York University Department of Electrical Engineering and Computer Science Lassonde School of Engineering

EECS1028Z FINAL TAKE-HOME EXAM, April 22, 2024; 2:00-4:00PM -SOLUTIONS

Professor George Tourlakis

Question 1. (a) (1 MARK) Define precisely the term "Set A is Finite".
Answer: $A=\emptyset$ OR $A \sim\{0,1, \ldots, n\}$, that is, $A \sim\{x \in \mathbb{N}: x \leq n\}$.
(b) (4 MARKS) Let $n \in \mathbb{N}$ and $n>0$. Let $X \subseteq\{x \in \mathbb{N}: x \leq n\}$.

Prove that X is finite.

Proof. I argue by contradiction.

Assume that X is infinite instead.
But

$$
\begin{equation*}
X \subseteq\{x \in \mathbb{N}: x \leq n\} \subseteq \mathbb{N} \tag{1}
\end{equation*}
$$

Then,
i. By a theorem from NOTES/Class, X being an infinite subset of \mathbb{N} is enumerable, meaning:

$$
\begin{equation*}
X \sim \mathbb{N} \tag{2}
\end{equation*}
$$

ii. Let $f: X \rightarrow \mathbb{N}$ be the 1-1 correspondence we have in mind in (2). Thus f is onto \mathbb{N}. Define $g:\{0,1,2, \ldots, n\} \rightarrow \mathbb{N}$ by

$$
g(x)= \begin{cases}f(x) & \text { if } x \in X \tag{3}\\ \uparrow & \text { if } x \in\{0,1, \ldots, n\}-X\end{cases}
$$

g is onto \mathbb{N} since its sub-function f (see definition in (3), that makes clear that $f \subseteq g$) already "covers" \mathbb{N} with its outputs. So does g then!

But this contradicts another theorem from class (5.2.8) and we see that the "red" assumption above must be reversed!

Question 2. (4 MARKS) Prove that an enumerable set is infinite.
Proof. Let A be enumerable. This means $A \sim \mathbb{N}$.
By contradiction, let A be also finite, hence $A \sim\{0,1, \ldots, n\}$ for some n. Thus (using symmetry of \sim (class; assignments)

$$
\{0,1, \ldots, n\} \sim A \sim \mathbb{N}
$$

and by transitivity of \sim (class; assignments/notes) $\{0,1, \ldots, n\} \sim \mathbb{N}$ which is a contradiction since no ONTO function from the left set onto the right set is possible (Class NOTES; Corollary 5.2.8).

Question 3. (3 MARKS) Prove that the set $\{1\}$ is countable.
Proof. Indeed, the function $f: \mathbb{N} \rightarrow\{1\}$ that for each $x \in \mathbb{N}$ returns " 1 " is onto the set $\{1\}$. By definition of countability $\{1\}$ is countable with enumerating function f.

Question 4. (a) (1 MARK) Prove that the class $\left\{7^{m}: m \geq 0\right\}$ is a set.
Proof. The set \mathbb{N} is a labelling set for the class $\left\{7^{m}: m \geq 0\right\}$.
Each member 7^{m} is labelled by m. By Principle $3,\left\{7^{m}: m \geq 0\right\}$ is a set.
(b) (4 MARKS) Prove that the set $\left\{7^{m}: m \geq 0\right\}$ is enumerable.

Proof. Indeed we show that the function $f: \mathbb{N} \rightarrow\left\{7^{m}: m \geq 0\right\}$ given, for each $x \in \mathbb{N}$, by $f(x)=7^{x}$ is $1-1$, total and onto $\left\{7^{m}: m \geq 0\right\}$.

- totalness: For each $x \in \mathbb{N}$-the left field— we do have an output: 7^{x}.
- 1-1ness. What do we conclude from $f(x)=f(y)$?

First we translate: It says $7^{x}=7^{y}$. But 7 is a prime and by the "unique primefactorisation theorem" of Euclid, the number (same on both sides of "=") has only one factorisation, so $x=y$. This proves 1-1ness.

- ontoness. Prove that any number 7^{m} in the right field of f-namely $\left\{7^{x}: x \in \mathbb{N}\right\}-$ is the output of a "call" $f(x)$. Sure! $x=m$.
We proved that

$$
\left\{7^{x}: x \in \mathbb{N}\right\} \stackrel{f}{\sim} \mathbb{N}
$$

which by definition says that $\left\{7^{x}: x \in \mathbb{N}\right\}$ is enumerable.

Question 5．（4 MARKS）Prove $\vdash(\exists x)(A \rightarrow B) \rightarrow(\forall x) A \rightarrow(\exists x) B$.

Proof．By DThm，prove instead

$$
(\exists x)(A \rightarrow B),(\forall x) A \vdash(\exists x) B
$$

Here it is：
1）$(\exists x)(A[x] \rightarrow B[x]) \quad\langle$ hyp \rangle
2）$(\forall x) A[x] \quad$ hhyp via DThm〉
3）$A[c] \rightarrow B[c] \quad$ 〈aux．hyp for line 1；c fresh；and not in conclusion〉
4）$A[c] \quad\langle 2+\mathrm{Spec}\rangle$
5）$B[c]$
$\langle 3+4+$ MP \rangle
6）$(\exists x) B[x]$
$\langle 5+$ Dual Spec \rangle

Question 6. (a) (2 MARKS) Let A be a formula of Predicate Logic. What does the notation " $A(x)$ " mean exactly? $\widehat{\text { ONE sentence please! }}$

Answer. " $A(x)$ " means that " x is the ONLY free variable in A ".
(b) (4 MARKS) Consider $(\exists x) A(x) \rightarrow A(x)$.

Show that it cannot possibly be valid, and do so by finding a simple formula A over \mathbb{N} that provides a counterexample to validity.

Proof. By counterexample:
If the given is valid so is the special case over the natural numbers \mathbb{N} below

$$
\begin{equation*}
(\exists x) x=0 \rightarrow x=0 \tag{1}
\end{equation*}
$$

BUT: (1) is NOT true as required for all values of the free occurrence of (3rd) x. Indeed, consider the x-value 42 :

$$
\begin{equation*}
\overbrace{(\exists x) x=0}^{\mathrm{t}} \rightarrow \overbrace{42=0}^{\mathbf{f}} \tag{2}
\end{equation*}
$$

Question 7. (4 MARKS) Use induction to prove that

$$
\begin{equation*}
1^{2}+2^{2}+3^{2}+\cdots+n^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{1}
\end{equation*}
$$

Proof.

Basis. $n=1$. We have $l h s=1$ and $r h s=\frac{1 \times(1+1) \times(2 \times 1+1)}{6}=1$. Equal.
I.H. Fix n and assume (1).
I.S. Prove the case where the n fixed above is replaced by $n+1$.

Here it goes ("equationally" as in high school).

$$
\begin{align*}
\overbrace{1^{2}+2^{2}+3^{2}+\cdots+n^{2}}^{I . H . \text { applies }}+(n+1)^{2} & \stackrel{I . H .}{=} \frac{n(n+1)(2 n+1)}{6}+(n+1)^{2} \\
& =(n+1) \frac{2 n^{2}+n+6(n+1)}{6} \\
& =(n+1) \frac{2 n^{2}+7 n+6}{6}
\end{align*}
$$

Pause. Factoring the last numerator. By high school techniques first solve

$$
2 n^{2}+7 n+6=0
$$

for n :

$$
n=\left\{\begin{array}{l}
\frac{-7+\sqrt{49-48}}{4} \\
\frac{-7-\sqrt{49-48}}{4}
\end{array}=\left\{\begin{array}{l}
-6 / 4 \\
-2
\end{array}\right.\right.
$$

Thus

$$
\frac{2 n^{2}+7 n+6}{6}=2(n+2)(n+6 / 4)=(n+2)(2 n+3)
$$

Subtituting the factorisation above for the last result (\ddagger) above we obtain

$$
1^{2}+2^{2}+3^{2}+\cdots+n^{2}+(n+1)^{2}=(n+1) \frac{(n+2)(2 n+3)}{6}
$$

Noting that $n+2=(n+1)+1$ and $2 n+3=2(n+1)+1$ we have proved the I.S.!

Question 8. Consider the inductive definition of the set B as $\mathrm{Cl}(\mathcal{I}, \mathcal{O})$ - that is, we set $B=\mathrm{Cl}(\mathcal{I}, \mathcal{O})$ where
(a) $\mathcal{I}=\{\lambda\}$
(b) \mathcal{O} contains two operations,
i. $(X, Y) \longrightarrow$ concat $\longrightarrow X Y$ Comment: Concatenation of X and Y in that order. and
ii. $X \longrightarrow$ paren $\longrightarrow(X)$ Comment: Concatenation of "(", " X " and")" in that order.

Prove:

- (3 MARKS) The strings

$$
(),(()), \text { and }()(()) \text { are in } B
$$

Proof.

- For (). B contains λ (is in \mathcal{I}) and is closed under operation "paren". Thus the result of this operation on λ produces () in B.
- For $(())$. By the result in the above bullet, since ()$\in B$, so is $(())$ as the result of paren is $(())$.
- For ()$(())$. By the results in the above two bullets, since ()$\in B$, AND so is $(()) \in B$, then - since the result of concat, on inputs () and $(())$, is ()$(())$ - we are done by closure of B under concat.
- (4 MARKS) If $X \in B$, then X has as many left brackets as it has right brackets.

Proof. We do induction on the closure B to prove the "property": that any $X \in B$ "has as many left brackets as it has right brackets".
Basis. We verify the property for all the initial objects. There is only one such object (member of \mathcal{I}), namely, λ.

This indeed has 0 left and 0 right brackets. Equal number!

Propagation of the property - "lefts are exactly as many as rights"- by all operations. There are TWO operations only.

Op. 1 Let inputs X and Y of concat have the property. Now, the output is $X Y$ and clearly has as many lefts (X-lefts $+Y$-lefts) as it has rights (X-rights $+Y$-rights). Property propagates with concat.
Op. 2 Let input X of paren have the property of "lefts are in equal numbers as that of rights". But the output " (X) " of paren has the property too as we add ONE left and ONE right to those of X. Property propagates with paren.

Done.

