Lassonde School of Engineering

Dept. of EECS
Professor G. Tourlakis
EECS 1028 Z. Practice Problem Set -Prep. for
Exam; NOT for Submission or Credit
Posted: March 26, 2024
On April 9, 2024, at 2pm I will post solutions:

1. Prove that $\mathbb{U} \times \mathbb{U}$ is a proper class.
2. Prove that if B is finite and $A \subseteq B$, then A is also finite.
3. Prove that an enumerable set is infinite.
4. Let A be enumerable. Show how - given an enumeration of A without repetitions- you can construct a NEW enumeration where EACH $x \in A$ is enumerated infinitely many times.
5. Prove that $\vdash(\forall x) A \rightarrow(\exists x) A$.
6. Prove that $\vdash(\forall x)(A \rightarrow B) \rightarrow(\exists x) A \rightarrow(\exists x) B$.
7. Use simple induction to prove that $n+10<3^{n}$, for $n \geq 3$.
8. Consider the statement (formula)

$$
\begin{equation*}
(\exists x) A(x) \rightarrow A(c) \tag{1}
\end{equation*}
$$

where c is a new constant, NOT found in $A(x)$.
Find now a specific SIMIPエE example of $A(x)$ over the set \mathbb{N} and choose a specific value of $c \in \mathbb{N}$ so that (1) becomes false, and Therefore we cannot prove (1), since proofs start from true axioms and preserve truth at every step.
9. Define the closure $\mathrm{Cl}(\mathcal{I}, \mathcal{O})$ by the specifications
(a) $\mathcal{I}=\{2\}$
(b) The ONLY operation in \mathcal{O} is

$$
(x, y) \mapsto x+y
$$

That is, if the operation gets input x and y it produces output $x+y$.
Prove by induction on $\operatorname{Cl}(\mathcal{I}, \mathcal{O})$ that all its members are even natural numbers.
10. Using Simple Induction (SI) prove that $1^{3}+2^{3}+\ldots+n^{3}=\left[\frac{n(n+1)}{2}\right]^{2}$, for $n \geq 1$.

