Lassonde School of Engineering

Dept. of EECS
Professor G. Tourlakis
EECS 1028 Z. Practice Problem Set -Prep. for Exam; NOT for
Submission or Credit
Posted: March 26, 2024

1. Prove that $\mathbb{U} \times \mathbb{U}$ is a proper class.

Proof. This class is a class of pairs: A Relation.
Suppose this Relation is a $S E T$.
Then via a theorem from Notes/Class, $\operatorname{dom}(\mathbb{U} \times \mathbb{U})=\mathbb{U}$ is a SET. But we know that \mathbb{U} is a proper class, which goes against assumption that starts with "Suppose". Done.
2. Prove that if B is finite and $A \subseteq B$, then A is also finite.

Proof.
(a) Case where $B=\emptyset$. Then $A=\emptyset$ since this is the only subset of \emptyset. By definition then, A is finite.
(b) Case where $B \stackrel{f}{\sim}\{0,1,2, \ldots, n\}$, that is

$$
f: B \rightarrow\{0, \ldots, n\} \text { is a 1-1 correspondence }
$$

Define the restriction of f on A-we will call it $f^{\prime}-$ for all $x \in A$, by

$$
\begin{equation*}
f^{\prime}(x)=f(x) \tag{1}
\end{equation*}
$$

(2) f^{\prime} is NOT defined on the rest of B, namely on $B-A$.

Since f is total on B and thus defined everywhere in A, f^{\prime} is total on $A . f^{\prime}$ is also $1-1$ since $x f^{\prime} y \wedge z f^{\prime} y$ implies $x f y \wedge z f y$ by (1). Now f being 1-1 implies $x=z$ and thus f^{\prime} is 1-1.
We have many times said (and shown why) that every function is onto its range. Thus $f^{\prime}: A \rightarrow \operatorname{ran}\left(f^{\prime}\right)$ is a 1-1 correspondence

$$
\begin{equation*}
A \sim \operatorname{ran}\left(f^{\prime}\right) \tag{2}
\end{equation*}
$$

Next we note that $\operatorname{ran}\left(f^{\prime}\right)$ is finite: Indeed, arguing by contradiction, if $\operatorname{ran}\left(f^{\prime}\right)$ is infinite, then -from $\operatorname{ran}\left(f^{\prime}\right) \subseteq\{0,1, \ldots, n\} \subseteq \mathbb{N}$, and a theorem from Notes/class,

$$
\begin{equation*}
\operatorname{ran}\left(f^{\prime}\right) \sim \mathbb{N} \tag{3}
\end{equation*}
$$

Let $g: \operatorname{ran}\left(f^{\prime}\right) \rightarrow \mathbb{N}$ effect this 1-1 correspondence. The function $h: B \rightarrow \mathbb{N}$ given by

$$
h(x)= \begin{cases}g(x) & \text { if } x \in \operatorname{ran}\left(f^{\prime}\right) \\ \uparrow & \text { if } x \in B-\operatorname{ran}\left(f^{\prime}\right)\end{cases}
$$

is onto \mathbb{N} contradicting a theorem from class/Notes.
We conclude that $\operatorname{ran}\left(f^{\prime}\right) \sim\{0,1, \ldots, r\}$ for some r-i.e., is finite - and combining with (2) we have $A \sim \operatorname{ran}\left(f^{\prime}\right) \sim\{0,1, \ldots, r\}$. Hence $A \sim\{0,1, \ldots, r\}$ by \sim-transitivity. A is finite! Done.
3. Prove that an enumerable set is infinite.

Proof. Let $A \sim \mathbb{N}$ which is saying " A is enumerable" mathematically.
If A is also finite then $\{0,1, \ldots, m\} \sim A$ for some $m \in \mathbb{N}$. Thus

$$
\{0,1, \ldots, m\} \sim A \sim \mathbb{N}
$$

Hence (transitivity of \sim) we have

$$
\{0,1, \ldots, m\} \sim \mathbb{N}
$$

which implies an onto function (the 1-1 correspondence " \sim ")

$$
\{0,1, \ldots, m\} \rightarrow \mathbb{N}
$$

But our Notes say that this is impossible!
4. Let A be enumerable. Show how - given an enumeration of A without repetitions- you can construct a NEW enumeration where EACH $x \in A$ is enumerated infinitely many times.
Proof. Let

$$
\begin{equation*}
a_{0}, a_{1}, a_{2}, \ldots, a_{i}, \ldots \tag{1}
\end{equation*}
$$

be an enumeration without repetitions.

Form the infinite "square" matrix whose every row is the same as the sequence (1). Then traverse it with SE arrows as in the display below.

The above matrix includes each a_{i} infinitely many times (for each n, column n has all its entries equal to a_{n}). All these will be enumerated in the SE enumeration depicted above. Done.
5. Prove that $\vdash(\forall x) A \rightarrow(\exists x) A$.

Proof. By DThm, prove instead

$$
\vdash(\forall x) A \vdash(\exists x) A
$$

1) $\quad(\forall x) A \quad\langle\mathrm{hyp}$ from DTh\rangle
2) $A \quad\langle 1+$ Spec \rangle
3) $(\exists x) A \quad\langle 2+$ Dual Spec \rangle
6. Prove that $\vdash(\forall x)(A \rightarrow B) \rightarrow(\exists x) A \rightarrow(\exists x) B$.

Proof. By DThm, prove instead

$$
(\forall x)(A \rightarrow B) \vdash(\exists x) A \rightarrow(\exists x) B
$$

and once more by DThm do instead:

$$
(\forall x)(A \rightarrow B),(\exists x) A \vdash(\exists x) B
$$

Here it goes:

1) $\quad(\forall x)(A \rightarrow B) \quad\langle$ hyp from DThm \rangle
2) $\quad(\exists x) A \quad$ hyp from DThm \rangle
3) $A[c] \quad\langle$ Aux. Hyp for 2; c is not in concl. nor in $1+2\rangle$
4) $\quad A[c] \rightarrow B[c] \quad\langle 1+\mathrm{Spec}\rangle$
5) $B[c] \quad\langle 3+4+\mathrm{MP}\rangle$
6) $(\exists x) B[x] \quad\langle 5+$ Dual Spec \rangle
7. Use simple induction to prove that $n+10<3^{n}$, for $n \geq 3$.

Proof.
Basis. $n=3$. To verify $3+10<27$. True!
I.H. Fix $n \geq 3$ and Assume

$$
n+10<3^{n}
$$

for that n.
I.S. Prove

$$
n+1+10<3^{n+1}
$$

Here:

$$
\begin{aligned}
n+11 & <3 n+30, \text { recall, } n \geq 3 \\
& <\left(3^{n}\right) 3, \text { multiplying both sides of I.H. by } 3 \\
& =3^{n+1}
\end{aligned}
$$

8. Consider the statement (formula)

$$
\begin{equation*}
(\exists x) A(x) \rightarrow A(c) \tag{1}
\end{equation*}
$$

where c is a new constant, NOT found in $A(x)$.
Find now a specific $\mathbf{N I M} \mathbf{D} \mathbf{E}$ example of $A(x)$ over the set \mathbb{N} and choose a specific value of $c \in \mathbb{N}$ so that (1) becomes false, and Therefore we cannot prove (1), since proofs start from true axioms and preserve truth at every step.
Proof. Since c is NOT specified by " $(\exists x) A(x)$ " in any shape or form, I am free to take the special case below (over our familiar \mathbb{N}) and I choose, unimaginatively (:-), the constant " c " to be 42 . I choose for " $A(x)$ " the formula $x=0$.

So statement (1) becomes

$$
\begin{equation*}
\overbrace{(\exists x) x=0}^{\mathrm{t}} \rightarrow \overbrace{42=0}^{\mathbf{f}} \tag{2}
\end{equation*}
$$

The rhs of \rightarrow in (2) is false. Hence makes the whole simplified formula false. So (1) cannot be an always true formula of Logic!
9. Define the closure $\operatorname{Cl}(\mathcal{I}, \mathcal{O})$ by the specifications
(a) $\mathcal{I}=\{2\}$
(b) The ONLY operation in \mathcal{O} is

$$
\begin{equation*}
(x, y) \mapsto x+y \tag{1}
\end{equation*}
$$

That is, if the operation gets input x and y it produces output $x+y$.

Prove by induction on $\operatorname{Cl}(\mathcal{I}, \mathcal{O})$ that all its members are even natural numbers.
Proof. The property of members x of $\operatorname{Cl}(\mathcal{I}, \mathcal{O})$ that I am asked to prove is " x is even".
Basis. Verify for members of \mathcal{I}. There is ONLY ONE member in this set, namely, the number 2. This IS EVEN!

Prove that the property propagates by the only rule, (1):
So, say the inputs x and y of (1) are even, $2 n$ and $2 m$ respectively.
Then so is the output of rule (1), because $x+y=2 n+2 m=2(n+m)$. DONE!
10. Using Simple Induction (SI) prove that $1^{3}+2^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$, for $n \geq 1$.

Proof.

Basis. $n=1$. Verify: lhs $=1^{3}=1$. $r h s=((1 \times 2) / 2)^{2}=1^{2}=1$. Good!
I.H. Fix $n \geq 1$ and Assume

$$
\begin{equation*}
1^{3}+2^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2} \tag{1}
\end{equation*}
$$

I.S. Prove for the n we fixed in the I.H. that

$$
\begin{equation*}
1^{3}+2^{3}+\ldots+n^{3}+(n+1)^{3}=\left[\frac{(n+1)(n+2)}{2}\right]^{2} \tag{2}
\end{equation*}
$$

Here it goes:

$$
\begin{aligned}
1^{3}+2^{3}+\ldots+n^{3}+(n+1)^{3} & \stackrel{I \cdot H}{=} \cdot\left[\frac{n(n+1)}{2}\right]^{2}+(n+1)^{3} \\
& =(n+1)^{2}\left[\frac{n}{2}\right]^{2}+(n+1)^{3} \\
& =(n+1)^{2}\left[n^{2} / 4+(n+1)\right] \\
& =(n+1)^{2}\left[\frac{n^{2}+4 n+4}{4}\right] \\
& =(n+1)^{2}\left[\frac{(n+2)^{2}}{4}\right] \\
& =\left[\frac{(n+1)(n+2)}{2}\right]^{2}
\end{aligned}
$$

Page 5

G. Tourlakis

