Lassonde School of Engineering

Dept. of EECS

Professor G. Tourlakis EECS 1028 Z. Problem Set No1 —SOLUTIONS

Posted: Feb. 2, 2024

- **1.** True or False **and Why**. (**NOTE**: NO Why = NO Points)
 - (a) (2 MARKS) $\{\{a\}, \{b\}\} = \{a, b\}$ **FALSE**. The "Why":
 - Case 1. a = b. Then $\{a\} = \{b\}$ and the question becomes " $\{\{a\}\} = \{a\}$?" If yes, then $\{a\} = a$ hence $a \in a$. A *contradiction*.
 - Case 2. $a \neq b$. If so, $\{a\} \neq \{b\}$ as well (equality *requires* a = b). We have two <u>subcases</u> since both sides have two elements:
 - A. $a = \{a\}$ and $b = \{b\}$. This is **FALSE**. For example, $a = \{a\}$ implies $a \in a$ that we know is impossible.
 - B. $a = \{b\}$ and $b = \{a\}$. This is *also* **FALSE**, else by substitution we have $a = \{\{a\}\}$. This implies $\{a\} \in a$, hence we have

a built before $\{a\}$ built before a

A contradiction!

(b) (2 MARKS) $\emptyset \in \emptyset$.

FALSE. Why? By definition of " \emptyset ", $x \in \emptyset$ is FALSE for ALL x. In particular is false for $x = \emptyset$.

(c) (2 MARKS) $\bigcup \{\{c\}, \{d\}\} = \{c, d\}$

TRUE. By definition of \bigcup , lhs is what we get is the *set* built by "emptying" $\{c\}$ and $\{d\}$ inside an empty pair of braces $\{\ \}$. But that is the rhs!

G. Tourlakis

Page 1

(d) (2 MARKS) $\emptyset \subseteq \emptyset$

TRUE. We want, for any $x, x \in \emptyset \to x \in \emptyset$.

The labelling of the lhs of " \rightarrow " shows that the implication is true.

- (e) (2 MARKS) $\emptyset \in \{1\}$ **FALSE**. The only contents of rhs is "1" —an atom— which does not equal \emptyset —a set.
- **2.** (3 MARKS) Is the class $\{\{x\} : \text{all } \underline{\text{atoms }} x\}$ a set? Why <u>yes</u> or <u>no</u> exactly?

Answer. YES!

The Why: All atoms are available at stage 0. Thus, at stage 1 we can build each $\{x\}$ where x is an atom.

But then, at stage 2 we can build the class containing ALL such $\{x\}$ as a set.

3. (5 MARKS) Is the class $\mathbb{F} = \{\{x, y, z\} : \text{for all } \underline{\text{sets}} \text{ and } \underline{\text{atoms}} x, y, and z\}$ a set? Why yes or <u>no</u> exactly?

Answer. NO, it is a proper class. Why? <u>Because IF</u> \mathbb{F} is a SET, THEN

- **1.** $\{\{x\} : \text{ for all } \underline{\text{sets}} \text{ and } \underline{\text{atoms}} x\}$ is ALSO a SET by the subclass theorem since $\{\{x\} : \text{ for all } \underline{\text{sets}} \text{ and } \underline{\text{atoms}} x\} \subseteq \mathbb{F}$.
- 2. Hmm. **YET**, $\mathbb{U} = \bigcup \{\{x\} : \text{for all sets and atoms } x\}$ (the lhs contains precisely ALL x without the " $\{\ \}$ " around them). So \mathbb{U} is a set.[†] Contradiction!

4. (3 MARKS) Let A, B, C be sets or atoms. Prove that $\{A, B, C\}$ is a set, <u>without</u> using any of Principles 0, 1, 2. Rather use results (theorems) that we already established in class/Notes.

Proof. $\{A, B\}$ and $\{C\}$ (because it equals $\{C, C\}$) are sets (theorem for (not ordered) Pair). But then so is $\{A, B, C\} = \{A, B\} \cup \{C\}$ by union theorem.

G. Tourlakis

[†]Union theorem.

5. (5 MARKS) Prove that Principle 2 implies that we have infinitely many stages available.

Hint. Arguing by contradiction, assume instead that we only have **finitely many** stages. So repeatedly applying Principle 2 we can form a non ending sequence of stage names

$$\dots < \Sigma' < \Sigma'' < \Sigma''' < \Sigma'''' < \dots$$
(1)

If the sequence (1) contains only a *finite* number of distinct $\Sigma''...'$, then at least two of the $\Sigma''...'$ in (1) are the <u>same</u> stage. Use this conclusion and properties of "<" to get a contradiction.

Proof.

We are using Principle 2 as: "given stage Σ . Then there is a stage Σ' after it, that is, $\Sigma < \Sigma'$."

Assuming <u>only finitely many stages</u>, the <u>stages themselves</u> <u>named</u>, in (1) above, at some point *repeat*, that is,

two names Σ_i and Σ_j in the sequence (1) <u>name the same stage</u>. We can say this as $\Sigma_i = \Sigma_j$.

So, we have the situation below, where I am switching to subscript notation it being more user friendly than "accent" notation

$$\cdots \Sigma_i < \Sigma_{i+1} < \cdots < \Sigma_{j-1} < \Sigma_j \cdots$$

By transitivity of "<", we have $\Sigma_i < \Sigma_j$ which is impossible since the two stage names Σ_i and Σ_j name the same stage.

6. (4 MARKS) Prove that, for any *set* A we have that $\mathbb{U} - B$ is *a proper class*.

Proof. See also the posted "news" item with date Jan. 29.

So by notation, B is a set. The set A is irrelevant to the question as it does not relate to the conclusion. We ignore it.

We argue that $\mathbb{U} - B$ is a *proper class* by contradiction.

Page 3

G. Tourlakis

So assume otherwise, that $\mathbb{U} - B$ is a set.

By the union theorem so is $(\mathbb{U} - B) \cup B$.

But the above union equals \mathbb{U} and we have a contradiction as this implies that \mathbb{U} is a set.

To believe the above claim of equality we note that $(\mathbb{U} - B) \cup B \subseteq \mathbb{U}$ since \mathbb{U} contains every set and atom.

For $\mathbb{U} \subseteq (\mathbb{U} - B) \cup B$ let $x \in lhs$ (of " \subseteq "). We have two cases:

Case 1. $x \in B$. Then $x \in rhs$ by definition of Union.

Case 2. $x \notin B$. Since $x \in \mathbb{U}$ then $x \in \mathbb{U} - B$ by def. of "-". Then $x \in rhs$ by definition of Union.

7. (4 MARKS) Prove for any classes \mathbb{A}, \mathbb{B} , that $\mathbb{A} - \mathbb{B} = \mathbb{A} - \mathbb{A} \cap \mathbb{B}$.

Proof. Please DO follow the Hint and NEVER MIND "de Morgan Law" and other "exotica" that we have <u>not covered</u> —which means, if you use it, you <u>must</u> prove it!!

Two directions:

 \subseteq Case. Let $x \in lhs$. Then

$$x \in \mathbb{A} \tag{1}$$

and

$$x \notin \mathbb{B} \tag{2}$$

By (2), we have $x \notin \mathbb{A} \cap \mathbb{B}$ (the opposite requires $x \in \mathbb{B}$). This and (1) mean (by def of "-") $x \in rhs$.

$$\supset$$
 Case. Let $x \in rhs$. Then

$$x \in \mathbb{A}$$
 (3)

and

$$x \notin \mathbb{A} \cap \mathbb{B} \tag{4}$$

By (3, 4), we *CANNOT* have $x \in \mathbb{B}$ (else along with (3) we contradict (4)). So it is

$$x \notin \mathbb{B} \tag{5}$$

- (3) and (5) jointly prove $x \in lhs$.
- 8. Use notation by explicitly listing all the members of each rhs {???} to complete the following incomplete equalities:

This is a "handout"! We have done it in class!

Answers.

(a) (2 MARKS) $2^{\emptyset} = \{\emptyset\}$ (b) (2 MARKS) $2^{\{1,2,3\}} = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

G. Tourlakis

Page 5