York University Department of Electrical Engineering and Computer Science Lassonde School of Engineering

EECS1028Z <u>FINAL TAKE-HOME EXAM</u>, April 22, 2024; 2:00–4:00PM —SOLUTIONS Professor George Tourlakis

- Question 1. (a) (1 MARK) Define precisely the term "Set A is Finite". Answer: $A = \emptyset$ OR $A \sim \{0, 1, ..., n\}$, that is, $A \sim \{x \in \mathbb{N} : x \leq n\}$.
 - (b) (4 MARKS) Let $n \in \mathbb{N}$ and n > 0. Let $X \subseteq \{x \in \mathbb{N} : x \leq n\}$. Prove that X is finite.

Proof. I argue by contradiction.

Assume that X is *infinite* instead.

But

$$X \subseteq \{x \in \mathbb{N} : x \le n\} \subseteq \mathbb{N} \tag{1}$$

Then,

i. By a theorem from NOTES/Class, X being an infinite subset of \mathbb{N} is *enumerable*, meaning:

$$X \sim \mathbb{N}$$
 (2)

ii. Let $f: X \to \mathbb{N}$ be the 1-1 correspondence we have in mind in (2). Thus f is onto \mathbb{N} . Define $g: \{0, 1, 2, \ldots, n\} \to \mathbb{N}$ by

$$g(x) = \begin{cases} f(x) & \text{if } x \in X \\ \uparrow & \text{if } x \in \{0, 1, \dots, n\} - X \end{cases}$$
(3)

g is onto \mathbb{N} since its sub-function f (see definition in (3), that makes clear that $f \subseteq g$) already "covers" \mathbb{N} with its outputs. So does g then!

But this contradicts another theorem from class (5.2.8) and we see that the "red" assumption above <u>must</u> be reversed!

Question 2. (4 MARKS) Prove that an enumerable set is infinite.

Proof. Let A be enumerable. This means $A \sim \mathbb{N}$.

By contradiction, let A be also finite, hence $A \sim \{0, 1, ..., n\}$ for some n. Thus (using symmetry of \sim (class; assignments)

$$\{0, 1, \ldots, n\} \sim A \sim \mathbb{N}$$

and by transitivity of ~ (class; assignments/notes) $\{0, 1, ..., n\} \sim \mathbb{N}$ which is a <u>contradiction</u> since **no ONTO function** from the left set onto the right set is possible (Class NOTES; Corollary 5.2.8).

Question 3. (3 MARKS) Prove that the set $\{1\}$ is countable.

Proof. Indeed, the function $f : \mathbb{N} \to \{1\}$ that for each $x \in \mathbb{N}$ returns "1" is onto the set $\{1\}$. By definition of countability $\{1\}$ is countable with *enumerating function* f.

Question 4. (a) (1 MARK) Prove that the class $\{7^m : m \ge 0\}$ is a set. **Proof.** The set \mathbb{N} is a labelling set for the class $\{7^m : m \ge 0\}$. Each member 7^m is labelled by m. By Principle 3, $\{7^m : m \ge 0\}$ is a set. \Box

- (b) (4 MARKS) Prove that the set $\{7^m : m \ge 0\}$ is **enumerable**. **Proof.** Indeed we show that the function $f : \mathbb{N} \to \{7^m : m \ge 0\}$ given, for each $x \in \mathbb{N}$, by $f(x) = 7^x$ is 1-1, total and onto $\{7^m : m \ge 0\}$.
 - totalness: For each $x \in \mathbb{N}$ —the left field— we do have an output: 7^x .
 - 1-1ness. What do we conclude from f(x) = f(y)? First we translate: It says $7^x = 7^y$. But 7 is a prime and by the "unique prime-factorisation theorem" of Euclid, the number (same on both sides of "=") has only one factorisation, so x = y. This proves 1-1ness.
 - ontoness. Prove that any number 7^m in the right field of f—namely $\{7^x : x \in \mathbb{N}\}$ —is the output of a "call" f(x). Sure! x = m.

We proved that

$$\{7^x : x \in \mathbb{N}\} \stackrel{f}{\sim} \mathbb{N}$$

which by definition says that $\{7^x : x \in \mathbb{N}\}$ is <u>enumerable</u>.

Question 5. (4 MARKS) Prove $\vdash (\exists x)(A \rightarrow B) \rightarrow (\forall x)A \rightarrow (\exists x)B$.

Proof. By DThm, prove instead

 $(\exists x)(A \to B), (\forall x)A \vdash (\exists x)B$

Here it is:

Question 6. (a) (2 MARKS) Let A be a formula of Predicate Logic. What does the notation "A(x)" mean exactly? ONE sentence please!

Answer. "A(x)" means that "x is the ONLY free variable in A".

(b) (4 MARKS) Consider (∃x)A(x) → A(x).
Show that it cannot possibly be valid, and <u>do so</u> by finding a simple formula A over N that provides a counterexample to validity.

Proof. By counterexample:

If the given is valid so is the special case over the natural numbers $\mathbb N$ below

$$(\exists x)x = 0 \to x = 0 \tag{1}$$

BUT: (1) is NOT true as required for all values of the free occurrence of (3rd) x. Indeed, consider the x-value 42:

$$\overbrace{(\exists x)x=0}^{\mathbf{r}} \to \overbrace{42=0}^{\mathbf{r}}$$
(2)

Question 7. (4 MARKS) Use induction to prove that

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$
(1)

Proof.

Basis.
$$n = 1$$
. We have $lhs = 1$ and $rhs = \frac{1 \times (1+1) \times (2 \times 1+1)}{6} = 1$. Equal.

I.H. Fix n and assume (1).

I.S. Prove the case where the n fixed above is replaced by n + 1. Here it goes ("equationally" as in high school).

$$\overbrace{1^2 + 2^2 + 3^2 + \dots + n^2}^{I.H. applies} + (n+1)^2 \stackrel{I.H.}{=} \frac{n(n+1)(2n+1)}{6} + (n+1)^2$$
$$= (n+1)\frac{2n^2 + n + 6(n+1)}{6}$$
$$= (n+1)\frac{2n^2 + 7n + 6}{6} \qquad (\ddagger)$$

Pause. Factoring the last numerator. By high school techniques first solve

$$2n^2 + 7n + 6 = 0$$

for n:

$$n = \begin{cases} \frac{-7 + \sqrt{49 - 48}}{4} \\ \frac{-7 - \sqrt{49 - 48}}{4} \end{cases} = \begin{cases} -6/4 \\ -2 \end{cases}$$

Thus

$$\frac{2n^2 + 7n + 6}{6} = 2(n+2)(n+6/4) = (n+2)(2n+3)$$

Subtituting the factorisation above for the last result (‡) above we obtain

$$1^{2} + 2^{2} + 3^{2} + \dots + n^{2} + (n+1)^{2} = (n+1)\frac{(n+2)(2n+3)}{6}$$

Noting that n+2 = (n+1)+1 and 2n+3 = 2(n+1)+1 we have proved the I.S.!

- Question 8. Consider the inductive definition of the set B as $\operatorname{Cl}(\mathcal{I}, \mathcal{O})$ —that is, we set $B = \operatorname{Cl}(\mathcal{I}, \mathcal{O})$ —where
 - (a) $\mathcal{I} = \{\lambda\}$
 - (b) \mathcal{O} contains two operations,
 - i. $(X, Y) \longrightarrow concat \longrightarrow XY$ Comment: Concatenation of X and Y in that order. and
 - ii. $X \longrightarrow paren \longrightarrow (X)$ Comment: Concatenation of "(", "X" and ")" in that order.

Prove:

• (3 MARKS) The strings

(), (()), and ()(()) are in B

Proof.

- For (). B contains λ (is in \mathcal{I}) and is closed under operation "paren". Thus the result of this operation on λ produces () in B.
- For (()). By the result in the above bullet, since () $\in B$, so is (()) as the result of paren is (()).
- For ()(()). By the results in the above two bullets, since () ∈ B, <u>AND</u> so is (()) ∈ B, then —since the result of *concat*, on inputs () and (()), is ()(())— we are done by closure of B under *concat*.
- (4 MARKS) If $X \in B$, then X has as many left brackets as it has right brackets.

Proof. We do induction on the closure B to prove the "property": that any $X \in B$ "has as many left brackets as it has right brackets".

Basis. We verify the property for all the initial objects. There is only one such object (member of \mathcal{I}), namely, λ .

This indeed has 0 left and 0 right brackets. Equal number!

Propagation of the property — "lefts are exactly as many as rights"— by all operations. There are TWO operations only.

- Op. 1 Let inputs X and Y of concat have the property. Now, the output is XY and clearly has as many lefts (X-lefts + Y-lefts) as it has rights (X-rights + Y-rights). Property propagates with concat.
- Op. 2 Let input X of *paren* have the property of "lefts are in equal numbers as that of rights". But the output "(X)" of *paren* has the property too as we add ONE left and ONE right to those of X. Property propagates with *paren*.

Done.