", into so-called (see Definition 4.1.40 below) "equivalence classes" —kind of mathematical clubs!

4.1.38 Example. The following are equivalence relations

- $\{(1,1)\}$ on $A = \{1\}$.
- $\bullet = (\text{or } \mathbf{1}_A \text{ or } \Delta_A) \text{ on } A.$
- Let $A = \{1, 2, 3\}$. Then $R = \{(1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2), (1, 1), (2, 2), (3, 3)\}$ is an equivalence relation on A.

• \mathbb{N}^2 is an equivalence relation on \mathbb{N} .

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Here is a longish, more sophisticated example, that is central in *number theory*. We will have another instalment of it after a few definitions and results.

4.1.39 Example. (Congruences) Fix an $m \ge 2$. We define the relation \equiv_m on \mathbb{Z} by

$$x \equiv_m y \text{ iff } m \mid (x - y)$$

Recall that "|" is the "divides with zero remainder" relation. We verify the required properties for \equiv_m to be an equivalence relation.

A notation that is very widespread in the literature is to split the symbol " \equiv_m " into two and write

$$x \equiv y \pmod{m}$$
 instead of $x \equiv_m y$

" $x \equiv y \pmod{m}$ " and $x \equiv_m y$ are read "x is congruent to y modulo m (or just 'mod m')". Thus " \equiv_m " is the congruence (mod m) short symbol, while " $\equiv \ldots \pmod{m}$ " is the long two-piece symbol. We will be using the short symbol.

- 1. Reflexivity: Indeed, $m \mid (x x)$, hence $x \equiv_m x$.
- 2. Symmetry: Clearly, if $m \mid (x y)$, then $m \mid (y x)$. I translate: If $x \equiv_m y$, then $y \equiv_m x$.
- 3. Transitivity: Let $m \mid (x-y)$ and $m \mid (y-z)$. The first says that, for some k, x-y=km. Similarly the second says, for some n, y-z=nm. Thus, adding these two equations I get x-z=(k+n)m, that is, $m \mid (x-z)$. I translate: If $x \equiv_m y$ and $y \equiv_m z$, then also $x \equiv_m z$.

4.1.40 Definition. (Equivalence classes) Given an equivalence relation R on A. The equivalence class of an element $x \in A$ is $\{y \in A : xRy\}$. We use the symbol $[x]_R$, or just [x] if R is understood, for the equivalence class.

Since A is a set and $[x] \subseteq A$, each equivalence class is a set by 2.3.5.

The symbol A/R denotes the quotient <u>class</u> of A with respect to R, that is,

$$A/R \stackrel{Def}{=} \{ [x]_R : x \in A \}$$

4.1.41 Remark. Suppose an equivalence relation R on A is given.

By reflexivity, xRx, for any x. Thus $x \in [x]_R$, hence all equivalence classes are *nonempty*.

Be careful to distinguish the brackets $\{\ldots\}$ from these $[\ldots]$.

It is NOT a priori obvious that $x \in [x]_R$ until you look at the definition 4.1.40! $[x]_R \neq \{x\}$ in general!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

This is a good time to introduce "Principle 3"[†] of set formation.

4.1.42 Remark. (Principle 3) Suppose that the *class* family of sets \mathbb{F} *is indexed* by some (or all) members of a *set* A. Then \mathbb{F} is a set.

Being *indexed* by (some) members of a set A means that, to every $X \in \mathbb{F}$, we have attached as "label(s)" (often depicted as a subscript/superscript) some member(s) of A.

We can label a set of \mathbb{F} with many labels, but we may NOT use the same label twice to label two (or the same) sets of \mathbb{F} and may NOT leave any set of \mathbb{F} unlabelled.

[†]This is the last Principle, I promise!

Thus, if $\mathbb{F} = \{A, B, C\}$, then $\{A_1, B_{13,19,0}, C_{42}\}$ is a valid labelling with members from \mathbb{N}^{\ddagger}

 $\{A_{1,13}, B_{13}, C_{19}\}$ is not correctly labelled (same label twice), the labelling of $\{A_{1,42}, B_{13}, C\}$ is also invalid (C was <u>not</u> labelled):

 $^{^{\}ddagger}B$ has three labels attached to it.

Two observations:

1. We used at least as many labels as members in the class \mathbb{F} .

Thus \mathbb{F} has no "more" members than the label set, and thus is a set itself.

Some people call Principle 3 the size limitation doctrine.[†]

2. Why can't I use the Principles 0–2 to argue that \mathbb{F} , labelled by any $set\ L$, is a set?

Well, because these Principles are notorious in not telling me if a stage *exists* after *infinitely many stages of construction* that I might have if, say, I were to build one set A_i for each natural number (here $L = \mathbb{N}$):

$$A_0, A_1, \ldots, A_n, \ldots$$

Feb. 11, 2022

We can now state the obvious:

4.1.43 Theorem. A/R is a set for any set A and equivalence relation R on A.

Proof. A provides labels for all members —namely, [x], where $x \in A$ — of A/R. Now invoke Principle 3.

Now that we have had an excuse to introduce Principle 3 early, and applied it to the easy example above let us do the following exercise:

4.1.44 Exercise. Show that it was not necessary to apply the new Principle to prove 4.1.43.

Specifically show that the Theorem follows by Principles 0-2 implicitly via 2.3.5.

Hint. You will need, of course, to find a *superset* of A/R, that is, a class X that *demonstrably* is a set, and satisfies $A/R \subseteq X$.

4.1.45 Lemma. Let P be an equivalence relation on A. Then [x] = [y] iff xPy—where we have omitted the subscript P from the $[\ldots]$ -notation.

Proof. (\rightarrow) part. Assume [x] = [y].

By reflexivity, $y \in [y]$ (4.1.41).

The assumption then yields $y \in [x]$ and therefore xPy by 4.1.40.

 (\leftarrow) part. Assume xPy.

Let $z \in [x]$. Then xPz.

By assumption yPx (by symmetry), thus, transitivity yields yPz.

That is, $z \in [y]$, proving

$$[x] \subseteq [y] \tag{1}$$

By swapping letters x, y we have ALSO proved above that

$$yPx \ implies \ [y] \subseteq [x] \tag{2}$$

Now (by symmetry) our *original* assumption, <u>namely xPy</u>, implies yPx, hence also $[y] \subseteq [x]$ by (2).

All in all
$$((1)+(2))$$
, $[x] = [y]$.

4.1.46 Lemma. Let R be an equivalence relation on A. Then

- (i) $[x] \neq \emptyset$, for all $x \in A$.
- (ii) $[x] \cap [y] \neq \emptyset$ implies [x] = [y], for all x, y in A.
- $(iii) \bigcup_{x \in A} [x] = A.$

Proof.

- (i) 4.1.41.
- (ii) Let $z \in [x] \cap [y]$. Then xRz and yRz, therefore xRz and zRy (the latter by symmetry) hence xRy (transitivity).

Thus, [x] = [y] by Lemma 4.1.45.

(iii) The \subseteq -part is obvious from $[x] \subseteq A$.

The \supseteq -part follows from $\bigcup_{x \in A} \{x\} = A$ and $\{x\} \subseteq [x]$.

The properties (i)–(iii) are characteristic of the notion of a partition of a set.

4.1.47 Definition. (Partitions) Let F be a <u>family of subsets of A</u>. It is a *partition of* A iff <u>all</u> of the following hold:

- (i) For all $X \in F$ we have that $X \neq \emptyset$.
- (ii) If $\{X,Y\} \subseteq F$ and $X \cap Y \neq \emptyset$, then X = Y.

$$(iii) \bigcup F = A.$$

There is a natural affinity between equivalence relations and partitions on a set A. In fact,

4.1.48 Theorem. Given a partition F on a set A. This leads to the definition of an equivalence relation P whose equivalence classes are precisely the sets of the partition, that is F = A/P.

Proof. First we define P:

$$xPy \text{ iff } (\exists X \in F)\{x, y\} \subseteq X \tag{1}$$

Observe that

- (i) P is *reflexive*: Take any $x \in A$. By 4.1.47(iii), there is an $X \in F$ such that $x \in X$, hence $\{x, x\} \subseteq X$. Thus xPx.
- (ii) P is, trivially, *symmetric* since there is no order in $\{x, y\}$.
- (iii) P is *transitive*: Indeed, let xPyPz. Then $\{x,y\} \subseteq X$ and $\{y,z\} \subseteq Y$ for some X,Y in F.

Thus, $y \in X \cap Y$ hence X = Y by 4.1.47(ii). Hence $\{x, z\} \subseteq X$, therefore xPz.

So P is an equivalence relation. Let us compare its equivalence classes with the various $X \in F$.

Now $[x]_P$ (dropping the subscript P in the remaining proof) is

$$\{y: xPy\} \tag{2}$$

Let us compare [x] with the *unique* $X \in F$ that <u>ALSO</u> contains x—why unique? By 4.1.47(ii). Thus,

$$y \in [x] \stackrel{(2)}{\Longleftrightarrow} x P y \stackrel{(1)}{\Longleftrightarrow} x \in X \land y \in X \stackrel{x \in X \text{ is } \mathbf{t}}{\Longleftrightarrow} y \in X$$
 Thus $[x] = X$.

4.1.49 Example. (Another look at congruences) Euclid's theorem for the division of integers states:

If $a \in \mathbb{Z}$ and $2 \leq m \in \mathbb{Z}$, then there are unique q and r such that

$$a = mq + r \text{ and } 0 \le r < m \tag{1}$$

There are many proofs, but here is one: Fix a and $m \geq 2$. The set

$$T = \{x : 0 \le x = a - mz, \text{ for some z}\}\$$

is *not empty*. For example,

- if a > 0, then take z = 0 to obtain x = a > 0 in T.
- If a = 0, then take z = 0 to obtain $x = 0 \in T$.
- Finally, if a < 0, then take $z = -|a|^{\dagger}$ to obtain x = -|a| + m|a| = |a|(m-1) > 0 in T (since $m \ge 2$ we have $m-1 \ge 1$).

Let then r be the smallest $x \geq 0$ in T.

[†]Absolute value.

The corresponding "z" to the smallest x = r let us call q. So we have

$$a = mq + r$$
, where $0 \le r$ (2)

Can $r \ge m$? If so, then write r = k + m, where $k = r - m \ge 0$ and thus k < r. I got

$$a = m(q+1) + k$$

As k < r, I have contradicted the minimality of r in (2) in the box above.

This proves that r < m.

We have proved existence of at least one pair q and r that works for (1) on p.117.

How about *uniqueness*?

Well, the worst thing that can happen is to have two representations 1). Here is another one:

$$a = mq' + r' \text{ and } 0 \le r' < m \tag{2}$$

As both r and r' are < m, their "distance" (absolute difference) is also < m.

Now, from (1) and (2) we get

$$m|q - q'| = |r - r'| \tag{3}$$

This <u>cannot be</u> unless q = q' (<u>in which case r = r', therefore uniqueness</u> is proved).

Wait: Why it "cannot be" if $q \neq q'$?

Because then $|q - q'| \ge 1$ thus the lhs of "=" in (3) is $\ge m$ but the rhs is < m.

[†]From $0 \le r' < m$ I get $-m < r' \le 0$. Using (1) (p.117), I get -m < r - r' < m. That is, |r - r'| < m.

We now take a deep breath!

Feb. 14, 2022

Now, back to congruences! The above was just a preamble!

Fix an m > 1 and consider the congruences $x \equiv_m y$. What are the equivalence classes?

Better question is what <u>representative members</u> are convenient to use for each such class? Given that $a \equiv_m r$ by (1) (p.117), and using Lemma 4.1.45 we have $[a]_m = [r]_m$.

r is a far better representative than a for the class $[a]_m$ as it is "normalised".

Thus, we have just m equivalence classes $[0], [1], \ldots, [m-1]$.

Wait! Are they *distinct*? Yes! Since [i] = [j] is the same as $i \equiv_m j$ (4.1.45) and, since 0 < |i - j| < m, m cannot divide i - j with 0 remainder, we cannot have [i] = [j] if $i \neq j$.

Feb. 14, 2022

4.1.50 Example. (A practical example) Say, I chose m = 5. Where does a = -110987 belong?

I.e., in which class out of $[0]_5$, $[1]_5$, $[2]_5$, $[3]_5$, $[4]_5$?

Well, let's do primary-school-learnt long division of -a > 0 divided by 5 and find quotient q and remainder r. We find, in this case, q = 22197 and r = 2. These satisfy

$$-a = 22197 \times 5 + 2$$

Thus,

$$a = -22197 \times 5 - 2 \tag{1}$$

(1) can be rephrased as

$$a \equiv_5 -2 \tag{2}$$

123

But easily we check that $-2 \equiv_5 3$ (since 3 - (-2) = 5). Thus,

$$a \in [-2]_5 = [3]_5 \qquad \Box$$

4.1.51 Exercise. Can you now \underline{easily} write the same a above as

$$a = Q \times 5 + R$$
, with $0 \le R < 5$?

Show all your work.

4.1.3. Partial orders

This subsection introduces one of the most important kind of binary relations in set theory and mathematics in general: The partial order relations.

4.1.52 Definition. (Converse or inverse relation of \mathbb{P}) For any relation \mathbb{P} , the symbol \mathbb{P}^{-1} is called the *converse* or *inverse* relation of \mathbb{P} and is defined by

$$\mathbb{P}^{-1} = \{(x, y) : y \mathbb{P}x\} \tag{1}$$

 $x\mathbb{P}^{-1}y$ iff $y\mathbb{P}x$ is an equivalence that says exactly what (1) does. \square

4.1.53 Example. If I take \mathbb{P} to be "<" on \mathbb{N} , then $>=<^{-1}$ since

$$x > y$$
 iff $y < x$

More notation!

4.1.54 Definition. (Important: "(a) \mathbb{P} " notation) For any relation \mathbb{P} we write "(a) \mathbb{P} " to indicate the class —possibly proper— of all outputs of \mathbb{P} for input a. That is,

$$(a)\mathbb{P} \stackrel{Def}{=} \{ y : a \, \mathbb{P} \, y \}$$

If $(a)\mathbb{P} = \emptyset$, then \mathbb{P} is *undefined* at a —that is, $a \notin \text{dom}(\mathbb{P})$.

The underlined statement is often denoted simply by " $\underline{(a)\mathbb{P}}$ " and is naturally read as " \mathbb{P} is *undefined* at a".

If $(a)\mathbb{P} \neq \emptyset$, then \mathbb{P} is *defined* at a - a does produce outputs!— that is, $a \in \text{dom}(\mathbb{P})$.

The underlined statement is often denoted simply by " $\underline{(a)\mathbb{P}\downarrow}$ " and is naturally read as " \mathbb{P} is *defined* at a".

4.1.55 Exercise. Give an example of a specific relation \mathbb{P} and <u>one</u> specific object (set or atom) a such that $(a)\mathbb{P}$ is a proper class.

4.1.56 Example. We note that for any \mathbb{P} and a,

$$(a)\mathbb{P}^{-1} = \{y : a\mathbb{P}^{-1}y\} = \{y : y\mathbb{P}a\}$$

Thus,

$$(a)\mathbb{P}^{-1} \uparrow \text{ iff } \{y: y\mathbb{P}a\} = \emptyset \text{ iff } a \notin \operatorname{ran}(\mathbb{P})$$

and

$$(a)\mathbb{P}^{-1}\downarrow \text{ iff } \{y:y\mathbb{P}a\}\neq\emptyset \text{ iff } a\in\operatorname{ran}(\mathbb{P})$$

4.1.57 Definition. (Partial order) A relation \mathbb{P} is called a *partial order* or just an *order*, iff it is *all of*

- (1) *irreflexive* (i.e., $x\mathbb{P}y \to x \neq y$ for all x, y), and
- (2) transitive.

It is emphasised that in the interest of generality —for much of this subsection (until we say otherwise)— \mathbb{P} need not be a set.

Some people call this a $strict\ order$ as it imitates the "<" on, say, the natural numbers.

4.1.58 Remark. (1) We will *usually* use the symbol "<" in *the abstract setting* to denote <u>any unspecified order \mathbb{P} </u>, and it will be pronounced "less than".

(2) If the order < is a subclass of $\mathbb{A} \times \mathbb{A}$ —i.e., it is <: $\mathbb{A} \to \mathbb{A}$ — then we say that < is an order on \mathbb{A} .

(3) Clearly, for any order < and any class \mathbb{B} , $< \cap (\mathbb{B} \times \mathbb{B})$ is an order on \mathbb{B} .

\$

4.1.59 Exercise. How $\underline{\text{clearly}}$? (re (3) above.) Give a simple, short proof.

4.1.60 Example. The concrete "less than", <, on $\mathbb N$ is an order, but \leq is **not** (it is *not* irreflexive).

The "greater than" relation, >, on \mathbb{N} is also an order, but \geq is not.

In general, it is trivial to verify that " \mathbb{P} is an order iff \mathbb{P}^{-1} " is an order. *Exercise*!

4.1.61 Example. \emptyset is an order.

Moreover for any \mathbb{A} , $\emptyset \subseteq \mathbb{A} \times \mathbb{A}$,

hence \emptyset is also an order <u>on</u> \triangle for the arbitrary \triangle .

4.1.62 Example. The relation \in is *irreflexive* by the well known $A \notin A$, for all A.

It is *not* transitive though.

For example, if a is a set (or atom), then $a \in \{a\} \in \{\{a\}\}$ but $a \notin \{\{a\}\}.$

 $So \in is \underline{not} \ an \ order.$

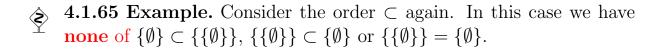
4.1.63 Example. Let
$$M = \{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}, \{\emptyset, \{\emptyset\}, \{\emptyset\}, \{\emptyset\}\}\}\}$$
.

The relation

$$\varepsilon = \in \cap (M \times M)$$

is transitive (and irreflexive), hence it is an order (on M). Verify!

4.1.64 Example. \subset is an order, \subseteq —failing irreflexivity— is not. \square



That is, $\{\emptyset\}$ and $\{\{\emptyset\}\}$ are *non comparable* items.

This justifies the qualification partial for orders in general (Definition 4.1.71).

On the other hand, the "natural" < on $\mathbb N$ is such that one of x=y, x< y, y< x always holds for any x,y.

That is, all (unordered) pairs x, y of \mathbb{N} are comparable under <.

While *all* orders are "partial", some are total (< above) and others are nontotal (\subset above).

"Partial" is not the negation of "total".

Feb. 16, 2022

4.1.66 Definition. Let < be a partial order on \mathbb{A} . We define

$$\leq\stackrel{Def}{=} \mathbf{\Delta}_{\mathbb{A}} \cup <$$

We pronounce \leq "less than or equal".

 $\Delta_{\mathbb{A}} \cup >$ is denoted by \geq and is pronounced "greater than or equal".

Let us call \leq a *reflexive order* or *non strict order*.

(1) In plain English, given < on \mathbb{A} , we have <u>defined</u> $x \leq y$ to mean

$$x < y \lor \overbrace{x = y}^{\text{equality is } \Delta_{\mathbb{A}}}$$

for all x, y in \mathbb{A} .

(2) The definition of $\leq depends$ on \mathbb{A} due to the presence of $\Delta_{\mathbb{A}}$.

There is no such dependency on a "reference" class in the case of <.

4.1.67 Lemma. For any $\langle : \mathbb{A} \to \mathbb{A}$, the <u>associated relation</u> \leq on \mathbb{A} is reflexive, antisymmetric <u>and</u> transitive.

Proof. (1) Reflexivity is trivial.

(2) For *antisymmetry*, let $x \leq y$ and $y \leq x$. If x = y then we are done.

So assume the <u>remaining case</u> $x \neq y$ (i.e., $(x, y) \notin \Delta_{\mathbb{A}}$). Then the hypothesis becomes x < y and y < x, therefore x < x by transitivity, contradicting the irreflexivity of <. This case does NOT apply!

- (3) As for *transitivity* let $x \leq y$ and $y \leq z$.
- (a) If x = z, then $x \le z$ (see the remark after 4.1.66) and we are done.
- (b) The remaining case is $x \neq z$.
 - If x = y or y = z (we cannot have <u>both</u> (Why?)), then we are done again.
 - So it remains to consider x < y and y < z.

By transitivity of < we get x < z, hence $x \le z$, since $< \subseteq \le$ (or, by logic: " $x \le z$ " is " $x < z \lor x = z$ "; but we got x < z).

4.1.68 Lemma. Let \mathbb{P} on \mathbb{A} be <u>reflexive</u>, <u>antisymmetric</u> and <u>transitive</u>. Then $\mathbb{P} - \Delta_{\mathbb{A}}$ is a (strict) order on \mathbb{A} .

Proof. Since

$$\mathbb{P} - \Delta_{\mathbb{A}} \subseteq \mathbb{P} \tag{1}$$

it is clear that $\mathbb{P} - \Delta_{\mathbb{A}}$ is on \mathbb{A} .

It is also clear that it is *irreflexive*. We only need verify that it is *transitive*.

So let

$$(x,y)$$
 and (y,z) be in $\mathbb{P} - \Delta_{\mathbb{A}}$ (2)

By (1) and (2)
$$(x, y)$$
 and (y, z) are in \mathbb{P} (3)

hence

$$(x,z) \in \mathbb{P}$$

by transitivity of \mathbb{P} .

Can
$$(x, z) \in \Delta_{\mathbb{A}}$$
, i.e., can $x = z$?

No, for antisymmetry of \mathbb{P} and (3) would imply x = y, i.e., $(x, y) \in \Delta_{\mathbb{A}}$ contrary to (2).

So,
$$(x, z) \in \mathbb{P} - \Delta_{\mathbb{A}}$$
.

4.1.69 Corollary. Let \leq on \mathbb{A} be reflexive, antisymmetric and transitive. Then < defined by

$$x < y \stackrel{Def}{\equiv} x \le y \land x \ne y$$

is a (strict) order on \mathbb{A} .

Proof. The corollary just rephrases 4.1.68.

4.1.70 Remark. Often in the literature, but decreasingly so, it is the "reflexive order" \leq : $\mathbb{A} \to \mathbb{A}$ that is defined as a "partial order" by the requirements that it is *reflexive*, *antisymmetric* and *transitive*.

Then < is obtained as in Lemma 4.1.68, namely, as " $\le -\Delta_{\mathbb{A}}$ ".

Lemmas 4.1.67 and 4.1.68 show that the two approaches are interchangeable, but the "modern" approach of Definition 4.1.57 avoids the nuisance of having to tie the notion of order to some particular "field" \mathbb{A} (4.1.6).

For us " \leq " is the *derived* notion defined in 4.1.66.

4.1.71 Definition. (PO Class) If < is an order on a class \mathbb{A} , we call the *informal* pair (A, <) a partially ordered class, or PO class.

If < is an order on a set A, we call the pair (A, <) a partially ordered set or PO set. Often, if the order < is understood as being on \mathbb{A} or A, one says that "A is a PO class" or "A is a PO set" respectively.

Formally, $(\mathbb{A}, <)$ is **not** an ordered pair since \mathbb{A} may be a **proper** class and we do not allow class members —e.g., in $\{A, \{A, <\}\}\$ — to be proper classes. We may think then of "(A, <)" as *informal* notation that simply "ties" \mathbb{A} and < together into a "toolbox" (...).

4.1.72 Definition. (Linear order) A relation < on \mathbb{A} is a *total* or *linear* order on \mathbb{A} iff it is all of

- (1) An order, and
- (2) For any x, y in \mathbb{A} one of x = y, x < y, y < x is true—this is the so-called "trichotomy" property.

If \mathbb{A} is a class, then the informal pair $(\mathbb{A}, <)$ is a *linearly ordered class*—for short, a *LO class*.

If \mathbb{A} is a set, then the pair $(\mathbb{A},<)$ is a linearly ordered set —for short, a LO set.

One often calls just \mathbb{A} a LO class or LO set (as the case warrants) when < is understood from the context.

4.1.73 Example. The standard $\langle : \mathbb{N} \to \mathbb{N}$ is a total order, hence $(\mathbb{N}, <)$ is a LO set.

4.1.74 Definition. (Minimal and minimum elements) Let < be an order and \mathbb{A} some class.

We are not postulating that < is on A.

An element $b \in \mathbb{A}$ is a < -minimal element in \mathbb{A} , or a < -minimal element of \mathbb{A} , iff

$$\neg(\exists x \in \mathbb{A})x < b$$

In words, there is nothing below b in \mathbb{A} .

 $m \in \mathbb{A}$ is a < -minimum element in \mathbb{A} iff $(\forall x \in \mathbb{A})m \leq x$.

We also use the terminology minimal or minimum with respect to <, instead of <-minimal or <-minimum.

If $a \in \mathbb{A}$ is >-minimal in \mathbb{A} , that is $\neg(\exists x \in \mathbb{A})x > a$, we call a a <-maximal element in \mathbb{A} . Similarly, a >-minimum element is called a <-maximum.

If the order < is understood, then the qualification "<-" is omitted.

4.1.75 Exercise. In particular, if $b \ (\in \mathbb{A})$ is not in the field $\mathrm{dom}(<) \cup \mathrm{ran}(<)$

(cf. 4.1.6) of <, then b is both <-minimal and <-maximal $in \mathbb{A}$.

4.1.76 Remark. Note how the notation learnt from 4.1.54 can *simplify* the expression

$$\neg (\exists x \in \mathbb{A})x < a \tag{1}$$

Since x < a iff a > x, (1) says that no x is in **both** \mathbb{A} and (a) >.

That is, a is <-minimal in \mathbb{A} iff

$$\mathbb{A} \cap (a) >= \emptyset \tag{2}$$

 $^{^{\}dagger}(a) >= \{x : a > x\} = \{x : x < a\} \ (4.1.56).$

4.1. Relations 145

4.1.77 Example. 0 is *minimal*, also *minimum*, in \mathbb{N} with respect to the natural ordering.

In $\mathscr{P}(\mathbb{N})$, \emptyset is both \subset -minimal and \subset -minimum.

On the other hand, all of $\{0\}, \{1\}, \{2\}$ are \subset -minimal in $\mathscr{P}(\mathbb{N}) - \{\emptyset\}$ but *none* are \subset -minimum in that set.

Observe from this last example that minimal elements in a class are not unique.

4.1.78 Remark. (Hasse diagrams) Read me! There is a neat pictorial way to depict orders on finite sets known as "Hasse diagrams". To do so one creates a so-called "graph" of the finite PO set (A, <) where $A = \{a_1, a_2, \ldots, a_n\}$.

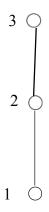
How? The graph consists of n nodes —which are drawn as points—each labeled by one a_i . The graph also contains 0 or more arrows that connect nodes. These arrows are called edges.

When we depict an arbitrary R on a finite set like A we draw one arrow (edge) from a_i to a_j iff the two relate: a_iRa_j .

In Hasse diagrams for PO sets (A, <) we are more selective: We say that b covers a iff a < b, but there is no c such that a < c < b. In a Hasse diagram we will

- 1. draw an edge from a_i to a_j iff a_j covers a_i .
- 2. by convention we will draw b higher than a on the page if b covers a.
- 3. given the convention above, using "arrow-heads" is superfluous: our edges are plain line segments.

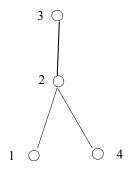
So, let us have $A = \{1, 2, 3\}$ and $\emptyset = \{(1, 2), (1, 3), (2, 3)\}.$



4.1. Relations 147

The above has a minimum (1) and a maximum (3) and is clearly a linear order.

A slightly more complex one is this (A,<), where $A=\{1,2,3,4\}$ and $<=\{(1,2),(4,2),(2,3),(1,3),(4,3)\}.$



This one has a maximum (3), two minimal elements (1 and 4) but no minimum, and is not a linear order: 1 and 4 are not comparable. \Box

Feb. 18, 2022

4.1.79 Lemma. Given an order < and a class \mathbb{A} .

- (1) If m is a minimum in \mathbb{A} , then it is also minimal.
- (2) If m is a minimum in A, then it is unique.

Proof. (1) Let m be minimum in \mathbb{A} . Then

$$m \le x$$
, that is, $m = x \lor m < x$ (i)

for all $x \in \mathbb{A}$. Now, prove that there is no $x \in \mathbb{A}$ such that x < m.

OK, let us go *by contradiction*:

So let instead, for some a,

$$\mathbb{A} \ni a < m \tag{ii}$$

that is, suppose m is NOT minimal. I also have $m \leq a$ by (i), that is,

$$m = a \lor m < a \tag{iii}$$

Now, by irreflexivity, (ii) rules out a = m. So, (iii) nets m < a.

(ii) and (iii) and transitivity yield a < a; contradiction (< is irreflexive). Done.

4.1. Relations 149

(2) Let m and n both be minima in \mathbb{A} . Then $m \leq n$ (with m posing as minimum) and $n \leq m$ (now n is so posing), hence m = n by antisymmetry (Lemma 4.1.67).

4.1.80 Example. Let m be <-minimal in \mathbb{A} .

Let us attempt to "show" that it is also <-minimum (this is, of course, doomed to *fail* due to 4.1.77 and 4.1.79(2) —but the "faulty proof" below is instructive):

By 4.1.74 we have that there is no x in \mathbb{A} such that x < m.

Another way to say this is:

For all
$$x \in A$$
, " $x < m$ " is false, that is, I have $\neg x < m$. (1)

But from "our previous math" (high school? university? Netflix?) $\neg x < m \text{ is equivalent to } m \leq x$

Thus (1) says $(\forall x \in \mathbb{A})m \leq x$, in other words, m is the minimum in \mathbb{A} .

4.1. Relations 151

Do you accept this "fact"?

 $\neg x < m \text{ is equivalent to } m \le x$ (2)

Don't!

If (2) were correct, then we would in particular have that

if x < m is false, then <u>at least one</u> of x = m or x > m is true (3)

No hope to prove such thing <u>IN GENERAL!</u> See 4.1.65.

4.1.81 Lemma. If < is a linear order on \mathbb{A} , then every minimal element is also minimum.

Proof. The "false proof" of the previous example is valid under the present circumstances: (3) on p.151 works in the presence of tri-chotomy.

4.1. Relations 153

The following type of relation has fundamental importance for set theory, and mathematics in general.

4.1.82 Definition.

- 1. An order < satisfies the *minimal condition*, for short *it has MC*, iff *every* nonempty \mathbb{A} has <-minimal elements.
- 2. If a total order $\langle : \mathbb{B} \to \mathbb{B}$ has MC, then it is called a well-ordering[†] on (or of) the class \mathbb{B} .
- 3. If $(\mathbb{B}, <)$ is a LO class (or set) with MC, then it is a *well-ordered class* (or set), or *WO class* (or WO set).

[†]The term "well-ordering" is ungrammatical, but it is *the* terminology established in the literature!

4.1.83 Remark.

What Definition 4.1.82 says in case 1. is —see (2) in 4.1.76— "if, for some fixed order < the following statement

$$\emptyset \neq \mathbb{A} \to (\exists a \in \mathbb{A}) \mathbb{A} \cap (a) > = \emptyset \tag{1}$$

is true in set theory, for any \mathbb{A} , then we say that < has MC".

The following observation is very important for future reference:

If A is given via a defining property F(x), as

$$\mathbb{A} \stackrel{Def}{=} \{x : F(x)\}$$

then (1) translates —in terms of F(x)— into

$$(\exists a)F(a) \to (\exists a)\Big(F(a) \land \neg(\exists y)\big(a > y \land F(y)\big)\Big)$$
 (2')

OR

$$(\exists a)F(a) \to (\exists a)\Big(F(a) \land \neg(\exists y)\big(y < a \land F(y)\big)\Big)$$
 (2)

Conversely, for each formula ("property") F(x) we get a class $\mathbb{A} = \{x : F(x)\}$ and thus —if \mathbb{A} has MC with respect to <— we may express this fact as in (2) above.

Chapter 5

Functions

Feb. 28, 2022

At last! We consider here a *special case of relations* that we know as "functions".

Many of you know already that a function is a relation with some special properties.

Let's make all this official:

5.1.1 Definition. A function \mathbb{R} is a single-valued relation.

That is,

whenever we have both $x\mathbb{R}y$ and $x\mathbb{R}z$

then

we will also have y = z

It is traditional to use, generically, lower case letters from among f, g, h, k when dealing with functions that are <u>sets</u> and $\mathbb{F}, \mathbb{G}, \mathbb{H}, \mathbb{K}$ for functions that are <u>proper classes</u> —with primes and/or subscripts if we run out of letters.

The above definition does not care about *left* or *right fields*.

5.1.2 Remark. Another way of putting it, using the notation from 4.1.54, is:

A relation \mathbb{R} is a function $iff(a)\mathbb{R}$ is either empty or contains exactly one element.

5.1.3 Example. The empty set is a relation of course, the empty set of *pairs*. It is also a function since

$$(x,y) \in \emptyset \land (x,z) \in \emptyset \rightarrow y = z$$

vacuously, by virtue of the left hand side of \rightarrow being false.

5.1.4 Definition. (Function-specific notations) Let \mathbb{F} be a function.

- 1. First off, the *concepts AND* <u>notation</u> for <u>domain</u>, <u>range</u>, and —in case of a function $\mathbb{F}: \mathbb{A} \to \mathbb{B}$ <u>left field</u>, <u>right field</u>, <u>field</u>, <u>total</u> and <u>onto</u> are inherited from those for relations without change.
- 2. Even the notations " $a\mathbb{R}b$ " and " $(a,b) \in \mathbb{R}$ " transfer over to functions and are often useful and are employed!.
- 3. And yet, we have an annoying difference in notation:

For a relation \mathbb{F} —or viewing a function \mathbb{F} as a relation— the set

$$\{y: a\mathbb{F}y\} \tag{1}$$

is denoted by $(a)\mathbb{F}$ (see 4.1.54).

If \mathbb{F} is a <u>function</u>, then the set in (1) is either <u>empty</u> or has <u>one</u> element <u>only</u>. In <u>Relational Notation</u> that is:

$$(a)\mathbb{F} = \begin{cases} \{y\} & \text{if } \mathbb{F} \text{ defined at } a \\ \emptyset & \text{if } \mathbb{F} \text{ undefined at } a \end{cases}$$
 (2)

The literature in general^b denotes (2) this way

 $\mathbb{F}(a) = y$ (note order reversal <u>and brace removal!</u>) $\mathbb{F}(a) \uparrow$ (\mathbb{F} undefined at a)

 $[^]b$ Not all the literature: The significant book [Kur63] writes "af" for (set) functions AND relations, omitting even the brackets around a

Notation: Thus for a *function* \mathbb{F} ,

$$a\mathbb{F}y \text{ iff } (a)\mathbb{F} = \{y\} \text{ iff } \overline{\mathbb{F}(a) = y}$$

and

$$\neg(\exists y)a\mathbb{F}y \text{ iff } (a)\mathbb{F} = \emptyset \text{ iff } \boxed{\mathbb{F}(a)\uparrow}$$

In short, $\mathbb{F}(a)$ reports THE unique ELEMENT IN $\{y: a\mathbb{F}y\} \neq \emptyset$ —not the entire class—or reports nothing: $\mathbb{F}(a) \uparrow$ if $\{y: a\mathbb{F}y\} = \emptyset$

5.1.5 Example. In particular $\mathbb{F}(a) = \emptyset$ means $(a)\mathbb{F} = \{\emptyset\}$, that is, $(a,\emptyset) \in \mathbb{F}$ or $a\mathbb{F}\emptyset$ —<u>not</u> what one might hastily <u>think</u> it means!

Definitely, $\mathbb{F}(a)\downarrow$ here, with output the object " \emptyset ", it is NOT $\mathbb{F}(a)\uparrow$

5.1.6 Definition. (Images) The class of *all* outputs of a function \mathbb{F} , when the inputs come from a particular class \mathbb{X} , is called the image of \mathbb{X} under \mathbb{F} and is denoted by $\mathbb{F}[\mathbb{X}]$.

Thus,

$$\mathbb{F}[\mathbb{X}] \stackrel{Def}{=} \{ \mathbb{F}(x) : x \in \mathbb{X} \}$$
 (1)

Note that careless notation like $\mathbb{F}(A)$ —where A is a set— will **not** do.

This notation means the input IS A - not members of A.

If I want the inputs to be <u>from</u> INSIDE A, then I must use other than the round brackets notation; I did.

 $\mathbb{F}(\mathbb{X})$ is $\underbrace{meaningless}$ for a $\underbrace{proper\ class}\ \mathbb{X}$. I cannot have, for example, $(\mathbb{X},y)\in\mathbb{F}$ since $(\mathbb{X},y)=\{\mathbb{X},\{\mathbb{X},y\}\}$ is $\underline{\text{meaningless}}$.

The *inverse image* of a class \mathbb{Y} under a function \mathbb{F} is useful as well, that is, the class of *all* inputs that generate \mathbb{F} -outputs exclusively in \mathbb{Y} .

It is denoted by $\mathbb{F}^{-1}[\mathbb{Y}]$ and is defined as

$$\mathbb{F}^{-1}[\mathbb{Y}] \stackrel{Def}{=} \{x : \mathbb{F}(x) \in \mathbb{Y}\}$$
 (2)

5.1.7 Theorem. If \mathbb{F} is a function, and A is a set, then $\mathbb{F}[A]$ is a set. Proof. Let

$$\mathbb{Y} = \mathbb{F}[A] \tag{\dagger}$$

Thus, for every y, $y \in \mathbb{Y}$ iff for some $x \in A$, $\mathbb{F}(x) = y$.

In short, each $y \in \mathbb{Y}$ is <u>labelled</u>—in the sense of 4.1.42— by <u>all</u> the $x \in A$ with the property $\mathbb{F}(x) = y$.

Note that the described label-set is *valid* according to 4.1.42 since

• All members of \mathbb{Y} receive labels from A: Indeed, by (\dagger) ,

If
$$y \in \mathbb{Y}$$
, the *label-set* for $y - A \cap \mathbb{F}^{-1}[\{y\}]$ — is *nonempty* (1)

- The set $A \cap \mathbb{F}^{-1}[\{y\}]$ has no repeated members (it is a set!) thus the labels assigned to y are distinct, and more importantly
- If $y \neq y'$, both in \mathbb{Y} , then they receive non overlapping labels, that is, $\mathbb{F}^{-1}[\{y\}] \cap \mathbb{F}^{-1}[\{y'\}] = \emptyset$.

Indeed, if $z \in \mathbb{F}^{-1}[\{y\}] \cap \mathbb{F}^{-1}[\{y'\}]$, then $\mathbb{F}(z) = y$ and $\mathbb{F}(z) = y'$; impossible for a function.

By Principle 3, \mathbb{Y} —being labelled by the members of A— is a set too.

Why did I use $A \cap \mathbb{F}^{-1}[\{y\}]$ instead of just $\mathbb{F}^{-1}[\{y\}]$ for the set of labels for y above?

Well, I wanted to be sure they all come from within A.

We are *not* told that A is the left field of A and said field \mathbb{X} might properly contain $A \subsetneq \mathbb{X}$. In particular we may have an $x \in \mathbb{X} - A$ such that $\mathbb{F}(x) = y$.

This x is NOT a label for y FROM A!

5.1.8 Corollary. If \mathbb{F} is a function and dom(\mathbb{F}) is a set, then \mathbb{F} is a set.

Proof. Exercise!

Pause. So far we have been giving definitions regarding functions of *one* variable. Or have we?◀

Not really: We have already said that the multiple-input case is subsumed by our notation. If $\mathbb{F} : \mathbb{A} \to \mathbb{B}$ and \mathbb{A} is a class of *n*-tuples, then \mathbb{F} is a function of "*n*-variables".

The binary relation, that such an \mathbb{F} is, contains pairs like $((\vec{x}_n), x_{n+1})$.

However, we usually abuse the notation $\mathbb{F}((\vec{x}_n))$ —or $((\vec{x}_n))\mathbb{F}$ —and write instead $\mathbb{F}(\vec{x}_n)$ —or $(\vec{x}_n)\mathbb{F}$ — omitting the brackets of the n-tuple (\vec{x}_n) .

5.1.9 Remark. Regarding, say, the definition of $\mathbb{F}[X]$ (5.1.6):

What if $\mathbb{F}(a) \uparrow ?$ How do you "collect" an <u>undefined</u> "value" into a class?

Well, you don't.

Both (1) and (2) in 5.1.6 have a rendering that is *independent* of the notation " $\mathbb{F}(a)$ ".

$$\mathbb{F}[\mathbb{X}] = \{ y : (\exists x \in \mathbb{X}) x \mathbb{F} y \} \tag{1'}$$

$$\mathbb{F}^{-1}[\mathbb{Y}] = \{x : (\exists y \in \mathbb{Y}) x \mathbb{F} y\}$$
 (2')

In view of Theorem 5.1.7, all our functions in the rest of the section will be sets as we adhere to set left fields.

5.1.10 Example. Thus, $f[\{a\}] = \{f(x) : x \in \{a\}\} = \{f(x) : x = a\} = \{f(a)\}.$

Let now $g = \{(1,2), (\{1,2\},2), (2,7)\}$, clearly a function. Thus, $g(\{1,2\}) = 2$, but $g[\{1,2\}] = \{2,7\}$. Also, $g(5) \uparrow$ and thus $g[\{5\}] = \emptyset$.

On the other hand, $g^{-1}[\{2,7\}] = \{1,\{1,2\},2\}$ and $g^{-1}[\{2\}] = \{1,\{1,2\}\},$ while $g^{-1}[\{8\}] = \emptyset$ since no input causes output 8.

March 2, 2022

\$

5.1.11 Remark. (Kleene Equality) When $f(a) \downarrow$, then f(a) = f(a) as is naturally expected.

What about when $f(a) \uparrow$?

This begs a more general question that we settle as follows (following Kleene, [Kle43]):

When is f(a) = g(b) where f, g are two functions?

$$f(a) = g(b) \stackrel{Def ([Kle43])}{\equiv} f(a) \uparrow \land g(b) \uparrow \lor (\exists y) \Big(f(a) = y \land g(b) = y \Big)$$

5.1.12 Example. Let $g = \{\langle 1, 2 \rangle, \langle \{1, 2\}, 2 \rangle, \langle 2, 7 \rangle\}.$

Then,
$$g(1) = g(\{1, 2\})$$
 and $g(1) \neq g(2)$.

$$g(3) = g(4)$$
 since both sides are undefined.

5.1.13 Definition. A function f is 1-1 iff (i.e., the concept is short for) for all x, y and z, f(x) = f(y) = z implies x = y.

Or, in relational notation,

 $xfz \wedge yfz \rightarrow x = y$: distinct inputs <u>cannot</u> cause the same <u>output</u>

So 1-1 ness is about $\underline{\text{actual outputs}}$ being distinct for distinct inputs.

Suppose $f(1) \uparrow$ and also $f(2) \uparrow$.

By 5.1.11, we have f(1) = f(2). But $1 \neq 2$.

This is why we defined 1-1ness (5.1.13) by

If
$$f(x) = f(y) = z$$
, then $x = y$

And this is what the literature that is *oblivious to nontotal functions* misses!

5.1.14 Example. $\{\langle 1,1\rangle\}$ and $\{\langle 1,1\rangle,\langle 2,7\rangle\}$ are 1-1: No output that is due to two distinct inputs.

 \emptyset is 1-1 vacuously.

 $\{\langle 1,0\rangle,\langle 2,0\rangle\}$ is not 1-1.

5.1.15 Exercise. Prove that if f is a 1-1 function, then the relation converse f^{-1} is a function (that is, a single-valued relation).

5.1.16 Definition. (1-1 Correspondence) A function $f: A \to B$ is called a 1-1 correspondence iff it is all three: 1-1, total, and onto.

Often we say that A and B are in 1-1 correspondence writing $A \sim B$, often omitting mention of the function that is the 1-1 correspondence.

The terminology is derived from the fact that every element of A is paired with precisely one element of B and vice versa.

5.1.17 Exercise. Show that \sim is a *symmetric* and *transitive* relation on sets.

5.1.18 Remark. Composition of functions is inherited from the composition of relations.

It is the identical concept since a function IS a relation.

Thus, $f \circ g$ for two functions still means

$$x f \circ g y \text{ iff, for some } z, x f z g y$$
 (1)

► Note!,

 $f \circ g$ is also a function. Indeed, if we have

$$xf \circ gy$$
 and $xf \circ gy'$

then

for some
$$z, x f z g y$$
 (2)

and

for some
$$w, x f w g y'$$
 (3)

As f is a function, (2) and (3) give z = w. In turn, this (since g is a function too!) gives y = y'.

The notation (as in 4.1.54) "(a)f" for relations is uncommon[†] when applied to functions —but it IS correct— where "f(a)" may be more convenient and "normal".

<u>However</u>, the "normal" notation "f(a)" is awkward in connection with composition. Consider

$$x \to \boxed{f} \to z \to \boxed{g} \to y$$

that represents (1) on p.178 above, note that f acts first.

Its result z = f(x) is then inputed to g—that is, we do g(z) = g(f(x)) to obtain output y. Thus the first acting function f is "called" first with argument x and then g is called with argument f(x).

[†]See however [Kur63].

Note that if we wrote " $(f \circ g)(a)$ " this would imply —wrongly—that g acts first (first call) being closest to the input!

To get around this misleading illusion we need a new notation (below) for functional composition.

5.1. Preliminaries 181

5.1.19 Definition. (Salvaging Notation "f(a)")

We just learnt (5.1.18) that the composition of two functions produces a function.

The present definition is about notation only.

Let $f: A \to B$ and $g: B \to C$ be two functions. The <u>Notation</u> $f \circ g: A \to C$, their *relational composition*, is the one in 4.1.16.

For composition of *functions*, we have the alternative —so-called *functional notation for composition*:

"gf" stands for " $f \circ g$ "; note the order reversal AND the absence of " \circ ", the composition symbol.

In particular we write (gf)(a) for $(a)(f \circ g)$ —cf. 5.1.4—placing the input close to the function that uses it.

Thus let f and g be functions, hence as we saw (5.1.18), $f \circ g$ is a function as well.

Therefore

$$(gf)(a) = b$$
 iff $(a)(f \circ g) = \{b\}$ (Box on p.181 via the lens of p.161)
iff $a(f \circ g)b$
iff $(a)f = \{c\} \land (c)g = \{b\}$, for some c
iff $f(a) = c \land g(c) = b$, for some c
iff $g(f(a)) = b$

So the notation "gf" above works if we want the input "(a)" to the right —see also bottom of p.179.

5.1. Preliminaries 183

5.1.20 Theorem. Functional composition is associative, that is,

$$(gf)h = g(fh)$$

Proof. Exercise!

Hint. Note that by, 5.1.19, $(gf)h = h \circ (f \circ g)$. Take it from here.

5.1.21 Example. The *identity relation* on a set A is a function since $(a)\mathbf{1}_A$ is the *singleton* —meaning "one-element" set— $\{a\}$.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

The following interesting result connects the notions of ontoness and 1-1ness with the "algebra" of composition.

5.1.22 Theorem. Let
$$f: A \to B$$
 and $g: B \to A$ be functions. If
$$gf = \mathbf{1}_A \tag{1}$$

then g is <u>onto</u> while f is <u>total</u> and <u>1-1</u>.

5.1.23 Definition. Relating to (1) in the theorem above we say that g is a **left inverse** of f and f is a **right inverse** of g.

Using the indefinite article "a" because these are not in general unique! Stay tuned on this!

5.1. Preliminaries 185

Proof. (of 5.1.22)

About g: Our goal, *ontoness*, means that, for each $x \in A$, I can "solve the equation g(y) = x for y".

Indeed I can: By definition of $\mathbf{1}_A$,

$$g(f(x)) \stackrel{5.1.19}{=} (gf)(x) \stackrel{(1)}{=} \mathbf{1}_A(x) = x$$

So to solve, take y = f(x).

About f: As seen above, x = g(f(x)), for each $x \in A$.

Totalness: Since the above remark is *the same as* " $x f \circ g x$ is true", there must be a z such that x f z and z g x.

But xfz says f(x) = z and therefore $f(x) \downarrow$. This settles *totalness*.

1-1 ness: For the 1-1ness, let f(a) = f(b).

Recall the definition of 1-1ness (5.1.13) but here it is <u>redundant</u> to say "let $\underline{f(a) = f(b) = c}$ ".

Applying g to both sides we get g(f(a)) = g(f(b)).

or

$$(gf)(a) = (gf)(b)$$

But this says a = b, by $gf = \mathbf{1}_A$, and we are done.

5.1. Preliminaries 187

5.1.24 Example. The above is as much as can be proved. For example, say $A = \{1, 2\}$ and $B = \{3, 4, 5, 6\}$.

Let $f:A\to B$ be $\{\langle 1,4\rangle,\langle 2,3\rangle\}$ and

 $g: B \to A$ be $\{\langle 4, 1 \rangle, \langle 3, 2 \rangle, \langle 6, 1 \rangle\}$, or in friendlier notation

- f(1) = 4
- f(2) = 3

and

- g(3) = 2
- g(4) = 1
- $g(5)\uparrow$
- g(6) = 1

Clearly, $gf = \mathbf{1}_A$ holds, but note:

- (1) f is not onto.
- (2) g is neither 1-1 nor total.

\$

5.1.25 Example. With $A = \{1, 2\}$, $B = \{3, 4, 5, 6\}$ and $f : A \to B$ and $g : B \to A$ as in the previous example, consider also the functions \tilde{f} and \tilde{g} given by

$$\tilde{f}(1) = 6$$
 $\tilde{f}(2) = 3$
and

$$\tilde{g}(3) = 2$$

$$\tilde{g}(4) = 1$$

$$\tilde{g}(5)\uparrow$$

$$\tilde{g}(6) = 1$$

Clearly, $\tilde{g}f = \mathbf{1}_A$ and $g\tilde{f} = \mathbf{1}_A$ hold, but note:

- (1) $f \neq \tilde{f}$.
- (2) $g \neq \tilde{g}$.

Thus, neither left nor right inverses need to be unique. The article "a" in the definition of said inverses was well-chosen.

5.1. Preliminaries 189

The following two partial converses of 5.1.22 are useful.

5.1.26 Theorem. Let $f: A \to B$ be total and 1-1. Then there is an onto $g: B \to A$ such that $gf = \mathbf{1}_A$.

Proof. Consider the *converse* relation (4.1.52) of f —that is, the *relation* f^{-1} — and call it g:

$$x g y$$
 iff $y f x$ (1)

By Exercise 5.1.15, $g: B \to A$ is a (possibly nontotal) function.

So we can write (1) as g(x) = y iff f(y) = x, from which,

substituting f(y) for x in g(x) we get

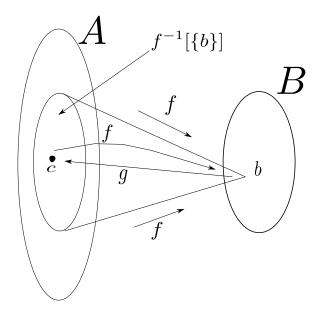
g(f(y)) = y, for all $y \in A$, that is $gf = \mathbf{1}_A$, hence g is onto by 5.1.22.

We got both statements that we needed to prove. \Box

March 4, 2022

5.1.27 Theorem. Let $f: A \to B$ be onto. Then there is a total and 1-1 $g: B \to A$ such that $fg = \mathbf{1}_B$.

Proof. By assumption, $\emptyset \neq f^{-1}[\{b\}] \subseteq A$, for all $b \in B$.



To define g(b) <u>choose</u> one $c \in f^{-1}[\{b\}]$ and set g(b) = c.

▶ Do so for each $b \in B$. ◀

Since f(c) = b, we get f(g(b)) = b for all $b \in B$, that is, $fg = \mathbf{1}_B$.

Hence g is 1-1 and total by 5.1.22.

5.1. Preliminaries 191

5.1.28 Remark. (Axiom of Choice) The proof of 5.1.27 states

choose one
$$c \in f^{-1}[\{b\}]$$

and that must be done for all $b \in B$ that may be *infinitely many*.

But how do you choose "the" c? If we were dealing with natural numbers I can see that (How?).

But not with the reals and not with arbitrary unspecified sets!

How do you <u>DESCRIBE</u> in a mathematical way the <u>process</u> of choosing ONE element out of <u>each</u> of (potentially) <u>infinitely many</u> nonempty sets?

How —for example (due to Russell)— do you describe the process of choosing ONE sock from each of infinitely many pairs?

True, you might sit there for an infinite amount of time, and pick ONE sock at random from each pair. But can you sit that long?

Incidentally you could describe a process of choosing from an infinite set of pairs of shoes!

In set theory one takes as an axiom that a SET of (results of) c-choices exists! They call it the "Axiom of Choice".

5.2. Finite and Infinite Sets

Broadly speaking (that is, with very little detail contained in what I will say next) we have sets that are *finite* —intuitively meaning that we can "count" all their elements in a "finite amount" of "time" (but see the remark 5.2.3 below)— and those that are not, the *infinite* sets!

What is a mathematical way to say all this?

5.2. Finite and Infinite Sets 193

Any *counting process* of the elements of a finite set A will have us say out loud —every time we pick, or point at, an element of A— "0th", "1st", "2nd", etc.,

Once we reach and pick the *last* element of the set, we finally pronounce "nth", for some appropriate n that we reached in our counting (Again, see 5.2.3.)

Thus, mathematically, we *are pairing* each member of the set —or *label* each member of the set— with a member from $\{0, \ldots, n\}$.

Thus the following makes sense:

5.2.1 Definition. (Finite and infinite sets) A set A is *finite* iff it is either empty, or is in 1-1 correspondence with $\{x \in \mathbb{N} : x \leq n\}$. This "normalised" "small" set of natural numbers we usually denote by $\{0, 1, 2, \ldots, n\}$.

If a set is *not* finite, then it is — by definition— infinite.

5.2.2 Example. For any $n, \{0, \ldots, n\}$ is finite since, trivially,

$$\{0,\ldots,n\}\sim\{0,\ldots,n\}$$

using the identity (Δ) function on the set $\{0,\ldots,n\}$.

5.2.3 Remark. One must be careful when one attempts to explain finiteness via counting by a human.

For example, Achilles[†] could count *infinitely many objects* by constantly accelerating his counting process as follows:

He procrastinated for a *full second*, and then counted the first element. Then, he counted the second object exactly after 1/2 a second from the first. Then he got to the third element $1/2^2$ seconds after the previous, ..., he counted the n th item at exactly $1/2^{n-1}$ seconds after the previous, and so on *forever*.

Hmm! It was *not* "forever", <u>was it</u>? After a total of 2 seconds he was done!

You see (as you can easily verify from your calculus knowledge (limits)),[‡]

$$1 + \frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^{n-1}} + \ldots = \frac{1}{1 - 1/2} = 2$$

So "clock-time" is not a good determinant of finiteness!

 $^{^{\}dagger}\mathrm{OK},$ he was a demigod; but only "demi".

 $^{^{\}ddagger}1 + \frac{1}{2} + \frac{1}{2^2} + \ldots + \frac{1}{2^{n-1}} = \frac{1-1/2^n}{1-1/2}$. Now let n go to infinity at the limit.

March 7, 2022

5.2.4 Theorem. If $X \subseteq \{0, ..., n\}$, then there is no onto function $f: X \to \{0, ..., n\}$.

I am saying, no such f, whether total or not; totalness is immaterial.

Proof. First off, the claim holds if $X = \emptyset$, since then any such f equals \emptyset —no inputs, therefore no outputs!

The range of f is empty so it cannot be onto.

Let us otherwise proceed by $\underline{\text{way of contradiction}}$, and assume that the theorem is $\underline{\textit{wrong}}$.

That is, **assume that** it IS possible to have such onto functions, for *some* n and *well-chosen* X.

So let n_0 be the *smallest* n that *contradicts* the theorem, and let X_0 be a *corresponding* set "X" that supports the contradiction, that is,

$$X_0 \subsetneq \{0, \dots, n_0\}$$
 AND $f: X_0 \to \{0, \dots, n_0\}$ is *onto* (1)

Firstly, we saw that $X_0 \neq \emptyset$, since $X_0 = \emptyset$ does NOT FAIL the theorem.

Secondly, $n_0 > 0$, since otherwise —i.e., *IF* $n_0 = 0$ — $X_0 = \emptyset$ (Why?) and, as remarked, the latter *does NOT FAIL the theorem*.

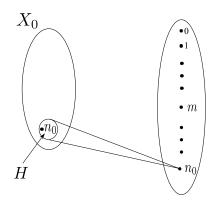
199

Let us set $H = f^{-1}[\{n_0\}].$

 $\emptyset \neq H \subseteq X_0$; the \neq by ontoness.

Case 1. $n_0 \in H$. Then removing all pairs (a, n_0) from f—all these have $a \in H$ — we get a new function $f': X_0 - H \to \{0, 1, \dots, n_0 - 1\}$, which is still onto as we only removed inputs that cause output n_0 —and thus contradicts the theorem.

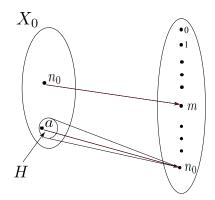
This contradicts minimality of n_0 since $n_0 - 1$ works too!



Case 2. $n_0 \notin H$.

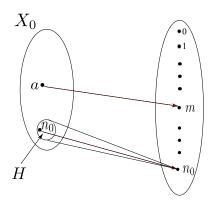
- (a) Subcase $n_0 \notin X_0$. So $X_0 \subsetneq \{0, 1, \dots, n_0\}$, thus $X_0 \subseteq \{0, 1, \dots, n_0 1\}$. By $H \neq \emptyset$, $X_0 H \subsetneq \{0, 1, \dots, n_0 1\}$. As in Case 1, $f' : X_0 H \to \{0, 1, \dots, n_0 1\}$ is onto. **NOTE** that $f(n_0) \uparrow$ in this case.
- (b) $n_0 \in X_0$. We have two subcases:
 - $f(n_0) \uparrow$. Then we (almost) act as in Case 2(a): The new " X_0 " is $(X_0 - H) - \{n_0\}$. We remove $n_0 \in X_0$ to ensure that the new " X_0 " will be a subset of $\{0, 1, \ldots, n_0 - 1\}$ and we get a contradiction exactly per Case 2(a).

• We have the picture below —that is, $f(n_0) = m \neq n_0$ for some m.



We simply transform the picture to the one below, "correcting" f to have f(a) = m and $f(n_0) = n_0$, that is defining a new "f" that we will call f' by

$$f' = \left(f - \{(n_0, m), (a, n_0)\}\right) \cup \{(n_0, n_0), (a, m)\}$$



We get a contradiction per Case 1.

5.2.5 Corollary. (Pigeon-Hole Principle) If m < n, then $\{0, \dots, m\} \not\sim \{0, \dots, n\}$.

Proof. If the conclusion fails then we have an onto $f:\{0,\ldots,m\}\to\{0,\ldots,n\}$, contradicting 5.2.4.

Important!

5.2.6 Theorem. If A is finite due to $A \sim \{0, 1, 2, ... n\}$ then there is no justification of finiteness via another <u>canonical</u> set $\{0, 1, 2, ... m\}$ with $n \neq m$.

Proof. If $\{0,1,2,\ldots n\} \sim A \sim \{0,1,2,\ldots m\}$, then $\{0,1,2,\ldots n\} \sim \{0,1,2,\ldots m\}$ by 5.1.17, hence n=m, otherwise we contradict 5.2.5.

5.2.7 Definition. Let $A \sim \{0, \dots, n\}$. Since n is uniquely determined by A we say that A has n + 1 elements and write |A| = n + 1.

5.2. Finite and Infinite Sets 203

March 11, 2022

5.2.8 Corollary. There is no onto function from $\{0, ..., n\}$ to \mathbb{N} .

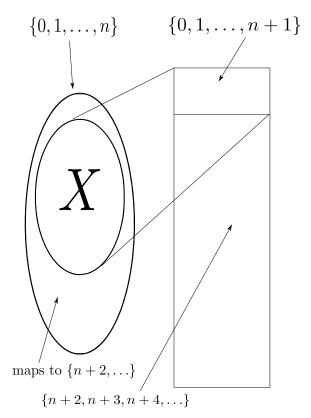
"For all $n \in \mathbb{N}$, there is no..." is, of course, implied.

Proof. Fix an n. By way of contradiction, let $g:\{0,\ldots,n\}\to\mathbb{N}$ be onto.

Let X be the set of all inputs that map onto $\{0, \ldots, n+1\}$

$$X \stackrel{Def}{=} g^{-1}[\{0, 1, \dots, n+1\}] \subseteq \{0, 1, \dots, n\}$$

The existence of a g from $\{0,\ldots,n\}$ onto \mathbb{N} implies an onto function from X to $\{0,\ldots,n+1\}$. But $X\subsetneq\{0,\ldots,n+1\}$. See the figure below.



This contradicts 5.2.4.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2.9 Corollary. \mathbb{N} is infinite.

Proof. By 5.2.1 the opposite case requires that there is an n and a function $f:\{0,1,2,\ldots,n\}\to\mathbb{N}$ that is a 1-1 correspondence. Impossible, since any such an f will fail to be *onto* \mathbb{N} .

Our mathematical definitions have led to what we hoped they would:

For example, that \mathbb{N} is infinite as we intuitively understand, notwithstanding Achilles's accelerated counting!

5.2. Finite and Infinite Sets 205

 \mathbb{N} is a "canonical" infinite set that we can use to *index* or *label* the members of many infinite sets.

Sets that can be indexed using natural number indices

$$a_0, a_1, \dots$$

are called *countable*.

In the interest of technical flexibility, we do not insist that all members of \mathbb{N} be used as indices.

We might enumerate with gaps:

$$b_5, b_9, b_{13}, b_{42}, \dots$$

Thus, informally, a set A is *countable* if it is empty or (in the opposite case) if there is a way to <u>index</u>, hence <u>enumerate</u>, all its members in an <u>array</u>, utilising indices from \mathbb{N} . See also 4.1.42 regarding indexing/labelling.

It is allowed to repeatedly list any element of A, so that finite sets are countable.

For example, the set $\{42\}$:

$$42, 42, 42, \underbrace{^{42 \text{ forever}}}_{}$$

We may think that the enumeration above is done by assigning to "42" all of the members of \mathbb{N} as indices, in other words, the enumeration is effected, for example, by the constant function $f: \mathbb{N} \to \{42\}$ given by f(n) = 42 for all $n \in \mathbb{N}$.

This is consistent with our earlier definition of indexing (4.1.42).

Now, mathematically,

5.2.10 Definition. (Countable Sets) We call a set A countable if $A = \emptyset$, or there is an *onto* function $f : \mathbb{N} \to A$.

We do NOT require f to be total.

This means that some or many indices from \mathbb{N} need not be used in the enumeration.

If $f(n) \downarrow$, then we say that f(n) is the *n*th element of A in the enumeration f.

We often write f_n instead of f(n) and then call n a "subscript" or "index".

Thus a nonempty set is countable iff it is the range of some function that has \mathbb{N} as its left field.

BTW, since we allow f to be *nontotal*, the <u>separate</u> case "nonempty" in the Definition is unnecessary: \emptyset *is* the range of the empty function that has \mathbb{N} as its left field.

We said that the f that proves countability of a set A need not be total.

But such an f can always be "completed", by adding pairs to it, to get an f' such that $f': \mathbb{N} \to A$ is onto and total. Here is how:

5.2.11 Proposition. Let $f: \mathbb{N} \to A \neq \emptyset^{\dagger}$ be onto. Then we can extend f to f' so that $f': \mathbb{N} \to A$ is onto and total.

Proof. Pick an $a \in A$ —possible since $A \neq \emptyset$ — and keep it fixed. Now, our sought f' is given for all $n \in \mathbb{N}$ by cases as below:

$$f'(n) = \begin{cases} f(n) & \text{if } f(n) \downarrow \\ a & \text{if } f(n) \uparrow \end{cases}$$

[†]Since we are constructing a *total* onto function to A we need to assume the case $A \neq \emptyset$ as we cannot put any outputs into \emptyset .

Some set theorists also define sets that can be enumerated using *all* the elements of \mathbb{N} as indices *without repetitions*.

5.2.12 Definition. (Enumerable or denumerable sets) A set A is *enumerable* iff $A \sim \mathbb{N}$.

5.2.13 Example. Every enumerable set is countable, but the converse fails. For example, {1} is countable but not enumerable due to 5.2.8.

 $\{2n: n \in \mathbb{N}\}\$ is enumerable, with f(n)=2n effecting the 1-1 correspondence $f: \mathbb{N} \to \{2n: n \in \mathbb{N}\}.$

5.2.14 Theorem. If A is an infinite subset of \mathbb{N} , then $A \sim \mathbb{N}$.

Proof. We will build a 1-1 and total enumeration of A, presented in a finite manner as a (pseudo) program below, which enumerates all the members of A in strict ascending order and arranges them in an array

$$a(0), a(1), a(2), \dots a(k-1), \dots$$
 (1)

$$\begin{array}{lll} n & \leftarrow 0 \\ \mathbf{while} & A \neq \emptyset \\ a(n) & \leftarrow \min A \ \mathbf{Comment.} \ \mathbf{Inside the \ loop} \\ & \emptyset \neq A \subseteq \mathbb{N}, \ \mathbf{hence \ min \ exists.} \\ A & \leftarrow A - \{a(n)\} \\ n & \leftarrow n+1 \\ \mathbf{end \ while} \end{array}$$

Note that the sequence $\{a(0), a(1), \ldots, a(m)\}$ is **strictly increasing** for any m, since a(0) is smallest in A, a(1) is smallest in $A - \{a(0)\}$ and hence the next higher than a(0) in A, etc.

Will this loop ever exit?

Suppose that it does precisely at the time it *starts* (but does not complete: *loop detects* " $A = \emptyset$ ") the k-th pass through the loop.

Thus A became empty when we did $A \leftarrow A - \{a(k-1)\}\$ in the *previous pass*, that is

$$A = \{a(0), a(1), \dots, a(k-1)\}\$$

and thus, since

$$a(0) < a(1) < \ldots < a(k-1)$$

we have that the function $f:\{0,\ldots,k-1\}\to A$ given by

$$f = \{(0, a(0)), (1, a(1)), \dots (k - 1, a(k - 1))\}\$$

is total, 1-1 and onto, thus, $A \sim \{0, \dots, k-1\}$ contradicting that A is infinite!

Thus, we never exit the loop! We do fill the array "a"

Therefore, by the remark in the \triangleright paragraph above, (1) enumerates A in strict ascending order, i.e.,

if we define
$$f: \mathbb{N} \to A$$
 by $f(n) = a(n)$, for all n

then f is 1-1 (by strict increasing property: distinct inputs cause distinct outputs), and is trivially total, and onto.

Why the latter?

Every $a \in A$ is reached in ascending order, and assigned an "n" from \mathbb{N} .

5.2. Finite and Infinite Sets 213

5.2.15 Theorem. Every infinite countable set is enumerable.

Proof. Let $f: \mathbb{N} \to A$ be onto and total (cf. 5.2.11), where A is infinite.

Let $g: A \to \mathbb{N}$ such that $fg = \mathbf{1}_A$ (5.1.27).

Thus, g is total and 1-1 and $\underline{\text{moreover is } onto B = ran(g)}$.

We have the following configuration:

$$\begin{array}{c}
g\\
A \sim B \subseteq \mathbb{N} \xrightarrow{f} A
\end{array} \tag{1}$$

Hence B is *infinite*, else we would have $A \sim B \sim \{0, \dots, n\}$ (some n) and thus $A \sim \{0, \dots, n\}$ (see Exercise 5.1.17) making A *finite*!

Thus, by 5.2.14, $B \sim \mathbb{N}$, hence $A \sim \mathbb{N}$ via $A \sim B \sim \mathbb{N}$ and 5.1.17 once more.

So, if we can enumerate an infinite set at all, then we can enumerate it without repetitions.

5.2. Finite and Infinite Sets 215

We can linearise an infinite square matrix of elements in each location (i, j) by devising a traversal that will go through each (i, j) entry once, and will not miss any entry!

In the literature one often sees the method diagrammatically, see below, where arrows *clearly* indicate the sequence of traversing, with the understanding that we use the arrows by picking the first unused chain of arrows from left to right.

$$(0,0) \qquad (0,1) \qquad (0,2) \qquad (0,3) \dots \\ (1,0) \qquad (1,1) \qquad (1,2) \\ (2,0) \qquad (2,1) \\ (3,0) \qquad \vdots$$

So the linearisation induces a 1-1 correspondence between \mathbb{N} and the linearised sequence of matrix entries, that is, it shows that $\mathbb{N} \times \mathbb{N} \sim \mathbb{N}$.

In short,

5.2.16 Theorem. The set $\mathbb{N} \times \mathbb{N}$ is countable. In fact, it is enumerable.

Is there a "mathematical" way to do this? Well, the above IS mathematical, don't get me wrong, but is given in *outline*. It is kind of an argument in geometry, where we rely on drawings (figures).

READ ME! Here are the algebraic details:

Proof. (of 5.2.16 with an algebraic argument). Let us call i + j + 1 the "weight" of a pair (i, j). The weight is the number of elements in the group:

$$(i+j,0), (i+j-1,1), (i+j-2,2), \dots, (i,j), \dots, (0,i+j)$$

Thus the diagrammatic enumeration proceeds by enumerating *groups* by increasing weight

$$1, 2, 3, 4, 5, \dots$$

and in each group of weight k we enumerate in ascending order of the second component.

Thus the (i, j) th entry occupies position j in its group —the first position in the group being the 0 th, e.g., in the group of (3, 0) the first position is the 0 th— and this position globally is the number of elements in all groups before group i + j + 1, plus j. Thus the first available position for the first entry of group (i, j) members is just after this many occupied positions:

$$1+2+3+\dots(i+j) = \frac{(i+j)(i+j+1)}{2}$$

That is,

global position of
$$(i, j)$$
 is this: $\frac{(i+j)(i+j+1)}{2} + j$

The function f which for all i, j is given by

$$f(i,j) = \frac{(i+j)(i+j+1)}{2} + j$$

is the algebraic form of the above enumeration.

5.2. Finite and Infinite Sets 217

There is an easier way to show that $\mathbb{N}\times\mathbb{N}\sim\mathbb{N}$ without diagrams:

By the unique factorisation of numbers into products of primes (Euclid) the function

 $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ given for all m, n by $g(m, n) = 2^m 3^n$ is 1-1, since Euclid proved that $2^m 3^n = 2^{m'} 3^{n'}$ implies m = m' and n = n'.

It is not onto as it never outputs, say, 5, but ran(g) is an *infinite* subset of \mathbb{N} (Exercise!).

Thus, trivially,

$$\mathbb{N} \times \mathbb{N} \stackrel{via}{\sim} ^g \operatorname{ran}(g) \sim \mathbb{N}$$

the 2nd " \sim " by 5.2.14. END READ ME!

5.2.17 Exercise. If A and B are enumerable, so is $A \times B$.

Hint. So, $\mathbb{N} \sim A$ and $\mathbb{N} \sim B$. Can you show now that $\mathbb{N} \times \mathbb{N} \sim A \times B$?

With little additional effort one can generalise to the case of $\underset{i=1}{\overset{n}{\times}} A_i$.

5.2.18 Remark.

1. Let us collect a few more remarks on countable sets here. Suppose now that we start with a countable set A. Is every subset of A countable?

Yes, because the composition of onto functions is onto. Exercise!

5.2.19 Exercise. What does composition of onto functions have to do with this? Well, if $B \subseteq A$ then there is a natural onto function $g: A \to B$. Which one?

Hint. Think "natural"! Get a natural total and 1-1 function $f: B \to A$ and then use f to get g.

2. As a special case, if A is countable, then so is $A \cap B$ for any B, since $A \cap B \subseteq A$.

3. How about $A \cup B$? If both A and B are countable, then so is $A \cup B$. Indeed, and without inventing a new technique, let

$$a_0, a_1, \ldots$$

be an enumeration of A and

$$b_0, b_1, \ldots$$

for B. Now form an infinite matrix with the A-enumeration as the 1st row, while each remaining row is the same as the B-enumeration. Now linearise this matrix!

Of course, we may alternatively adapt the unfolding technique to an infinite matrix of just two rows. **How?** 4. **5.2.20 Exercise.** Let A be enumerable and an enumeration of A

$$a_0, a_1, a_2, \dots \tag{1}$$

is given.

So, this is an enumeration without repetitions.

Use techniques we employed in this section to propose a new enumeration in which $every\ a_i$ is listed $infinitely\ many\ times$ (this is useful in some applications of logic).

March 14, 2022

- 5.3. Diagonalisation and uncountable sets
- **5.3.1 Example.** Suppose we have a 3×3 matrix

 $\begin{array}{ccccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{array}$

and we are asked:

Find a sequence of three numbers, using only 0 or 1, that does not fit as a row of the above matrix —i.e., is different from all rows.

Sure, you reply: Take $1 \quad 1$ Or, take $0 \quad 0$ 0.

That is correct. But what if the matrix were big, say, $10^{350000} \times 10^{350000}$, or even infinite?

Is there a *finitely describable technique* that can produce an "unfit" row for *any* square matrix, even an *infinite* one?

Yes, it is Cantor's diagonal method or technique.

5.3.2 Definition. (Diagonalisation: How-to) Cantor noticed that any row that fits in a matrix M as the, say, i-th row, intersects the main diagonal—i.e., the list of M(x,x) entries— at the same spot that the i-th column does.

That is, at entry M(i, i).

Thus if we take the main diagonal —a sequence that has the same length as any row— and make a <u>copy</u> of it changing <u>every one</u> of the <u>original entries</u>, then it will <u>not</u> fit <u>anywhere in</u> M as a row!

Thus the *Main (Original) Diagonal* is the *sequence* of entries below:

$$pos. \ 0 \quad pos. \ 1 \quad pos. \ 2 \qquad pos. \ i$$
 $\downarrow \qquad \downarrow \qquad \downarrow$
 $M(0,0), M(1,1), M(2,2), \dots, M(i,i), \dots$

The <u>modified</u> diagonal is (where we named "D" the array below):

$$pos. \ 0 \quad pos. \ 1 \quad pos. \ 2 \qquad pos. \ i$$

$$D = \overline{M(0,0)}, \overline{M(1,1)}, \overline{M(2,2)}, \dots, \overline{M(i,i)}, \dots$$

where, for all positions i, $\overline{M(i,i)} \neq M(i,i)$.

Thus if D fits as $\underline{row}\ x$, then the x-th element of D $-\overline{M(x,x)}$ —will overlap the (original) x-th element of M -M(x,x).

But these two are different! So, D does NOT FIT as the x-th row!

This HOW TO would give the alternative answer 0 $\,^{-1}$ 0 to our original question in 5.3.1.

5.3.3 Example. We have an infinite matrix M of 0-1 entries. Can we produce an infinite sequence of 0-1 entries that does not match any row in the matrix?

Yes, to get the counterpart of D above just define for all x:

$$\overline{M(x,x)} = 1 - M(x,x)$$

In words, take the main diagonal and flip every entry (0 to 1; 1 to 0).

Now refer to 5.3.2.

5.3.4 Example. (Cantor) Let S denote the set of all *infinite sequences*—also called *infinite strings*— of 0s and 1s.

Pause. What is an *infinite sequence*? Our intuitive understanding of the term is captured mathematically by the concept of a <u>total</u> function f with <u>left field</u> (and hence domain) \mathbb{N} .

The *n*-th member of the sequence is f(n).

Can we arrange all of S in an *infinite matrix*—one element per row?

No, since the preceding example shows that we would miss at least one infinite sequence (i.e., we would fail to list it as a row), because a sequence of infinitely many 0s and/or 1s can be found, that does not match any row!

But arranging all members of S as an infinite matrix —one element per row— is <u>tantamount to saying</u> that we can <u>enumerate</u> all the members of S using members of \mathbb{N} as indices.

So we <u>cannot</u> do that. S is not countable!

5.3.5 Definition. (Uncountable Sets) A set that is *not* countable is called *uncountable*. \Box

So, an uncountable set is *neither* finite, *nor* enumerable —because "countable" means finite or enumerable.

Example 5.3.4 shows that uncountable sets exist. Here is a more interesting one.

5.3.6 Example. (Cantor) The set of real numbers in the interval

$$(0,1) \stackrel{\text{Def}}{=} \{ x \in \mathbb{R} : 0 < x < 1 \}$$

is uncountable. This is done via an elaboration of the argument in 5.3.4.

Think of a member of (0,1), in form, as an infinite sequence of numbers from the set $\{0,1,2,3,4,5,6,7,8,9\}$ prefixed with a dot; that is, think of the number's decimal notation.

Some numbers have representations that end in 0s after a certain point. We call these representations *finite*. Every such number has also an "infinite representation" since the non zero digit d immediately to the left of the infinite tail of 0s can be converted to d-1, and the infinite tail into 9s, without changing the value of the number.

Allow only infinite representations.

Assume now by way of contradiction that a listing of all members of (0,1) exists, listing them via their infinite representations—where the leading decimal point is omitted and all a_{ij} satisfy $0 \le a_{ij} \le 9$ (decimal digits).

$$a_{00}a_{01}a_{02}a_{03}a_{04} \dots$$

$$a_{10}a_{11}a_{12}a_{13}a_{14} \dots$$

$$a_{20}a_{21}a_{22}a_{23}a_{24} \dots$$

$$a_{30}a_{31}a_{32}a_{33}a_{34} \dots$$

$$\vdots$$

$$(1)$$

The "How To" of Definition 5.3.2 is applied now to obtain a

number

$$D = (.)\overline{a_{00}}\,\overline{a_{11}}\,\overline{a_{22}}\,\ldots\overline{a_{xx}}\,\ldots$$

where

$$\overline{a_{xx}} = \begin{cases} 2 & \text{if } a_{xx} = 0 \lor a_{xx} = 1\\ 1 & \text{otherwise} \end{cases}$$
(2)

Clearly (by 5.3.2) D does not fit in any row i of (1), that is, the number it represents is both

- In(0,1) —since its digits are 1 or 2 it is 0 < D < 1,
 AND
- *Not in* (0,1) —by the diagonalisation in (2).

This contradiction shows that we do NOT have the *enumeration* of <u>all</u> of (0,1) depicted as (1): The real interval is uncountable.

5.3.7 Example. (5.3.4 Revisited) Consider the set of *all* total functions from \mathbb{N} to $\{0,1\}$. Is this countable?

Well, if there is an enumeration of these one-variable functions

$$f_0, f_1, f_2, f_3, \dots$$
 (1)

consider the function $g: \mathbb{N} \to \{0,1\}$ given by $g(x) = 1 - f_x(x)$.

Clearly, this must appear in the listing (1) since it has the correct left and right fields, and is total.

Too bad! If $g = f_i$ then $g(i) = f_i(i)$. By definition, it is also $1 - f_i(i)$.

A contradiction.

This is just version of 5.3.4; as already noted there, an infinite sequence of 0s and 1s is *just another way of viewing* a total function from \mathbb{N} to $\{0,1\}$.

The *same* argument as above shows that the set of all functions from \mathbb{N} to \mathbb{N} is uncountable.

Taking $g(x) = f_x(x) + 1$ also works here to "systematically change the diagonal" $f_0(0), f_1(1), \ldots$ since we are not constrained to keep the function values in $\{0, 1\}$.

5.3.8 Remark. Worth Emphasizing. Here is how we constructed g: We have a set of *in principle available f-indices* for g—i.e., in principle, g is a f_i , for some i.

We want to make sure that none of the indices applies —i.e., that in fact g is NOT f_i for any such index.

A convenient method to do that is to inspect each available index, i, and using the diagonal method do this: Ensure that g differs from f_i at input i, by setting

$$g(i) = 1 - \int_{i}^{diag. entry} f_i(i)$$
 (1)

What we did: We think of F is the *name* of an infinite matrix. $F(i,j) = f_i(j)$ by definition (of F).

Thus (1) above defines an *altered* diagonal "g" for F that cannot fit as a row—as an " f_i " (5.3.2).

(1) ensures that $g \neq f_i$; period.

We say that we cancelled the index i as a possible "f-index" of g.

Since the process is applied for each i, we have cancelled all possible indices for g: For no i can we have $g = f_i$.

5.3.9 Example. (Cantor) What about the set of all subsets of \mathbb{N} — $\mathcal{P}(\mathbb{N})$ or $2^{\mathbb{N}}$?

Cantor showed that this is uncountable as well: If not, we have an enumeration of its members as

$$S_0, S_1, S_2, \dots$$
 (1)

Define the set

$$D \stackrel{Def}{=} \{ x \in \mathbb{N} : x \notin S_x \} \tag{2}$$

So, $D \subseteq \mathbb{N}$, thus it must appear in the list (1) as an S_i . But then

$$i \in D$$
 iff $i \in S_i$

by virtue of $D = S_i$.

However, also $i \in D$ iff $i \notin S_i$ by (2).

This contradiction establishes that a *legitimate subset of* \mathbb{N} , *namely* D, *is* not *an* S_i .

That is, $2^{\mathbb{N}}$ cannot be so enumerated; it is uncountable.

5.3.10 Example. (Characteristic functions) Let $S \subseteq \mathbb{N}$. We can represent S as a total function $c_S : \mathbb{N} \to \{0,1\}$ given by:

$$c_S(x) = \begin{cases} 1 & \text{if } x \in S \\ 0 & \text{if } x \in \mathbb{N} - S \end{cases}$$

But then, if we write

$$c_i$$
 for c_{S_i}

With reference to the "D" of 5.3.9, we note that

$$c_D(x) = 1 \text{ iff } x \in D$$

= 1 iff $x \notin S_x \langle \underline{\text{Comment}} : (2) \text{ in } 5.3.9 \rangle$
= 1 iff $c_x(x) = 0$

So

$$c_D(x) = 1 - c_{S_x}(x)$$

Thus the argument in 5.3.9 is not new then, but is rather a "translation" of the *diagonalisation* over the list of 0/1 functions c_x , for $x = 0, 1, 2, \ldots$, in the manner of 5.3.7.

Chapter 6

A Short Course on Predicate Logic

March 16, 2022

We have become somewhat proficient in using informal logic in our arguments about aspects of discrete mathematics, in particular proving statements like $\mathbb{A} \subseteq \mathbb{B}$ and $\mathbb{X} = \mathbb{Y}$, for any classes that we know something about their properties.

Although we have used quantifiers already $-\exists$ and \forall — we did so mostly viewing them as *symbolic abbreviations* of *English texts* about mathematics.

In this chapter we will expand our techniques in logic, extending them to include the correct syntactic —also called "formal"— manipulation of quantifiers.

This chapter also includes the WHAT and the HOW TO of the versatile *Induction*—or *mathematical induction*— technique used to prove properties of the natural numbers.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

We know how to detect <u>fallacious</u> statements formulated in Boolean logic: Simply show by a truth table that the statement is not a tautology (or not a so-called <u>tautological implication</u>).

Correspondingly, we will show in the domain of quantifier logic not only how to *prove* statements that include quantifiers but also how to *disprove* false statements that happen to include quantifiers.

6.1. Enriching our proofs to manipulate quantifiers

Manipulation of quantifiers boils down to "how can I <u>remove</u> a quantifier from the <u>beginning</u> of a formula?" and "how can I <u>add</u> a quantifier at the <u>beginning</u> of a formula?"

Once we learn this technique we will be able to reason within mathematics with ease.

But first let us define once and for all what a mathematical proof looks like: its correct, expected syntax or form.

We will need some concepts to begin with.

1. The <u>alphabet</u> and structure of formulas. Formulas are <u>strings</u> and <u>name statements</u> of mathematics and computer science.

The alphabet of *symbols* that we use to write down formulas contain, at a minimum,

$$=, \neg, \land, \lor, \rightarrow, \equiv, (,), \forall, \exists, \text{*object variables}^{\dagger}$$

We *finitely generate* the infinite set of *object variables* using single letters, if necessary with primes and/or subscripts: $A, x, y'', w'''_{23}, u_{501}$.

^{*∃} is introduced as an abbreviation of something more complex in 6.2.2.

[†]That is, variables that denote *objects* such as numbers, arrays, matrices, sets, trees, etc.

2. One normally works in a mathematical area of interest, or mathematical theory —such as Geometry, Set Theory, Number Theory, Algebra, Calculus, Theory of Computation—where one needs additional symbols to write down formulas, like

$$0,\emptyset,\in,\subseteq,\subsetneqq,\bigcap,\bigcup,\cup,\int,\circ,+,\times,\mu$$

and many others.

3. Mathematicians as a rule get to recognise the *formulas (name statements)* and *terms (name objects)* in the math areas of their interest via practise without being necessarily taught the recursive definition of the syntax of these.

We will not spell out the syntax in these notes either (but see [Tou08] if you want to know!). Thus one learns to be content with getting to know formulas and terms by their behaviour and through use, rather than by their exact definition of syntax.

• *Terms* are "function calls", in the jargon of the computer savvy person.

These calls take math objects as *inputs* and return math objects as *outputs*.

Examples are: x, A, \emptyset , 0, 5, 42, x + y, $x \times 3$, $0 \times x + 1$, $A \cap B$.

The underlined examples above are the simplest possible objects (terms): Constants and variables.

More complex ones are build via function calls.

NOTE. One is told that \times is stronger than +, so, notwith-standing the bracket-parsimonious notation " $0 \times x + 1$ ", we know it means " $(0 \times x) + 1$ ", so this call returns 1, no matter what we plugged into x.

• Formulas are also function calls, but their output is restricted (by their syntax that I will not define carefully!) to be one or the other of the truth values true or false (t or f) but nothing else! Their input, just as in the case for terms, is any math object.

Examples are:

$$(\forall x)x = x \ (\mathbf{t}),$$

$$(\forall x)x = 0 \ (\mathbf{f}),$$

$$(\exists x)x = 0 \ (\mathbf{t}),$$

x = 0 neither true nor false; answer depends on the input we place in x!

More: $x = x(\mathbf{t})$ answer is independent of input; $x = 0 \to x = 0$ (t) answer is independent of input;

 $x = 0 \rightarrow (\forall x)x = 0$ neither true nor false; answer depends on the input in x!

The input variable is the *leftmost* x; the other two (x's) are *bound* and *unavailable* to accept inputs. See below.

• If an **occurrence** of formula variable *is* available for input it would normally be called "an occurrence as an *input variable*".

Rather, such occurrences are called *free occurrences* in the literature.

Non-input occurrences of a variable are called "bound".

Let's *emphasise*: It is not a *variable* x that is free or bound in a formula, but it is *the occurrences of said variable* that we are speaking of, as the immediately preceding example makes clear.

4. In $(\forall x)x = 0$ the variable x is non input, it is "bound" we say.

Just like this: $\sum_{i=1}^{4} i$, which means 1+2+3+4 and "i" is an illusion! *Not* available for input:

Something like $\Sigma_{3=1}^4 3$ is nonsense!

Similar comment for $(\forall x)x = 42$. Neither of these <u>two</u> occurrences of x is free (available) for substitution in it.

No wonder "bound" variables are sometimes called "apparent variables".

5. We call $\forall, \exists, \neg, \land, \lor, \rightarrow, \equiv$ the "logical connectives", the last 5 of them being called Boolean connectives.

People avoid cluttering notation with too many brackets by agreeing that the *first 3 connectives* have the same "strength" or "priority"; the *highest*. The remaining connectives have priorities decreasing as we walk to the right.

Thus, if A and B are (\underline{denote}) formulas, then $\neg A \lor B$ means $(\neg A) \lor B$; \neg wins the claim for A. If we want $(\forall x)$ to apply to the entire $A \to B$ we must write $(\forall x)(A \to B)$.

What about $A \to B \to C$ and $A \equiv B \equiv C$? Brackets are <u>implied</u> from right to left: $A \to (B \to C)$ and $A \equiv (B \equiv C)$.

And this? $(\exists y)(\forall x)\neg A$. Brackets are <u>implied</u>, again, from right to left: $(\exists y)((\forall x)(\neg A))$.

BTW, the part of a formula where a $(\forall x)$ or $(\exists x)$ acts upon—the " (\ldots) " in $(\forall x)(\ldots)$ and $(\exists x)(\ldots)$ —is called their scope.

March 18, 2022

6. **Boolean deconstruction**. A formula like $(\forall x)A \to B$ can be deconstructed Boolean-wise into $(\forall x)A$ and B. If I knew more about B—say, e.g., it is $x = 3 \to x = 7$, then I can deconstruct further.

So, now I have got the full deconstruction:

$$(\forall x)A, \quad x = 3, \quad x = 7$$

The last two have NO Boolean structure so deconstructing stops with them. How about $(\forall x)A$? This cannot be deconstructed either, even if A had Boolean structure!

Such structure is <u>locked</u> up in the scope of $(\forall x)$.

We call the formulas where deconstruction stops "prime".

A prime formula is one with <u>no explicit</u> Boolean structure, e.g., x < 8, or one of the form $(\forall x)A$ (A is the scope) or $(\exists x)A$ (A is the scope).

Every formula is either prime or can be deconstructed into prime components.

Here the Boolean (block-)structure of the original above is

$$\boxed{(\forall x)A} \to \boxed{x=3} \to \boxed{x=7}$$

Playing the "WHAT-IF game" of Boolean logic —that is, being ONLY ABLE to say that the "boxes" have as value one of t or f each, but I do not know which— I conclude (from truth tables) that the Boolean structure does NOT make the above true for all choices of "what if" values.

6.1.1 Remark. (Tautologies) A formula A is a tautology iff it is true due to its Boolean structure, according to truth tables (2.3.4) no matter what are the "what-if" values of its prime formulas into which it is deconstructed are assumed to be.

Note "Assumed to be":

We do **NOT** compute the *intrinsic* truth value of a prime formula that is part of A when we check whether A is a tautology or not.

▶ For example, x = x is a prime formula and thus its <u>assumed</u> value could be ANY ONE of **t** or **f**.

Thus it is NOT a tautology, even though, it intrinsically IS true, no matter what the value of x!

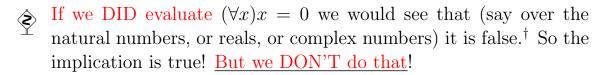
--

The term "tautology" is applied <u>only</u> to formulas that <u>do have</u> Boolean structure.

6.1.2 Example.

- 1. $(\forall x)A$ is **not** a tautology as it has two possible truth values (being a prime formula).
- 2. $x = 0 \rightarrow x = 0$ is a tautology. Which are its prime (sub) formulas?
- 3. $(\forall x)x = 0 \rightarrow x = 0$ is **not** a tautology. I repeat (**one last time**):

To determine tautologyhood we $\overline{DO\ NOT\ evaluate\ prime\ formulas}$; we just consider each of the two scenarios, \mathbf{t} or \mathbf{f} , for each prime formula and use truth tables to compute the overall truth value.



This one is **Not true** as a Boolean formula!

[†]If we are doing our mathematics restricted to the set {0}, then, in this "theory" the formula IS true!

So, how do we show that $(\forall x)A$ is true (if it is)?

Well, in easy cases we try to see if A is true for all values of x — which boils down to

"fix an (arbitrary, hence <u>undisclosed</u>) <math>x" and show A is true for $\underline{THAT} x$.

▶ That failing, we will use a proof (see Section 6.2).

Similarly for $(\exists x)A$. To show it is true (if it is) we try to see if A is true for <u>some</u> value of x.

Often we just *guess* one such value that works, say c, and <u>verify</u> the truth of A when x = c.

▶ That failing, we will use a proof.

6.1.3 Definition. (Important! Tautological implication)

We say that the formulas A_1, A_2, \ldots, A_n tautologically imply a formula B —in symbols $A_1, A_2, \ldots, A_n \models_{taut} B$ — meaning

"the truth of $A_1 \wedge A_2 \wedge \ldots \wedge A_n$ implies the truth of B"

that is, by the truth table for \rightarrow , that

$$A_1 \wedge A_2 \wedge \ldots \wedge A_n \to B$$
 is a tautology

 \triangleright So, \models_{taut} propagates truth from left to right.

- **6.1.4 Example.** Here are some easy and some involved tautological implications. They can all be verified using truth tables, either building the tables in full, or taking shortcuts.
 - 1. $A \models_{taut} A$
 - 2. $A \models_{taut} A \vee B$
 - 3. $A \models_{taut} B \to A$
 - 4. $A, \neg A \models_{taut} B$ —any B. Because I do "work" only if $A \land \neg A$ is true! See 6.1.3.
 - 5. $\mathbf{f} \models_{taut} B$ —any B. Because I do work only if lhs is true! See above.
 - 6. Is this a valid tautological implication? $B, A \rightarrow B \models_{taut} A$, where A and B are distinct.

No, for if A is false and B is true, then the lhs is true, but the rhs is false!

- 7. Is this a valid tautological implication? $A, A \to B \models_{taut} B$? Yes! Say $A = \mathbf{t}$ and $(A \to B) = \mathbf{t}$. Then, from the truth table of \to , it must be $B = \mathbf{t}$.
- 8. How about this? $A, A \equiv B \models_{taut} B$? Yes! Verify!
- 9. How about this? $\underline{A \lor B \equiv B \models_{taut} A \to B}$? Yes! I verify: First off, **assume** lhs of \models_{taut} —that is, $\underline{A} \lor B \equiv B$ is true. Two cases:
 - $B = \mathbf{f}$. Then I need the lhs of \equiv to be true to satisfy the red "assume". So $A = \mathbf{f}$ as well and clearly the rhs of \models_{taut} is true with these values.
 - $B = \mathbf{t}$. Then I need not worry about A on the lhs. The rhs of \models_{taut} is true by truth table of \rightarrow .

Notes on Discrete MATH (EECS1028)© G. Tourlakis

10. $A \wedge (\mathbf{f} \equiv A) \models_{taut} B$, for any B. Well, just note that the lhs of \models_{taut} is \mathbf{f} so we need to do no work with B to conclude that the implication is valid.

11.

$$A \to B, C \to B \models_{taut} A \lor C \to B$$

This is nicknamed "proof by cases" for the obvious reasons. Verify this tautological implication! $\hfill\Box$

The job of a mathematical <u>proof</u> is to start from <u>assumed</u> (axioms) truths and unfailingly <u>preserve truth</u> in all its steps as it is developed.

Thus, when the proof ends it will have produced a truth at its very last step. A theorem.

A proof is <u>a finite sequence of formulas</u> —it is our "mathematical argument"— where *each formula we write down*, one per line <u>with</u> a short explanation, is either

1. an "assumption/hypothesis[†]" or an axiom,

OR

2. is <u>obtained</u> from formulas we wrote <u>earlier</u> *IN THIS PROOF* employing *some valid rule*.

[†]To be explained on p.261.

Am I allowed in step 1. above to write an already proved theorem A?

Yes, because doing so is equivalent to lengthening the proof by adding—instead of just A— \ldots , A, that is, the entire proof of A obtained from axioms only, not invoking other theorems.

Programming analogy: I am allowed to invoke macros in a program because this is equivalent to writing down explicitly the macro-expansion code.

What are our axioms, our starting assumptions, when we do proofs?

We have two types:

- 1. Axioms needed by Logic (*Logical Axioms*) that are <u>common</u> in all proof-work that we do in *mathematics* or *computer science*.
 - ▶ For example, such is the "identity" axiom x = x and the tautology $\neg A \lor A$.

Both these configurations — "x = x" and " $\neg A \lor A$ " — define *infinitely many axioms* as their "instances".

The first allows us to use ANY object variable in place of "x" the second allows to use any "statement" (formula) in place of A.

2. Axioms <u>needed</u> to do MATH in some theory (*Mathematical axioms*).

Here is a *sample* of axioms from a few *MATH* (*theories*):

- (i) i. Number theory for \mathbb{N} :
 - $x < y \lor x = y \lor x > y \ (trichotomy)$
 - $\neg x < 0$ this axiom indicates that 0 is minimal in N.

Adding the previous one makes < a total order, so 0 is also minimum.

- Many others that we omit.
- ii. Euclidean Geometry:
 - From two distinct points passes one and only one line.
 - ("Axiom of parallels") From a point A off a line named k—both A and k being on the same plane—passes a unique line on said plane that is parallel to k.
 - Many others that we omit.

iii. Axiomatic Set Theory:

 \bullet For any set A, we have

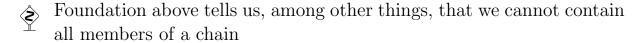
$$(\exists y)y \in A \to (\exists x) \Big(x \in A \land \neg (\exists z \in A)z \in x \Big)$$

This is the so-called axiom of "foundation" from which one can prove things like $A \in A$ is always false.

This axiom incarnates Principles 0-2 in an axiomatic set theory like "ZFC".

It says that $IF \ A \neq \emptyset$ —this is " $(\exists y)y \in A$ "— THEN there is some element in A —this is the part " $(\exists x)(x \in A)$ "— which contains no element of A —this is the part " $\neg(\exists z \in A)z \in x$ ".

• And a few others —including the Axiom of Choice, acronym "AC"— that we omit. □



$$\ldots \in x'' \in x' \in x$$

in a set A.

And then we have "hypotheses" or "assumptions".

Are those not just axioms of logic or math? Not necessarily!

You recall that to prove $A \subseteq B$ you go like this:

"Let $x \in A$ for some fixed x". This " $x \in A$ " is a <u>hypothesis</u> from which you will prove (hopefully) $x \in B$.

It is NOT an axiom of logic nor one of mathematics!

March 21, 2022

6.2.1 Definition. (The Logical Axioms)

- 1. All tautologies; these need no defence as "start-up truths".
- 2. Formulas of the form $(\forall x)A[x] \to A[t]$, for any formula A, variable x and "object" t.

This object can be as simple as an (<u>object</u>) <u>variable</u> y (might be same as x), <u>constant</u> c, or as complex as a "function call", f(g(y,h(z)),a,b,w) where f accepts 4 inputs, g accepts 2 and h accepts one. y,z,w are variables while a and b are unspecified constants.

The axiom is true in any theory as it "says" "if A is true for all (values of) x, then it is also true for the specific value t".

The axiom works only if we take care that the free variables of t (if any) that we substitute into the x of A[x] do not accidentally get caught ("captured") into the scope of a quantifier $(\forall z)$ or $(\exists z)$ lurking inside A.

So, If A[y] is $(\exists x)x = y$ we cannot take t to be f(x) and do A[f(x)]. Taking t to be f(z) is OK: $(\exists x)x = f(z)$.

BTW "[x]" indicates the free variable of interest to us. It does not imply that x actually occurs free in A nor does it imply that there may not be *other* free variables in A.

How do I indicate that x, y, z are <u>precisely all</u> the free variables ("inputs") of A? A(x, y, z).

3. Formulas of the form $A[x] \to (\forall x)A[x]$, for any formula A where the variable x does <u>not</u> occur <u>free</u> in it.

That is, the truth value of A is independent of the value of x and writing—or not writing—" $(\forall x)$ " up in front makes no difference.

For example say A is 3 = 3. This axiom says then, "if 3 = 3 is true, then so is $(\forall x)3 = 3$ ".

Sure! 3 = 3 does not depend on x. So saying "for all values of x we have 3 = 3" is the same as saying just "we have 3 = 3".

4. x = x is the *identity* axiom, no matter what "x" I use to express it. So, y = y and w = w are also instances of the axiom.

5. $x = y \rightarrow y = x$ and $x = y \land y = z \rightarrow x = z$ are the *equality* axioms. They can be expressed equally well using variables other than x and y (e.g., u, v and w).

\$

6.2.2 Remark. (The " \exists ") The symbol \exists is an <u>abbreviation</u>:

For any formula A, $(\exists x)A[x]$ stands for or is short for $\neg(\forall x)\neg A[x]$.

We also get the tautology (hence theorem)

using abbrev. of rhs
$$\vdash \overbrace{(\exists x)A} = \neg(\forall x)\neg A$$

The "rules of proving", or rules of inference. These are two up in front—you will find I am grossly miscounting:

6.2.3 Definition. (Rules of Inference)

The rules used in proofs are called *rules of inference* and are these two (actually the second contains infinitely many rules).

1. From A[x] I may infer $(\forall x)A[x]$. Logicians write the <u>up-in-front</u> ("primary") rules as fractions without words:

$$\frac{A[x]}{(\forall x)A[x]}\tag{1}$$

this rule we call *generalisation*, or *Gen* in short.

2. I may *construct* (and <u>use</u>) using any tautological implication *that I have verified*, say, this one

$$A_1, A_2, \dots, A_n \models_{taut} B \tag{2}$$

leads to the rule

$$\frac{A_1, A_2, \dots, A_n}{B}$$

Seeing readily that $A, A \to B \models_{taut} B$, we have the rule

$$\frac{A,A\to B}{B}$$

This is a very popular rule, known as modus ponens, for short MP.

Worth Saying. So rules preserve truth.

Read a rule such as (1) or (2) as saying

If you already wrote all the formulas of the "numerator" (in any order) in a proof, then it is legitimate to write thereafter in the proof the denominator formula (of the rule).

We call the numerator *input* or *hypotheses* of the rule and call the denominator *result* or *conclusion*.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2.4 Remark.

1. The second "rule" above is a rule constructor.

Any tautological implication we come up with is fair game:

It leads to a *valid rule* since the name of the game (in a proof) is *preservation/propagation of truth*.

This is NOT an invitation to learn and memorise infinitely many rules (!) but is rather a <u>license</u> to build your own rules as you go, as long as you bothered to <u>verify</u> the validity of the tautological implication they are derived from.

2. Gen is a rule that indeed propagates truth: If A[x] is true, that means that it is so for all values of x—and all values of any other free variables on which A depends but I did not show in the [...] notation.

But then so is $(\forall x)A[x]$ true, as it says precisely the same thing: "A[x] is true, for all values of x and all values of any other free variables on which A depends but I did not show in the [...] notation".

The only difference between the two notations is that I added some notational *emphasis* in the second $-(\forall x)$.

3. Hmm. So is $\forall x$ redundant? Yes, but only as a formula <u>PREFIX</u>. In something like this

$$x = 0 \to (\forall x)x = 0 \tag{1}$$

it is **NOT** redundant!

Dropping \forall we change the meaning of (1).

As is, (1) is **not** a true statement. For example, if the value of the "input x" (the left one) is 0, then it is false.

However dropping $\forall x$, (1) changes to $x = 0 \rightarrow x = 0$ which is a tautology; *always true*.

We saw the *shape of proofs* at the outset, on p.256.

6.2.5 Definition. (Theorems)

A theorem is a formula that **appears** in a proof.

Often one writes $\vdash A$ to symbolically say that A is a theorem. If we must indicate that we worked in some specific theory, say ZFC (set theory), then we may indicate this as

$$\vdash_{ZFC} A$$

If moreover we have had some "non-axiom hypotheses" (see box on p.261) that form a set Σ , then we may indicate so by writing

$$\Sigma \vdash_{ZFC} A$$

\$

Why Σ —and not A, B, C?— for a set of (non-axiom) assumptions? Because we reserve upper case latin letters for formulas. For sets of formulas we use a distinguishable capital letter, so, we chose distinguishable Greek capital letters, such as $\Gamma, \Sigma, \Delta, \Phi, \Theta, \Psi, \Omega$. Obviously, Greek capital letters like A, B, E, Z will not do!

6.2.6 Remark. (Hilbert-style proofs) The proof concept as defined is known as a "Hilbert-style proof".

We write them *vertically*, <u>ONE formula per line</u>, every formula consecutively numbered, with <u>annotation to the right</u> of each formula written (this is the "why did I write this?").

Like this

- 1) F_1 (because)
- 2) F_2 (because)
- : : :
- n) F_n (because)

- **6.2.7 Example.** (New (derived) rules) A derived rule is one we were not given —in 6.2.3— to bootstrap logic, but we can still prove they propagate truth.
 - 1. We have a new (derived) rule: $(\forall x)A[x] \vdash A[t]$.

This is called *Specialisation*, or *Spec*.

Aha! We used a *non-axiom assumption* here!

I write a Hilbert proof to show that A[t] is a theorem if $(\forall x)A[x]$ is a (non-axiom) hypothesis (assumption) —shortened to "hyp".

- $(\forall x)A[x]$ 1)
- 1) $(\forall x)A[x]$ $\langle \text{hyp} \rangle$ 2) $(\forall x)A[x] \to A[t]$ $\langle \text{axiom} \rangle$
- A[t] $\langle 1 + 2 + MP \rangle$ 3)
- 2. Taking t to be x we have $(\forall x)A[x] \vdash A[x]$, simply written as $(\forall x)A \vdash A$.

3. The *Dual Spec* derived rule:

$$A[t] \vdash (\exists x)A[x] \tag{1}$$

We prove it below, but first I must prove:

$$\vdash A[t] \to (\exists x) A[x] \tag{2}$$

Here it goes

- 1) $(\forall x) \neg A[x] \rightarrow \neg A[t] \quad \langle \text{axiom} \rangle$
- 2) $A[t] \rightarrow \neg(\forall x) \neg A[x]$ $\langle 1 + \text{Taut. Impl.} \rangle$ 2') $A[t] \rightarrow (\exists x) A[x]$ $\langle 2 + \text{using abbreviation "}\exists$ " \rangle

Now, Dual Spec:

- 1) A[t] $\langle \text{hyp} \rangle$
- 2) $A[t] \rightarrow (\exists x)A[x]$ (proved above) 3) $(\exists x)A[x]$ $\langle 1 + 2 + MP \rangle$

Taking t to be x we have $A[x] \vdash (\exists x)A[x]$, simply written as $A \vdash (\exists x)A$.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

March 23, 2022

There are two principles of proof that we state without proving them (see [Tou03a, Tou08] if curious).

6.2.8 Remark. (Deduction theorem and proof by contradiction)

1. The *deduction theorem* (also known as "proof by assuming the antecedent") states, if

$$\Gamma, A \vdash B \tag{1}$$

then also $\Gamma \vdash A \to B$, provided that in the proof of (1), all <u>free variables</u> that appear in A were treated as constants (as we say, were "frozen") AT or BELOW the point where A was inserted as a hypothesis:

This "freezing" applies to <u>ALL formulas</u> in the proof that contain the free variables of A - NOT only to A.

We <u>cannot apply</u> \forall to any such <u>variable</u> in <u>any</u> formula <u>at</u> or <u>below</u> the hypothesis A, nor can we substitute values in them.

6.2.9 Example. To show $A \subseteq B$ do $(\forall x)(x \in A \to x \in B)$ or —<u>same thing</u>— $x \in A \to x \in B$ <u>for all x.</u>

To do the latter we pick a fixed ("frozen"!) undisclosed x and assume $x \in A$ to ensure the " \rightarrow " goes through for all (chosen) x.

Then we proceed to show $x \in B$ for that same x.

Hey! This is an application of the DThm!

You see above, <u>intuitively</u>, why free variables like x <u>must</u> be frozen—"fixed and undisclosed" we said!

The notation " Γ, A " is standard for the more elaborate $\Gamma \cup \{A\}$.

In practice, this principle is applied to prove $\Gamma \vdash A \rightarrow B$, by doing instead the "easier" (1).

Why "easier"?

- (1) We are helped by an *extra hypothesis*, A, and
- (2) the formula to prove, B, is *less complex* than $A \to B$.

2. **Proof by contradiction**. To prove $\Gamma \vdash A$ —where A has no free variables or, as we say, is closed or is a sentence— is equivalent to proving the "constant formula" \mathbf{f} from hypothesis $\Gamma, \neg A$.

3. Here is another reason to work with non-axiom hypotheses: The Deduction Theorem, which we apply as follows:

Suppose we want to prove " $\vdash A \to B \to C \to D$ ". So we go like this:

- By DThm, it <u>suffices</u> to prove $A \vdash B \to C \to D$ instead (here "\Gamma" is $\{A\}$).
- Again, by DThm, it suffices to prove $A, B \vdash C \to D$ instead (here " Γ " is $\{A, B\}$).
- Again, by DThm, it suffices to prove $A, B, C \vdash D$ instead (here " Γ " is $\{A, B, C\}$).

I referred you to [Tou08] for some things.

However, the short intro here adopted the so-called "strong generalisation" (as did [Tou03a] and many other such as [Men87, Sho67]) —because it is closest to intuition of the practicing mathematician or computer scientist: "Stating A(x) means that A(x) is true for all the values of x", which has the side-effect of obliging the deduction theorem to be restricted:

In proving B from Γ , A one *must* ensure that no variable of A was subject to *generalisation* or *substitution*.

[Tou08] trades some power of generalisation in order to get an easier to apply deduction theorem, *without restrictions*.

So this is a choice on what we want to be "easy", and what we want to "be not so easy". There are two options!

6.2.10 Remark. (Ping-Pong) For any formulas A and B, the formula —where I am using way more brackets than I have to, ironically, to *improve* readability—

$$(A \equiv B) \equiv \Big((A \to B) \land (B \to A) \Big)$$

is a tautology (we say this when discussing " \rightarrow ").

Thus to prove the lhs of the \equiv suffices to prove the rhs.

In turn, to prove the rhs it *suffices* to prove each of $A \to B$ and $B \to A$ *separately*. This last idea encapsulates the ping-pong approach to proving equivalences.

Here are a few applications.

- **6.2.11 Example.** 1. Establish $\vdash (\forall x)(A \land B) \equiv (\forall x)A \land (\forall x)B$. By ping-pong.
 - Prove $\vdash (\forall x)(A \land B) \rightarrow (\forall x)A \land (\forall x)B$. By DThm suffices to do $(\forall x)(A \land B) \vdash (\forall x)A \land (\forall x)B$ instead.
 - 1) $(\forall x)(A \land B)$ $\langle \text{hyp} \rangle$
 - 2) $A \wedge B$ $\langle 1 + \operatorname{Spec} \rangle$
 - 3) $A \langle 2 + \text{tautological implication} \rangle$
 - 4) $B \langle 2 + \text{tautological implication} \rangle$
 - 5) $(\forall x)A$ (3 + Gen; OK: x is not free in line 1)
 - 6) $(\forall x)B$ $\langle 4 + \text{Gen}; \text{OK} : x \text{ is not free in line } 1 \rangle$
 - 7) $(\forall x)A \wedge (\forall x)B \quad \langle 5+6+\text{tautological implication} \rangle$

Why the note "OK: x is not free in line 1"?

Because I applied DThm and moved $(\forall x)(A \land B)$ to the left of "\(\times \)" (made it hyp).

DThm *requires all* free variables of this to be *frozen* from the point of insertion down.

In particular I am *NOT allowed* to invoke $(\forall x)$ for such a frozen free variable. It is essentially a constant!

So the annotation observes that x is <u>not free in what we moved over</u> by DThm; Good!

• Prove $\vdash (\forall x)A \land (\forall x)B \rightarrow (\forall x)(A \land B)$. By DThm suffices to do $(\forall x)A \wedge (\forall x)B \vdash (\forall x)(A \wedge B)$ instead.

- 1) $(\forall x)A \wedge (\forall x)B \quad \langle \text{hyp} \rangle$
- 2) $(\forall x)A$ $\langle 1 + \text{tautological implication} \rangle$ 3) $(\forall x)B$ $\langle 1 + \text{tautological implication} \rangle$

Complete the above proof!

2. Prove $\vdash (\forall x)(\forall y)A \equiv (\forall y)(\forall x)A$.

By ping-pong.

- (a) Prove $\vdash (\forall x)(\forall y)A \rightarrow (\forall y)(\forall x)A$. By DThm suffices to do $(\forall x)(\forall y)A \vdash (\forall y)(\forall x)A$ instead.
 - 1) $(\forall x)(\forall y)A \langle \text{hyp} \rangle$

 - 2) $(\forall y)A$ $\langle 1 + \operatorname{Spec} \rangle$ 3) A $\langle 2 + \operatorname{Spec} \rangle$ 4) $(\forall x)A$ $\langle 3 + \operatorname{Gen}; \operatorname{OK}, \operatorname{no} \operatorname{free} x \operatorname{in} \operatorname{line} 1 \rangle$ 5) $(\forall y)(\forall x)A$ $\langle 4 + \operatorname{Gen}; \operatorname{OK}, \operatorname{no} \operatorname{free} y \operatorname{in} \operatorname{line} 1 \rangle$

(b) Prove $\vdash (\forall y)(\forall x)A \rightarrow (\forall x)(\forall y)A$. Exercise!

3. Prove $\vdash (\forall x)(A \to B) \to (\forall x)A \to (\forall x)B$.

By the DThm do instead $(\forall x)(A \to B) \vdash (\forall x)A \to (\forall x)B$. In fact, even easier is to do (by DThm)

$$(\forall x)(A \to B), (\forall x)A \vdash (\forall x)B$$

Here it is:

- 1) $(\forall x)(A \to B)$ (hyp from DThm)
- 2) $(\forall x)A$ $\langle \text{hyp from DThm} \rangle$
- 3) $A \to B$ $\langle 1 + \text{Spec} \rangle$
- 4) $A \qquad \langle 2 + \text{Spec} \rangle$
- 5) $B \langle 3 + 4 + MP \rangle$
- 6) $(\forall x)B$ $\langle 5 + \text{Gen}; \text{OK}, \text{ no free } x \text{ in 1 or 2} \rangle$
- **6.2.12 Exercise.** Prove for any A and B where x is not free in A— that $\vdash (\forall x)(A \to B) \to (A \to (\forall x)B)$.
- **6.2.13 Exercise.** Prove for any A and B where x is not free in A— that $A \to B \vdash A \to (\forall x)B$.

We have seen how to add an $(\exists x)$ in front of a formula $(6.2.7\ 3)$.

How about removing an $(\exists x)$ -prefix? This is much more complex than removing a $(\forall x)$ -prefix:

The technique can be *proved* to be correct (eg., [Tou03a]) but I will omit the proof here as I did omit the proof of the deduction theorem technique and of the proof by contradiction technique.

I could say "see [Tou03a] if you want to learn the proof", but this reference is too advanced for a first year course on discrete math.

So, why not say "look at [Tou08]"?

Because, unfortunately, these two books have chosen *incompatible* "generalisation" rules, which results to *incompatible deduction theo*rem versions.

The proof of the technique of eliminating \exists -prefixes relies on the deduction theorem.

<u>Technique of removing an \exists -prefix</u>: Suppose I have that $(\exists x)A[x]$ is true —either as an **assumption** or a **theorem I proved earlier**—and I want to prove B.

Then I <u>assume</u> that —for *some* constant c that <u>does not occur</u> in B— A[c] is true.

In words, "Let c be a value (constant!) that makes A[c] true".

That is, I add A[c] for an <u>NEW constant</u> c *NOT* in B as a NEW non-axiom hypothesis.

People annotate this step in a proof as "aux. hyp. related to $(\exists x)A[x]$."

Now I proceed to prove B using all that is known to me—that is, the axioms of the theory \mathcal{T} and the non-axiom hypotheses Γ and the non-axiom hypothesis A[c].

I do so by using all free (input-) variables of A[c] as <u>constants</u> in my proof.^b

 $^{^{}b}$ This is a side-effect of using the <u>deduction theorem</u> in the proof of correctness of the theorem below that justifies this technique.

6.2.14 Metatheorem. (Aux. Hyp. Metatheorem) Suppose I work within theory \mathcal{T} and hypotheses Γ and I have proved

$$\Gamma \vdash_{\mathcal{T}} (\exists x) A[x]$$

Suppose next I <u>add</u> the hypothesis A[c] to Γ , where c is a NEW constant that is not part of B, and I manage to prove

$$\Gamma, A[c] \vdash_{\mathcal{T}} B \tag{1}$$

where

- (1) All free variables of A[c] were frozen throughout the proof
- (2) c does not appear in the formulas of Γ or in the <u>MATH axioms</u> of \mathcal{T} .

Then obtaining (1) under all stated restrictions constitutes a proof of $\Gamma \vdash_{\mathcal{T}} B$.

The "big deal" in 6.2.14 is that <u>normally</u> if you add a hypothesis X to hypotheses Γ and prove

$$\Gamma, X \vdash_{\mathcal{T}} B$$

then you <u>cannot in general</u> get rid of the <u>dependence</u> of the theorem B on the added hypothesis X.

Not so with the technique of Metatheorem 6.2.14: You get

$$\Gamma \vdash_{\mathcal{T}} B$$

as if you never <u>assumed</u> or <u>used</u> A[c]!

That is why they call it "<u>auxiliary</u> hypothesis". Once it <u>helps</u> you to prove B it <u>drops out</u>; it does not stay around to get <u>credit</u>!

6.2.15 Example. Prove $\vdash (\exists y)(\forall x)A[x,y] \rightarrow (\forall x)(\exists y)A[x,y].$

By the DThm it suffices to prove $(\exists y)(\forall x)A[x,y] \vdash (\forall x)(\exists y)A[x,y]$ instead.

- 1) $(\exists y)(\forall x)A[x,y]$ (hyp via DThm)
- 2) $(\forall x)A[x,c]$ (aux. hyp. related to 1; for constant c not in the conclusion)
- 3) A[x,c] $\langle 2 + \text{Spec} \rangle$
- 4) $(\exists y)A[x,y]$ $\langle 3 + \text{Dual Spec} \rangle$
- 5) $(\forall x)(\exists y)A[x,y]$ $\langle 4 + \text{Gen; OK, no free } x \text{ in lines}$ $1(\text{DThm}) \text{ and } 2(\text{aux. hyp}) \rangle$

Worth Noting: The " Γ " here is $\{(\exists y)(\forall x)A[x,y]\}$ thus we **do** have $\Gamma \vdash (\exists y)(\forall x)A[x,y]$ as required by 6.2.14.

What I am invoking here is the trivial $X \vdash X$ that is verified by the 1-line proof "1) $X \quad \langle hyp \rangle$ ".

289 6.2. Proofs and Theorems

March 25, 2022

6.2.16 Example. Can I also prove the converse of the above? That

$$\vdash (\forall x)(\exists y)A[x,y] \to (\exists y)(\forall x)A[x,y] \tag{1}$$

I will try.

By the DThm it suffices to prove $(\forall x)(\exists y)A[x,y] \vdash (\exists y)(\forall x)A[x,y]$ instead.

- 1) $(\forall x)(\exists y)A[x,y]$ (hyp via DThm)

- 2) $(\exists y)A[x,y]$ $\langle 1 + \operatorname{Spec} \rangle$ 3) A[x,c] $\langle \operatorname{aux. hyp. for } 2; c \text{ not in the conclusion} \rangle$ 4) $(\forall x)A[x,c]$ $\langle 3 + \operatorname{Gen}; \operatorname{Stop! Forbidden!} \rangle$ Illegal " $(\forall x)$ ": I should treat the free x of aux. hyp. as a constant on lines 3 and 4!

Still, can anyone PROVE (1); even if I cannot?

A question like this, if you are to answer "NO", must be resolved by offering a **counterexample**.

That is, a special case of A for which I can clearly see that the claim is false.

Here is one such:

$$\underbrace{(\forall x)(\exists y)}_{\mathbf{t}}\underbrace{x = y}^{\text{"the }A"} \to \underbrace{(\exists y)(\forall x)}_{\mathbf{f}}\underbrace{x = y}^{\text{"the }A"} \tag{1}$$

Here is another non-theorem. We have the axiom $A \to (\forall x)A$ if x is not free in A. Can we relax the restriction?

<u>No</u>. If we had $\vdash A \to (\forall x)A$ with no restrictions then look at the special case

$$x = 0 \to (\forall x)x = 0 \tag{2}$$

on \mathbb{N} .

We already saw that this is not true for all x —not a theorem then!

In fact over \mathbb{N} , (2) is false if I take x to be 0: $0 = 0 \to (\forall x)x = 0$.

6.2. Proofs and Theorems 291

6.2.17 Exercise. (Important "confusion remover") One might be confused by the act of *adding the* <u>hypothesis</u> A(c) whenever we have $(\exists x)A(x)$.

Some lapse of judgement might construe this as an implication:

$$(\exists x)A(x) \to A(c) \tag{1}$$

This is false!! NOT a theorem!!

Working over the natural numbers, $\underline{\text{Prove}}$ by $\underline{\text{finding a very simple}}$ A(x) and a specific appropriate constant c that (1) fails for this A and c so it is NOT a theorem!

6.2.18 Exercise. (Important "confusion remover" #2) Prove by an EASY counterexample that $(\exists x)A[x] \to A[x]$ is not provable either.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Another useful principle that can be proved, but $\underline{\text{we will not do so}}$, is that one can $\underline{\text{replace equivalents-by-equivalents}}$. That is, if C is some formula, and if I have

- 1. $A \equiv B$, via proof, or via assumption, and also
- 2. A is a subformula of C

then I can replace one (or more) occurrence(s) of A in C (as subformula(s)) by B and call the resulting formula C'.

I will be guaranteed the conclusion $C \equiv C'$.

That is, from $A \equiv B$, I can prove $C \equiv C'$.

This principle is called the *equivalence theorem*.

Let's do a couple of ad hoc additional examples before we move to the section on Induction.

6.2.19 Example. $A \to B \vdash (\forall x)A \to (\forall x)B$.

By the DThm it suffices to prove $A \to B$, $(\forall x)A \vdash (\forall x)B$ instead.

- 1) $A \to B \langle \text{hyp} \rangle$
- 2) $(\forall x)A$ (hyp from DThm)
- 3) $A \qquad \langle 2 + \text{Spec} \rangle$
- 4) $B \qquad \langle 1 + 3 + MP \rangle$
- 5) $(\forall x)B$ $\langle 4 + \text{Gen}; \text{OK as the DThm hyp. (line 2) has no free } x \rangle$

6.2.20 Example. (Substitution Theorem) We have $A[x] \vdash A[t]$ for any term t.

Indeed,

- 1) A[x] $\langle \text{hyp} \rangle$
- $2) \quad (\forall x) A[x] \quad \langle 1 + \operatorname{Gen} \rangle$
- 3) A[t] $\langle 2 + \operatorname{Spec} \rangle$

6.2.21 Example. We have $A \to B \vdash (\exists x)A \to (\exists x)B$. Proof via DThm, that is, prove

$$A \to B, (\exists x)A \vdash (\exists x)B$$

instead.

- 1) $A[x] \to B[x] \quad \langle \text{hyp} \rangle$

- 2) $(\exists x)A[x]$ $\langle \text{hyp via DThm} \rangle$ 3) A[c] $\langle \text{aux. hyp. for } 2 \rangle$ 4) $A[c] \rightarrow B[c]$ $\langle 1 + 6.2.20$; OK no free x in lines #2, $3 \rangle$ 5) B[c] $\langle 3 + 4 + \text{MP} \rangle$
- 6) $(\exists x)B[x]$ $\langle 5 + \text{Dual Spec} \rangle$

6.2. Proofs and Theorems 295

6.2.22 Example. READ ME! Refer to 6.2.2. Let us apply it to $\neg A$ for arbitrary A. We get

$$\vdash (\exists x) \neg A \equiv \neg(\forall x) \neg \neg A \tag{1}$$

Since $A \equiv \neg \neg A$ is a tautology, hence a theorem

Pause. Why "hence a theorem"?◀

we apply the *equivalence theorem* (p.292) and <u>tautological implication</u>[‡] and obtain:

$$\vdash \neg(\forall x)A \equiv (\exists x)\neg A \tag{2}$$

Applying another tautological implication to (2) we move the left-most \neg just past the " \equiv " and get

$$\vdash (\forall x)A \equiv \neg(\exists x)\neg A$$

which is of the same form as 6.2.2 with the roles of \exists and \forall reversed.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

[‡]We have (1) and $\vdash \neg(\forall x)\neg\neg A \equiv \neg(\forall x)A$ as the lhs of the implication.

6.2.23 Example. $A \equiv B \vdash (\forall x) A \equiv (\forall x) B$.

True due to the equivalence theorem! "C" is " $(\forall x)A$ ". We replaced (one occurrence of) A by B in C, and we have assumed as starting point that $A \equiv B$.

6.2.24 Exercise. Prove $A \equiv B \vdash (\forall x)A \equiv (\forall x)B$ without relying on the equivalence theorem. Rather use 6.2.19 in your proof, remembering the ping-pong tautology (6.2.10).

6.3. Induction

In Remark 4.1.83 we concluded with a formulation -(2) on p.154—of the *minimal condition* (MC) for any order < as (\dagger) below:

Since any class A is given as $A = \{x : F[x]\}$ for some F[x] we have

The statement " $some\ order < has\ MC$ " is captured by the statement

For <u>any</u> "property", that is, <u>formula</u> F[x], we have that the following is true

$$(\exists a)F[a] \to (\exists a)\Big(F[a] \land \neg(\exists y)\big(y < a \land F[y]\big)\Big) \tag{\dagger}$$

This specific "<" is <u>a total order</u> (satisfies trichotomy) and thus the concepts minimal and minimum coincide as we know (4.1.81)

We will prove that MC (\dagger) is equivalent to the *Principle* of so-called "Strong Induction" or "Course-of-Values Induction" —CVI— on \mathbb{N} .

In the proof I will use <u>three</u> easy THEOREMS (they are <u>tautologies</u>, hence axioms, hence theorems) as well as 6.2.2.

Theorem 1. $\vdash \neg A \lor B \equiv A \to B$

Theorem 2. $A \to B \equiv \neg B \to \neg A$ (contrapositive).

Theorem 3. $\neg(A \lor B) \equiv \neg A \land \neg B$ and also $\neg(A \land B) \equiv \neg A \lor \neg B$. These are the well-known "de Morgan" equivalences.§. The first intuitively says " $A \lor B$ is false iff both A and B are false". The second intuitively says " $A \land B$ is false iff at least one of A and B is false".

Our proof below is written as a *conjunctional* \Leftrightarrow -chain, written vertically with annotation " $\langle \ldots \rangle$ " to the right of $each \Leftrightarrow$.

Such proofs are called *Equational* ([DS90, GS94, Tou08]).

[§]Often called "de Morgan Laws".

March 28, 2022

So let P[x] be an arbitrary "property" (formula!) of the variable x.

We start our "Equational proof" with (\dagger) at the top of the chain, but where we replaced the arbitrary "F" there with " $\neg P$ " here.

$$(\exists a) \neg P[a] \rightarrow (\exists a) \Big(\neg P[a] \land \neg (\exists y) \big(y < a \land \neg P[y] \big) \Big)$$

$$\Leftrightarrow \langle \text{using 6.2.2 and equiv. thm } (\text{p.292}) \text{ removing double negations} \rangle$$

$$\neg (\forall a) P[a] \rightarrow \neg (\forall a) \neg \Big(\neg P[a] \land (\forall y) \neg \big(y < a \land \neg P[y] \big) \Big)$$

$$\Leftrightarrow \langle \text{contrapositive} \rangle$$

$$(\forall a) \neg \Big(\neg P[a] \land (\forall y) \neg \big(y < a \land \neg P[y] \big) \Big) \rightarrow (\forall a) P[a]$$

$$\Leftrightarrow \langle \text{two applications of de Morgan and equiv. thm} \rangle$$

$$(\forall a) \Big(P[a] \lor \neg (\forall y) \big(\neg y < a \lor P[y] \big) \Big) \rightarrow (\forall a) P[a]$$

$$\Leftrightarrow \langle \text{Theorem 1 above + equiv. thm } (\text{twice}) \rangle$$

$$(\forall a) \Big(\underbrace{(\forall y) \big(y < a \rightarrow P[y] \big)} \rightarrow P[a] \Big) \rightarrow (\forall a) P[a]$$

$$(\ddagger)$$

We have proved that (\dagger) —the least principle for \mathbb{N} — of the previous page is equivalent to (\ddagger) .

If, for all y < a, P[y] is true, then I can prove P[a]

(‡) embodies the *Strong Induction* or *Course-of-Values Induction* (CVI) Principle:

To prove $(\forall a)P[a]$, where P is a property over N and a is a N-variable, it suffices to do TWO steps:

- 1. Fix —but do not disclose— an a (a is arbitrary but fixed).
- 2. On the (blue) hypothesis (underlined, line (‡); it is called *Induction Hypothesis* or I.H.) that P[y] is true for all y < a, I must prove that so is P[a].

This last step is called the *Induction Step*, or *I.S.*

Hmm! All inductions have a "Basis", typically at 0. Doesn't this one? It does!

For a = 0, $(\forall y)(y < a \rightarrow P[y])$ is *true* since y < a is *false*.

So the Basis is hiding in the I.S. as a "boundary case" (not included in the general "conditional" argument)

If
$$\underbrace{(\forall y)(y < a \to P[y])}_{IH}$$
 then $P[a]$

since the "condition" (I.H.) does not help for a = 0.

The I.H. here is <u>true absolutely</u> (not a <u>hypothetical</u> "IF"), so truth tables <u>oblige</u> me to prove P[0] absolutely, <u>not conditionally</u>; and do so from first principles —i.e., with no help from an I.H.

There is another simpler induction principle that we call, well, *simple* induction:

 $\frac{P[0], P[x] \to P[x+1]}{P[x]} \tag{SI}$

"(SI)" for Simple Induction. That is, to prove P[x] for all x (denominator) do three things:

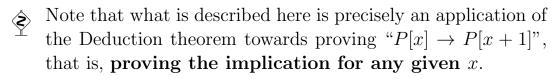
Step 1. Prove/verify P[0]

Step 2. **Assume** P[x] for fixed ("frozen") x (unspecified!).

Step 3. **prove** P[x+1] for that same (previously frozen) x.

The assumption is the I.H. for simple induction.

The I.S. is the step that proves P[x+1].



Step 4. If you have done **Step** 1. through **Step** 3. above, then you have proved P[x] (for all x is implied!)

Is the principle (SI) *correct*? I.e., if I do all that the numerator of (SI) asks me to do (*equivalently*, **Steps** 1. - 3.), then do I *really* get that the denominator is true (for all x implied)? *YES!*

6.3.1 Theorem. The validity of (SI) is a consequence of MC (least principle) on \mathbb{N} .

Proof. Suppose (SI) is not correct.

Then, for some property P[x], despite having completed **Steps** 1. – 3., P[x] is not true for all x!

Then,

let $n \in \mathbb{N}$ be smallest such that P[n] is false.

Now, n > 0 since I did verify the truth of P[0] (Step 1.).

Thus, $n-1 \ge 0$.

But then, when I proved " $P[x] \to P[x+1]$ for all x (in \mathbb{N})" —in **Steps** 2. and 3.— this includes **proving**

$$P[n-1] \to P[n] \tag{4}$$

By the smallest-ness of n, P[n-1] is true, hence P[n] is true by (4).

I have just contradicted that P[n] is false!

In fact, MC and SI are equivalent principles.

6.3.2 Theorem. Conversely to the previous theorem (6.3.1), if SI on \mathbb{N} works, then \mathbb{N} has MC.

Proof. By contradiction, I <u>assume</u> I have SI, but that *MC fails*.

So, there is a <u>nonempty</u> subset of \mathbb{N} , S, that <u>has no least element</u>. I will get a <u>contradiction</u> by showing that $\overline{S} \stackrel{Def}{=} \mathbb{N} - S$ is all of \mathbb{N} (hence $S = \emptyset$).

I apply *SI* to the property

$$P(x) \stackrel{Def}{\equiv} \{0, 1, \dots, x\} \subseteq \overline{S}$$

- 1. Basis. P(0) says $\{0\} \subseteq \overline{S}$ which is equivalent to $0 \in \overline{S}$; <u>true</u> since if $0 \in S$ that would contradict assumption on S.
- 2. Fix x and assume (I.H.) P(x).
- 3. P(x+1) says $\{0,1,\ldots,x,x+1\}\subseteq \overline{S}$. To prove this note:

By 2., we have $\{0, 1, \dots, x\} \subseteq \overline{S}$ so if $x + 1 \in S$ <u>instead</u>, then it would be smallest, contradicting hypothesis about S.

Thus I MUST have also $\{0,1,\ldots,x,x+1\}\subseteq \overline{S}$ —and hence P(x+1).

By SI, I have P(x) true for all x, thus $\{0, 1, ..., x\} \subseteq \overline{S}$ for all x. In particular, $x \in \overline{S}$ for all x

But then $S = \emptyset$. A contradiction!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Since we have CVI equivalent to MC we now have

6.3.3 Corollary. All three of CVI, SI and MC are equivalent principles over \mathbb{N} .

Within set theory we can define —actually <u>construct</u>— *each* natural number as a <u>set</u>: \emptyset for "0", and if we have defined/constructed as far as "n", then "n + 1" is constructed as $n \cup \{n\}$.

Thus the first few natural numbers "are"

$$\emptyset$$
, $\{\emptyset\}$, $\{\emptyset, \{\emptyset\}\}$, . . .

We then can <u>prove</u> that <u>the</u> set of <u>all</u> of them —in modern literature denoted by ω rather than \mathbb{N} — satisfies MC (as we argued intuitively sometime ago), and thus we have all three by the corollary above.

However the self-standing theory of numbers (without the help, or even the <u>concepts</u>) of set theory —known as *Peano arithmetic* in short PA— assumes SI as an axiom.

You can then prove via a modification of our proofs (which are situated within set theory) Corollary 6.3.3.

6.3.1. Induction Practise

To begin with, there are "properties" to prove that are valid for all $n \ge k$ for some constant k > 0.

This is the domain where we have to stay in during the proof.

Thus for those the I.H. MUST "pick a fixed unspecified $n \geq k$ ".

The points $n = 0, 1, \dots, k-1$ are outside the domain so are "illegal".

Thus the Basis of the induction <u>must</u> be for n = k.

As an example, the smallest n where $n + 3 < 2^n$ is true is n = 3 (verify!).

We can prove by induction

$$n+3 < 2^n$$
, for $n \ge 3$

verifying as Basis the case n = 3.

Another example:

"n has a prime factor" is *erratic* for n < 2. For n = 1 it is *false* and for n = 0 it is *true* (every number is a factor of zero).

So one must take as domain of truth of the quoted blue property the set $\{n \in \mathbb{N} : n \geq 2\}$. 2 is the Basis.

6.3.4 Example. This is the "classical first example of induction use" in the discrete math bibliography! Prove that

$$0 + 1 + 2 + \ldots + n = \frac{n(n+1)}{2} \tag{1}$$

So, the property to prove is the <u>statement</u> (1).

One must learn to <u>not have to rename</u> the various "properties" that we encounter as "P[n]".

<u>I will use SI</u>. So let us do the *Basis*. Boundary case is n = 0. We verify: lhs = 0. $rhs = (0 \times 1)/2 = 0$. Good!

Fix n and take the expression (1) as I.H.

Do the I.S. Prove:

$$0+1+2+\ldots+n+(n+1)=\frac{(n+1)(n+2)}{2}$$

Here it goes

$$0+1+2+\ldots+n+(n+1) \stackrel{\text{using I.H.}}{=} \frac{n(n+1)}{2} + (n+1)$$
$$= (n+1)(n/2+1)$$
$$= \frac{(n+1)(n+2)}{2}$$

I will write more concisely in the examples that follow.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3.5 Example. Same as above but doing away with the "0+". Again, I use SI.

$$1 + 2 + \ldots + n = \frac{n(n+1)}{2} \tag{1}$$

- Basis. n = 1: (1) becomes $1 = (1 \times 2)/2$. True.
- Take (1) as I.H. with fixed n.
- I.S.:

$$1 + 2 + \ldots + n + (n+1) \stackrel{\text{using I.H.}}{=} \frac{n(n+1)}{2} + (n+1)$$
$$= (n+1)(n/2+1)$$
$$= \frac{(n+1)(n+2)}{2}$$

March 30, 2022

6.3.6 Example. Prove

$$1 + 2 + 2^2 + \ldots + 2^n = 2^{n+1} - 1 \tag{1}$$

By SI.

- Basis. n = 0. $1 = 2^0 = 2^1 1$. True.
- As I.H. take (1) for fixed n.
- I.S.

$$1 + 2 + 2^{2} + \ldots + 2^{n} + 2^{n+1} \stackrel{\text{using I.H.}}{=} 2^{n+1} - 1 + 2^{n+1}$$
$$= 2 \cdot 2^{n+1} - 1$$
$$= 2^{n+2} - 1$$

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3.7 Example. (Euclid) Every natural number $n \geq 2$ has a prime factor.

p is prime iff

1. p > 1

AND

2. The only divisors of p are 1 and p

I do CVI (as you will see why!)

- Basis: For n=2 we are done since 2 is a prime and $2=2\times 1.$
- I.H. Fix an n and assume the claim for all k, such that $2 \le k < n$.
- I.S.: Prove for n: Two subcases:
 - 1. If n is prime, then OK! n divides n.
 - 2. If not, then $n = a \times b$, where $a \ge 2$ and $b \ge 2$. By I.H. a has a prime factor, thus so does $n = a \cdot b$.

You see? Do you know many natural numbers n such that n-1 divides n?! Only then an I.H. on n-1 would be useful.

Only 2 has as factor 2-1, so $2=2\times 1$ but this is our Basis and has been handled directly (not looking at I.H.)

[†]You will recall that a number $\mathbb{N} \ni n > 1$ is a *prime* iff its **only** factors are 1 and n.

6.3.8 Example. (Euclid) Every natural number $n \ge 0$ is expressible base-10 as an expression

$$n = a_m 10^m + a_{m-1} 10^{m-1} + \dots + a_1 10 + a_0 \tag{1}$$

where each
$$a_i$$
 satisfies $0 \le a_i < 10$ (2)

Proof by CVI again. You will see why.

- Basis. For n = 0 the expression "0" has the form of the rhs of (1) and satisfies inequality (2).
- Fix an n > 0 and assume (I.H.) that if k < n, then k can be expressed as in (1).
- For the I.S. express the n > 0 of the I.H. using Euclid's theorem (4.1.49) as

$$n = 10q + r$$

where $0 \le r < 10$. By the I.H. —since q < n— let

$$q = b_t 10^t + b_{t-1} 10^{t-1} + \dots + b_1 10 + b_0$$

with $0 \le b_j < 10$.

NOTE. If we wanted to use SI instead of CVI (in theory possible by Corollary 6.3.3) this particular analysis does NOT naturally lead to SI since in n = 10q + r —with $0 \le r < 10$ — I cannot expect that q = n - 1 to benefit from a "SI-type I.H."

Then

$$n = 10q + r$$

$$= 10 (b_t 10^t + b_{t-1} 10^{t-1} + \dots + b_1 10 + b_0) + r$$

$$= b_t 10^{t+1} + b_t 10^t + \dots + b_1 10^2 + b_0 10 + r$$

We see n has the right form since $0 \le r < 10$.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3.9 Example. An inequality. Let p_n denote the n-th prime number, for $n \ge 0$. Thus $p_0 = 2$, $p_1 = 3$, $p_2 = 5$, etc.

We prove that

$$p_n \le 2^{2^n} \tag{1}$$

I use CVI on n. This is a bit of a rabbit out of a hat if you never read Euclid's proof that there are infinitely many primes.

- Basis $p_0 = 2 \le 2^{2^0} = 2^1 = 2$.
- Fix n > 0 and take (1) as I.H.
- The I.S.: I will work with the fixed n above and the expression (product of primes, plus 1; this is inspired from Euclid's proof quoted above).

$$p_0p_1p_2\cdots p_n+1$$

I have

$$p_0 p_1 p_2 \cdots p_n + 1 \le 2^{2^0} 2^{2^1} 2^{2^2} \cdots 2^{2^n} + 1 \quad \text{by I.H.}$$

$$= 2^{2^0 + 2^1 + 2^2 + \dots + 2^n} + 1 \quad \text{algebra}$$

$$= 2^{2^{n+1} - 1} + 1 \quad \text{by 6.3.6}$$

$$< 2^{2^{n+1} - 1} + 2^{2^{n+1} - 1} \quad \text{smallest } n \text{ possible is } n = 1$$

$$= 2^1 \cdot 2^{2^{n+1} - 1}$$

$$= 2^{2^{n+1}}$$

Now we have two cases on $q = p_0 p_1 p_2 \cdots p_n + 1$

1. q is a prime. Because of the "+1" q is different from all p_i in the product, so q is p_{n+1} or p_{n+2} or p_{n+3} or ...

Since the sequence of primes is strictly increasing, p_{n+1} is the least that q can be.

Thus

$$p_{n+1} \le p_0 p_1 p_2 \cdots p_n + 1 \le 2^{2^{n+1}}$$

in this case.

2. q is composite. By 6.3.7 some prime r divides q. Now, none of the

$$p_0, p_1, p_2, \cdots, p_n$$

divides q because of the "+1".

Thus r is different from all of them, so it must be one of p_{n+1} or p_{n+2} or p_{n+3} or ...

Thus,

$$p_{n+1} \le r < q = p_0 p_1 p_2 \cdots p_n + 1 \le 2^{2^{n+1}}$$

Done!

6.3.10 Example. Let

$$b_1 = 3, b_2 = 6$$

 $b_k = b_{k-1} + b_{k-2}, \text{ for } k \ge 3$

Prove by induction that b_n is divisible by 3 for $n \ge 1$. (Be careful to distinguish between what is \overline{basis} and what are cases arising from the induction step!)

Proof. So the boundary condition is (from the underlined part above) n = 1. This is the *Basis*.

- 1. Basis: For n = 1, I have $a_1 = 3$ and this is divisible by 3. We are good.
- 2. I.H. Fix n and assume claim for all $1 \le k < n$.
- 3. I.S. **Prove claim** for the above fixed n. There are two cases, as the I.H. is **not useable** for n = 2.

Why? Because it would require entries b_0 and b_1 .

The red entry does not exist since the sequence starts with b_1 . So,

- Case 1. n = 2. DIRECTLY. I am OK as $b_2 = 6$; it *is* divisible by 3.
- Case 2. n > 2. Is b_n divisible by 3? Well, $b_n = b_{n-1} + b_{n-2}$ in this case. By I.H. (valid for all $1 \le k < n$) I have that $b_{n-1} = 3t$ and $b_{n-2} = 3r$, for some integers t, r. Thus, $b_n = 3(t+r)$. Done!

Here are a few additional exercises for you to try —please do try!

6.3.11 Exercise.

- 1. Prove that $2^{2n+1} + 3^{2n+1}$ is divisible by 5 for all $n \ge 0$.
- 2. Using induction prove that $1^3 + 2^3 + \ldots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$, for $n \ge 1$.
- 3. Using induction prove that $\sum_{i=1}^{n+1} i2^i = n2^{n+2} + 2$, for $n \ge 0$.
- 4. Using induction prove that $\sqrt{n} < \frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \ldots + \frac{1}{\sqrt{n}}$, for $n \ge 2$.
- 5. Let

$$b_0 = 1, b_1 = 2, b_3 = 3$$

 $b_k = b_{k-1} + b_{k-2} + b_{k-3}, \text{ for } k \ge 3$

Prove by induction that $b_n \leq 3^n$ for $n \geq 0$. (Once again, be careful to distinguish between what is *basis* and what are *cases* arising from the **induction step!**)

Chapter 7

Inductively defined sets; Structural induction

An example of an inductively defined set is the following.

Suppose you want to define *by finite means*, and define *precisely*, the set of all "simple" arithmetical expressions that use the numbers 1, 2, 3, the operations + and \times , and round brackets.

Then you would define:

The set of said $simple \ arithmetical \ expressions$ is the smallest set (\subseteq -smallest) that

- 1. Contains each of 1, 2 and 3.
- 2. If it contains expressions E and E', then it also contains (E + E') and $(E \times E')$.

Some folks would add a 3rd requirement "nothing else is in the set unless so demonstrated using 1. 2. above" and they omit "smallest".

Really?!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

How $\underline{\text{exactly}}$ would you so "demonstrate"?

In a recursive definition you ought to be able to make your *recursive* calls and <u>not have to trace back</u> why the object you constructed exists!

We will prove in Theorem 7.2.5 that indeed there *is* an iterative way to show that a *particular* simple arithmetic expression was formed correctly by our recursion, but that defeats the beauty of recursion.

Besides, until we reach said theorem we don't <u>even know</u> how to <u>prove</u> that "nothing else <u>is</u> in the set unless "so demonstrated" (!!) using 1. 2. above".

WHAT does such a "demonstration" look like?

So it is nonsense to add such a statement in the bottom of the definition as a (redundant) afterthought.

Before we get to the general definitions, let us finesse our construction and propose some terminology.

- (a) First off, in step 1. above we say that 1, 2 and 3 are *the initial objects* of our recursive/inductive definition.
- (b) In step 2. we say that (E+E') is obtained by an *operation* (on strings) that is available to us, depicted as a "blackbox" below, which we named "+".

$$\begin{array}{c}
E \\
\longrightarrow \\
E'
\end{array}
\longrightarrow (E + E')$$

In words, the operation concatenates from left to right the strings

"(", "
$$E$$
", "+", " E ", and ")"

Similar comments for the operation "×".

(c) Both operations in this example are single-valued, that is, *func-tions*.

It is preferable to be slightly more general and allow operations that are just relations but sets nevertheless, but not necessarily functions.

Such an operation $O(x_1, \ldots, x_n, y)$ is n-ary -n inputs, x_1, \ldots, x_n —with output variable y.

7.0.1 Definition. (Closed Under) We say that a <u>class</u> of objects S is <u>closed under</u> a <u>relation</u> (operation) —which <u>could</u> be a function— $O(x_1, \ldots, x_n, y)$ <u>meaning</u> that for <u>all</u> input values x_1, \ldots, x_n <u>in S</u>, <u>all</u> the obtained values y <u>are also in S</u>.

We are ready for the general definition:

7.0.2 Definition. Given a <u>set</u> of *initial objects* \mathcal{I} and a *set* of *operations* —each one being a <u>set</u> — $\mathcal{O} = \{O_0, O_1, O_2, \ldots\}$.

The object $Cl(\mathcal{I}, \mathcal{O})$ is called a *closure of* \mathcal{I} *under* \mathcal{O} —or the <u>class</u> inductively defined by the pair $(\mathcal{I}, \mathcal{O})$ — and denotes the \subseteq -smallest class f f that satisfies

- 1. $\mathcal{I} \subseteq S$.
- 2. S is closed under all operations in \mathcal{O} , or simply, closed under \mathcal{O} .
- 3. The "smallest" part <u>means</u>: Any <u>class</u> T that satisfies 1. and 2. also satisfies $S \subseteq T$.

The set \mathcal{O} may be infinite but is <u>countable</u>: That is, the numbering $i \mapsto O_i$ is from \mathbb{N} onto \mathcal{O} .

[†]Let's say "class" until we learn that the closure is actually a *set*.

Nice definition, but does $Cl(\mathcal{I}, \mathcal{O})$ exist given \mathcal{I} and \mathcal{O} ? Yes. But first,

7.0.3 Theorem. For any choice of \mathcal{I} and \mathcal{O} , if $Cl(\mathcal{I}, \mathcal{O})$ exists, then it is unique.

Proof. Say the definition of $Cl(\mathcal{I}, \mathcal{O})$ <u>ambiguously</u> —i.e., may have more than one value—leads to (or produces) two <u>classes</u>, S and T.

Then, letting S pose as closure, we get $S \subseteq T$ from 7.0.2.

Then, letting T pose as closure, we get $T\subseteq S$, again from 7.0.2. Thus S=T.

7.0.4 Theorem. For any choice of \mathcal{I} and \mathcal{O} with the restrictions of Definition 7.0.2 the class $Cl(\mathcal{I}, \mathcal{O})$ <u>exists</u> and is a <u>set</u>.

Proof. We have to check and note a few things.

- 1. By 4.1.5, for each O_i , ran (O_i) is a <u>set</u>.
- 2. The class $\mathbb{F} = \{ \operatorname{ran}(O_i) : i = 0, 1, 2 \dots \}$ is a <u>set</u>. This is so by **Principle** 3, since I can index all members of \mathbb{F} by assigning unique indices from \mathbb{N} to each of its members (and \mathbb{N} is a set by **Principle** 0).
- 3. By 2. above and 2.4.17, $\bigcup \mathbb{F}$ is a set, and so is $T = \mathcal{I} \cup \bigcup \mathbb{F}$.
- 4. T contains \mathcal{I} as a subset and is \mathcal{O} -closed since any O_i -output —no matter where the inputs come from— is in $ran(O_i) \subseteq \bigcup \mathbb{F}$.
- 5. The family of sets $\mathbb{G} = \{S : \mathcal{I} \subseteq S \land S \text{ is } \mathcal{O}\text{-closed}\}$ contains the set T as a member. Thus (cf. 2.4.18)

$$C \stackrel{Def}{=} \left(\bigcap \mathbb{G} \right) \subseteq T$$

is a set.

Since all sets S in \mathbb{G} contain \mathcal{I} and are \mathcal{O} -closed, so is C (*Exercise!*).

But $C \subseteq S$ for all such sets S the way it (C) is defined.

So it is \subseteq -smallest.

By Definition 7.0.2(3) we must be sure that C is <u>also</u> the smallest among all <u>CLASSES</u> \mathbb{A} that contain \mathcal{I} and are \mathcal{O} -closed:

So let \mathbb{A} be such a <u>class</u>.

The <u>SET</u> $\mathbb{A} \cap T$ —where T is that in the proof above—contains \mathcal{I} and is \mathcal{O} -closed since each of T and \mathbb{A} do (*Exercise*!) hence is in \mathbb{G} .

Thus, by the last boxed statement above,

$$C\subseteq \mathbb{A}\cap T\subseteq \mathbb{A}$$

Thus C satisfies 1–3 in 7.0.2 and hence $C = \text{Cl}(\mathcal{I}, \mathcal{O})$.

7.1. Induction over a closure

7.1.1 Definition. Let a pair $(\mathcal{I}, \mathcal{O})$ be given as above.

We say that a property

P[x] propagates with \mathcal{O} iff for each $O_i(x_1, \ldots, x_n, y) \in \mathcal{O}$, if whenever all the inputs in the x_i satisfy P[x] (i.e., $P[x_i]$ is true for each argument x_i), then all output values returned by y—for said inputs—satisfy P[y] as well.

We can also say that the property P[x] is preserved by \mathcal{O} .

Recall that for each assignment of values to the inputs x_1, \ldots, x_n we may have more than one output values in y; for all such values P[y] is true.

7.1.2 Lemma. For all $(\mathcal{I}, \mathcal{O})$ and a property P[x], if the latter propagates with \mathcal{O} , then the class $\mathbb{A} = \{x : P[x]\}$ is closed under \mathcal{O} (is \mathcal{O} -closed).

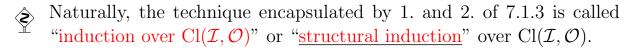
Proof. So let $O_i(x_1, \ldots, x_n, y) \in \mathcal{O}$. Let a_1, \ldots, a_n be all in \mathbb{A} . Thus $P[a_i]$, for all $i = 1, \ldots, n$

By assumption, if $O_i(a_1, \ldots, a_n, b)$, then P[b] is true, hence $b \in \mathbb{A}$. \square

7.1.3 Theorem. Let $Cl(\mathcal{I}, \mathcal{O})$ and a property P[x] be given. Suppose we have done the following steps:

- 1. We showed that for each $a \in \mathcal{I}$, P[a] is true.
- 2. We showed that P[x] propagates with \mathcal{O} .

Then every $a \in Cl(\mathcal{I}, \mathcal{O})$ has property P[x].



Note that for each $O_i \in \mathcal{O}$ the "propagation of property P[x]" will take the form of an I.H. (assume the inputs of O_i have the property) followed by an I.S. (then the outputs of O_i have the property):

Proof. (of 7.1.3) Let us write

$$\mathbb{A} \stackrel{Def}{=} \{x: P[x]\}$$

Thus, 1. in 7.1.3 translates to

$$\mathcal{I}\subseteq\mathbb{A} \tag{*}$$

2. in 7.1.3 yield

$$\mathbb{A}$$
 is \mathcal{O} -closed (**)

Hence, by 7.0.2 (3) and (*) and (**),

$$Cl(\mathcal{I}, \mathcal{O}) \subseteq \mathbb{A}$$

The last inclusion immediately translates to

"
$$\underline{x} \in Cl(\mathcal{I}, \mathcal{O})$$
 implies $P[x]$ is true"

7.1.4 Example. Let $S = \text{Cl}(\mathcal{I}, \mathcal{O})$ where $\mathcal{I} = \{0\}$ and \mathcal{O} contains just one operation, x + 1 = y, where y is the output variable. That is,

$$n \longrightarrow \lceil x + 1 = y \rceil \longrightarrow n + 1 \tag{1}$$

is our only operation. By induction over S, I can show $S \subseteq \mathbb{N}$.

The "P[x]" is " $x \in \mathbb{N}$ ".

So P[0] is true. I verified the property for \mathcal{I} . That the property propagates with our operation is captured by (1) above (if $n \in \mathbb{N}$, then $n+1 \in \mathbb{N}$). Done!

Can we show also $\mathbb{N} \subseteq \mathrm{Cl}(\mathcal{I}, \mathcal{O})$? **Yes**:

In this direction I do SI over \mathbb{N} on variable n.

The property, let's call it Q[x], now is " $x \in Cl(\mathcal{I}, \mathcal{O})$ ".

For n = 0, $n \in Cl(\mathcal{I}, \mathcal{O})$ since $0 \in \mathcal{I} \subseteq Cl(\mathcal{I}, \mathcal{O})$ by 7.0.2.

Now, say (I.H.) $n \in \text{Cl}(\mathcal{I}, \mathcal{O})$. Since $\text{Cl}(\mathcal{I}, \mathcal{O})$ is closed under the operation x + 1 = y, we have $n + 1 \in \text{Cl}(\mathcal{I}, \mathcal{O})$ by 7.0.2.

So,

$$Cl(\mathcal{I}, \mathcal{O}) = \mathbb{N}$$

Thus the induction over a closure generalises SI.

7.2. Closure vs. definition by stages

We will see in this section that there is also a *by-stages* or *by-steps* way to obtain $Cl(\mathcal{I}, \mathcal{O})$.

7.2.1 Definition. (Derivations) An $(\mathcal{I}, \mathcal{O})$ -derivation —or just derivation if we know which $(\mathcal{I}, \mathcal{O})$ we are talking about— is a finite sequence of objects

$$d_1, d_2, d_3, \dots, d_i, \dots, d_n \tag{1}$$

satisfying:

Each d_i is

- 1. A member of \mathcal{I} ,
 - or
- 2. For some j, one of the results of $O_j(x_1, \ldots, x_k, y)$ with inputs a_1, \ldots, a_k that are found in the derivation (1) to the left of d_i .

n is called the *length of the derivation*. Every d_i is called an $(\mathcal{I}, \mathcal{O})$ -derived object, or just derived, if the $(\mathcal{I}, \mathcal{O})$ is understood.

Clearly, the concept of a derivation abstracts, thus generalises, the concept of *proof*, while a derived object abstracts the concept of a *theorem*. Initial objects abstract the concept of *axiom*.

7.2.2 Example. For the $(\mathcal{I}, \mathcal{O})$ of 7.1.4, here are some derivations:

0

Nothing says we cannot repeat a d_i in a derivation! Lastly here is an "efficient" derivation with no redundant steps: 0, 1, 2, 3, 4, 5.

7.2.3 Proposition. If $d_1, d_2, d_3, \ldots, d_i, \ldots, d_n, \frac{d_{n+1}, \ldots, d_m}{d_{n+1}, \ldots, d_m}$ is a $(\mathcal{I}, \mathcal{O})$ -derivation, then so is $d_1, d_2, d_3, \ldots, d_i, \ldots, d_n$.

Proof. Each d_i is validated in a derivation either outright (i.e., is in \mathcal{I}) or by looking to the left!

What we may remove a "(red)tail" that is to the right of d_i , this does not affect the validity of that entry.

7.2.4 Proposition. If d_1, d_2, \ldots, d_n and e_1, e_2, \ldots, e_m are $(\mathcal{I}, \mathcal{O})$ -derivations, then so is $d_1, d_2, \ldots, d_n, e_1, e_2, \ldots, e_m$.

Proof. Traversing d_1, d_2, \ldots, d_n and e_1, e_2, \ldots, e_m in

$$d_1, d_2, \ldots, d_n, e_1, e_2, \ldots, e_m$$

from left to right we validate each d_i and each e_j giving precisely the same validation *reason* as we would in each sequence d_1, d_2, \ldots, d_n and e_1, e_2, \ldots, e_m as *standalone*.

These reasons are local to each sequence. \Box

April 4, 2022

An object x is called $(\mathcal{I}, \mathcal{O})$ -derived iff it appears in some $(\mathcal{I}, \mathcal{O})$ -derivation.

By the "tail Lemma" (7.2.3) we can always assume that a derived object appears at the end of an $(\mathcal{I}, \mathcal{O})$ -derivation as we can remove the tail that follows it.

We next prove that defining a set S as a $(\mathcal{I}, \mathcal{O})$ -closure is equivalent to defining S as the set of all $(\mathcal{I}, \mathcal{O})$ -derived objects.

7.2.5 Theorem. For any initial sets of objects and operations on objects (\mathcal{I} and \mathcal{O}) we have that $Cl(\mathcal{I}, \mathcal{O}) = \{x : x \text{ is } (\mathcal{I}, \mathcal{O})\text{-derived}\}.$

Proof. Let us write $D = \{x : x \text{ is } (\mathcal{I}, \mathcal{O})\text{-derived}\}$ and prove that $Cl(\mathcal{I}, \mathcal{O}) = D$. We have two directions:

- 1. $Cl(\mathcal{I}, \mathcal{O}) \subseteq D$: By induction over $Cl(\mathcal{I}, \mathcal{O})$. The property to prove is " $x \in D$ ".
 - Let $x \in \mathcal{I}$. Then x is derived via the one-member derivation

x

So $x \in D$. Thus all $x \in \mathcal{I}$ have the property.

• The property " $x \in D$ " propagates with each $O_k(\vec{x}_n, y) \in \mathcal{O}$: So let each of the x_i have a derivation \ldots, x_i . We show that so does y.

Concatenating all these derivations we get a derivation (7.2.4)

$$[\ldots, x_1], \ldots, [\ldots, x_i], \ldots, [\ldots, x_n] \tag{1}$$

But then so is

$$[\ldots, x_1], \ldots, [\ldots, x_i], \ldots, [\ldots, x_n], y \tag{2}$$

by 7.2.1, case 2. That is, y is derived, hence $y \in D$ is proved (I.S.).

2. $D \subseteq \operatorname{Cl}(\mathcal{I}, \mathcal{O})$: Let $x \in D$. This time we do good old-fashioned CVI over \mathbb{N} on the length n of a derivation of x, toward showing that $x \in \operatorname{Cl}(\mathcal{I}, \mathcal{O})$ —this is the "property of x" that we prove.

Basis. n = 1. The only way to have a 1-element derivation is that $x \in \mathcal{I}$.

Thus, $x \in \mathcal{I} \subseteq \text{Cl}(\mathcal{I}, \mathcal{O})$ by 7.0.2.

I.H. Fix n and Assume the claim for x derived with length k < n—i.e., such an x is in $Cl(\mathcal{I}, \mathcal{O})$.

I.S. Prove that the claim holds when x has a derivation of length n.

Consider such a derivation

$$a_{r}$$

$$\parallel$$
 $a_{1}, \ldots a_{i}, \ldots, a_{k}, \ldots, x$

If $x \in \mathcal{I}$, then we are done by the *Basis*.

Otherwise, say x is the result of an operation (relation) $O_r \in \mathcal{O}$, applied on entries to the left of x, that is, say that $O_r(\ldots, x)$ is true—where we did not (have to) show the inputs.

By the I.H. the inputs of O_r^* all are in $Cl(\mathcal{I}, \mathcal{O})$. Now, since this closure is closed under $O_r(\ldots, x)$, we have that the output x is in $Cl(\mathcal{I}, \mathcal{O})$ too.

^{*}They all have derivations of lengths < n since they are to the left of x.

So now we have two equivalent (7.2.5) approaches to defining inductively defined sets S:

As
$$S = \text{Cl}(\mathcal{I}, \mathcal{O})$$
 or as $S = \{x : x \text{ is } (\mathcal{I}, \mathcal{O})\text{-derived}\}.$

The first approach is best when you want to prove properties of all members of the set S. The second is best when you want to show $x \in S$, for some specific x.

7.2.6 Example. Let $A = \{a, b\}$.

Let $\mathcal{I} = {\lambda}$, let \mathcal{O} consist of one operation R:

$$X \longrightarrow \boxed{R} \longrightarrow aXb$$
 (3)

We claim that $Cl(\mathcal{I}, \mathcal{O}) = \{a^n b^n : n \geq 0\}$, where for any string X,

$$X^n \stackrel{Def}{=} \underbrace{XX \dots X}_{n \text{ copies of } X}$$

If n = 0, "0 copies of X" means λ .

Let us write $S = \{a^n b^n : n \ge 0\}.$

- 1. For $Cl(\mathcal{I}, \mathcal{O}) \subseteq S$ we do induction over the closure to prove that any $x \in Cl(\mathcal{I}, \mathcal{O})$ satisfies $x \in S$ ("the property").
 - Well, if $x \in \mathcal{I}$ then $x = \lambda = a^0 b^0$. Done.
 - The property propagates with R.

For example, say $X = a^n b^n \in S$. Using (3) we see that the output, aXb, is $a^{n+1}b^{n+1} \in S$. The property does propagate! Done.

2. For $Cl(\mathcal{I}, \mathcal{O}) \supseteq S$ we <u>could</u> do induction over \mathbb{N} on n in $x = a^n b^n$ (arbitrary member of S) to prove that any $x \in S$ satisfies $x \in Cl(\mathcal{I}, \mathcal{O})$ ("the property").

But this would be proving <u>again</u> (!!) 7.2.5 rather than <u>USING</u> it!

So will use 7.2.5:

Here is a derivation of $x = a^n b^n$ for each $n \ge 0$, thus it is in $Cl(\mathcal{I}, \mathcal{O})$ for any $n \ge 0$.

application of rule to
$$a^ib^i$$

$$\lambda = a^0b^0, a^1b^1, a^2b^2, a^3b^3, \dots, \qquad \overbrace{a^{i+1}b^{i+1}}^{\text{application of rule to } a^ib^i}, \dots, a^nb^n$$

7.2.7 Example. "Can we show also $\mathbb{N} \subseteq \text{Cl}(\mathcal{I}, \mathcal{O})$? Yes" asks (and answers) Example 7.1.4.

Unlike there let us show this here <u>by a derivation</u>, avoiding the SI induction we did there:

To show
$$n \in \text{Cl}(\{0\}, \{x \mapsto x + 1\}).$$

Well, here is a derivation of n:

$$0, 1, 2, \dots, \underbrace{via \ Op \ i \mapsto i+1}_{i+1}, \dots n$$

7.2.8 Example. Regarding the example of simple arithmetic expressions (p.315) we prove that each such expression has equal numbers of left and right brackets.

Here $\mathcal{I} = \{1, 2, 3\}$ and the two operations (single-valued) are

$$\begin{array}{ccc}
E \\
\longrightarrow \\
E'
\end{array} \longrightarrow (E + E') \tag{1}$$

and

$$\begin{array}{ccc}
E \\
\longrightarrow & \times & \longrightarrow & (E \times E') \\
E'
\end{array}$$
(2)

Well, each of the members of \mathcal{I} has the claimed property.

The property is preserved by each of (1) and (2). For example,

If E and E' have the property so does "
$$(E + E')$$
"

since we added just <u>one</u> left bracket and <u>one</u> right bracket to the already existing brackets of E and E'.

Similarly for
$$\times$$
.

Bibliography

- [Dav65] M. Davis, The undecidable, Raven Press, Hewlett, NY, 1965.
- [DS90] Edsger W. Dijkstra and Carel S. Scholten, *Predicate Calculus and Program Semantics*, Springer-Verlag, New York, 1990.
- [GS94] David Gries and Fred B. Schneider, A Logical Approach to Discrete Math, Springer-Verlag, New York, 1994.
- [Kle43] S.C. Kleene, Recursive predicates and quantifiers, Transactions of the Amer. Math. Soc. **53** (1943), 41–73, [Also in [Dav65], 255–287].
- [Kur63] A.G. Kurosh, Lectures on General Algebra, Chelsea Publishing Company, New York, 1963.
- [Men87] Elliott Mendelson, Introduction to Mathematical Logic, 3rd ed., Wadsworth & Brooks, Monterey, CA, 1987.
- [Sho67] Joseph R. Shoenfield, *Mathematical Logic*, Addison-Wesley, Reading, MA, 1967.
- [Tou03a] G. Tourlakis, Lectures in Logic and Set Theory, Volume 1: Mathematical Logic, Cambridge University Press, Cambridge, 2003.
- [Tou03b] ______, Lectures in Logic and Set Theory, Volume 2: Set Theory, Cambridge University Press, Cambridge, 2003.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

[Tou08] _____, Mathematical Logic, John Wiley & Sons, Hoboken, NJ, 2008.