Lassonde School of Engineering Dept. of EECS Professor G. Tourlakis EECS 1028 Z. Practice Problem Set —Prep. for Exam; NOT for Submission or Credit Posted: March 26, 2024

1. Prove that $\mathbb{U} \times \mathbb{U}$ is a proper class.

Proof. This class is a class of pairs: **A Relation**.

Suppose this Relation is a *SET*.

Then via a theorem from Notes/Class, $\underline{\operatorname{dom}(\mathbb{U} \times \mathbb{U})} = \mathbb{U}$ is a SET. But we know that \mathbb{U} is a proper class, which goes against assumption that starts with "Suppose". Done.

2. Prove that if B is <u>finite</u> and $A \subseteq B$, then A is also finite. **Proof**.

- (a) Case where $B = \emptyset$. Then $A = \emptyset$ since this is the only subset of \emptyset . By definition then, A is finite.
- (b) Case where $B \stackrel{f}{\sim} \{0, 1, 2, \dots, n\}$, that is

 $f: B \to \{0, \ldots, n\}$ is a 1-1 correspondence

Define the restriction of f on A —we will call it f'— for all $x \in A$, by

$$f'(x) = f(x) \tag{1}$$

 $\bigotimes f'$ is NOT defined on the rest of B, namely on B - A.

Ś

$$4 \sim \operatorname{ran}(f') \tag{2}$$

Next we note that $\operatorname{ran}(f')$ is finite: Indeed, **arguing by contradiction**, if $\operatorname{ran}(f')$ is *infinite*, then —from $\operatorname{ran}(f') \subseteq \{0, 1, \ldots, n\} \subseteq \mathbb{N}$, and a theorem from Notes/class,

$$\operatorname{ran}(f') \sim \mathbb{N} \tag{3}$$

Let $g: \operatorname{ran}(f') \to \mathbb{N}$ effect this 1-1 correspondence. The function $h: B \to \mathbb{N}$ given by

$$h(x) = \begin{cases} g(x) & \text{if } x \in \operatorname{ran}(f') \\ \uparrow & \text{if } x \in B - \operatorname{ran}(f') \end{cases}$$

is onto $\mathbb N$ contradicting a theorem from class/Notes.

We conclude that $\operatorname{ran}(f') \sim \{0, 1, \dots, r\}$ for some r —i.e., is finite— and combining with (2) we have $A \sim \operatorname{ran}(f') \sim \{0, 1, \dots, r\}$. Hence $A \sim \{0, 1, \dots, r\}$ by \sim -transitivity. A is finite! Done.

3. Prove that an enumerable set is infinite.

Proof. Let $A \sim \mathbb{N}$ which is saying "A is enumerable" <u>mathematically</u>. If A is also finite then $\{0, 1, \dots, m\} \sim A$ for some $m \in \mathbb{N}$. Thus

$$\{0, 1, \ldots, m\} \sim A \sim \mathbb{N}$$

Hence (transitivity of \sim) we have

$$[0,1,\ldots,m\} \sim \mathbb{N}$$

which implies an **onto function** (the 1-1 correspondence " \sim ")

$$\{0, 1, \ldots, m\} \to \mathbb{N}$$

But our Notes say that this is impossible!

4. Let A be enumerable. Show how —given an enumeration of A without repetitions— you can <u>construct</u> a **NEW** enumeration where **EACH** $x \in A$ is enumerated infinitely many times. **Proof.** Let

$$a_0, a_1, a_2, \dots, a_i, \dots \tag{1}$$

be an enumeration without repetitions.

Page 2

G. Tourlakis

The above matrix includes each a_i infinitely many times (for each n, column n has all its entries equal to a_n). All these will be enumerated in the SE enumeration depicted above. Done.

5. Prove that $\vdash (\forall x)A \rightarrow (\exists x)A$. **Proof.** By DThm, prove instead

 $\vdash (\forall x)A \vdash (\exists x)A$

- $\begin{array}{ll} 1) & (\forall x)A & \langle \mathrm{hyp} \ \mathrm{from} \ \mathrm{DThm} \rangle \\ 2) & A & \langle 1 + \mathrm{Spec} \rangle \end{array}$
- 3) $(\exists x)A \quad \langle 2 + \text{Dual Spec} \rangle$
- 6. Prove that $\vdash (\forall x)(A \to B) \to (\exists x)A \to (\exists x)B$. **Proof.** By DThm, prove instead

$$(\forall x)(A \to B) \vdash (\exists x)A \to (\exists x)B$$

and once more by DThm do instead:

$$(\forall x)(A \to B), (\exists x)A \vdash (\exists x)B$$

Here it goes:

1)
$$(\forall x)(A \rightarrow B)$$
 $\langle \text{hyp from DThm} \rangle$ 2) $(\exists x)A$ $\langle \text{hyp from DThm} \rangle$ 3) $A[c]$ $\langle \text{Aux. Hyp for 2; } c \text{ is not in concl. nor in } 1+2 \rangle$ 4) $A[c] \rightarrow B[c]$ $\langle 1 + \text{Spec} \rangle$ 5) $B[c]$ $\langle 3 + 4 + \text{MP} \rangle$ 6) $(\exists x)B[x]$ $\langle 5 + \text{Dual Spec} \rangle$

Page 3

G. Tourlakis

7. Use simple induction to prove that $n + 10 < 3^n$, for $n \ge 3$.

Proof.

Basis. n = 3. To verify 3 + 10 < 27. True!

I.H. <u>Fix</u> $n \ge 3$ and <u>Assume</u>

 $n + 10 < 3^n$

for that n. I.S. Prove

 $n + 1 + 10 < 3^{n+1}$

Here:

$$n + 11 < 3n + 30$$
, recall, $n \ge 3$
 $< (3^n)3$, multiplying both sides of I.H. by 3
 $= 3^{n+1}$

8. Consider the statement (formula)

$$(\exists x)A(x) \to A(c) \tag{1}$$

where c is a *new* constant, NOT found in A(x).

Find now a specific **SIMPLE** example of A(x) over the set \mathbb{N} and choose a specific value of $c \in \mathbb{N}$ so that (1) becomes **false**, and **Therefore** we **cannot** prove (1), since proofs start from true axioms and preserve truth at every step.

Proof. Since c is **NOT specified** by " $(\exists x)A(x)$ " in any shape or form, **I** am **free to take** the special case below (over our familiar \mathbb{N}) and I choose, unimaginatively (:-), the constant "c" to be 42. I choose for "A(x)" the formula x = 0.

So statement (1) becomes

$$\overbrace{(\exists x)x=0}^{\mathbf{t}} \to \overbrace{42=0}^{\mathbf{f}}$$
(2)

The rhs of \rightarrow in (2) is **false**. Hence makes the whole simplified formula false. So (1) cannot be an always true formula of Logic!

9. Define the closure $\operatorname{Cl}(\mathcal{I}, \mathcal{O})$ by the specifications

(a) $\mathcal{I} = \{2\}$

Page 4

G. Tourlakis

(b) The ONLY operation in \mathcal{O} is

$$(x,y) \mapsto x+y \tag{1}$$

That is, if the operation gets input x and y it produces output x + y.

Prove by induction on $\operatorname{Cl}(\mathcal{I}, \mathcal{O})$ that all its members are even natural numbers.

Proof. The property of members x of $Cl(\mathcal{I}, \mathcal{O})$ that I am asked to prove is "x is even". Basis. Verify for members of \mathcal{I} . There is ONLY ONE member in this set, namely, the number 2. This IS EVEN!

Prove that the property propagates by the only rule, (1):

So, say the inputs x and y of (1) are even, 2n and 2m respectively.

Then so is the output of rule (1), because x + y = 2n + 2m = 2(n + m). DONE!

10. Using Simple Induction (SI) prove that $1^3 + 2^3 + \ldots + n^3 = \left[\frac{n(n+1)}{2}\right]^2$, for $n \ge 1$.

Proof.

Basis. n = 1. Verify: $lhs = 1^3 = 1$. $rhs = ((1 \times 2)/2)^2 = 1^2 = 1$. Good!

I.H. Fix $n \geq 1$ and Assume

$$1^{3} + 2^{3} + \ldots + n^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$$
(1)

I.S. *Prove* for the n we fixed in the I.H. that

$$1^{3} + 2^{3} + \ldots + n^{3} + (n+1)^{3} = \left[\frac{(n+1)(n+2)}{2}\right]^{2}$$
(2)

Here it goes:

$$1^{3} + 2^{3} + \ldots + n^{3} + (n+1)^{3} \stackrel{I.H.}{=} \left[\frac{n(n+1)}{2} \right]^{2} + (n+1)^{3}$$
$$= (n+1)^{2} \left[\frac{n}{2} \right]^{2} + (n+1)^{3}$$
$$= (n+1)^{2} \left[n^{2}/4 + (n+1) \right]$$
$$= (n+1)^{2} \left[\frac{n^{2}+4n+4}{4} \right]$$
$$= (n+1)^{2} \left[\frac{(n+2)^{2}}{4} \right]$$
$$= \left[\frac{(n+1)(n+2)}{2} \right]^{2}$$

G. Tourlakis

Page 5