Lassonde School of Engineering

Dept. of EECS

Professor G. Tourlakis

EECS 1028 Z. Problem Set No1 -SOLUTIONS

Posted: Feb. 2, 2024

1. True or False and Why. (NOTE: NO Why $=$ NO Points)
(a) (2 MARKS) $\{\{a\},\{b\}\}=\{a, b\}$

FALSE. The "Why":
Case 1. $a=b$. Then $\{a\}=\{b\}$ and the question becomes " $\{\{a\}\}=$ $\{a\}$?" If yes, then $\{a\}=a$ hence $a \in a$. A contradiction.

Case 2. $a \neq b$. If so, $\{a\} \neq\{b\}$ as well (equality requires $a=b$). We have two subcases since both sides have two elements:
A. $a=\{a\}$ and $b=\{b\}$. This is FALSE. For example, $a=\{a\}$ implies $a \in a$ that we know is impossible.
B. $a=\{b\}$ and $b=\{a\}$. This is also FALSE, else by substitution we have $a=\{\{a\}\}$. This implies $\{a\} \in a$, hence we have
a built before $\{a\}$ built before a
A contradiction!
(b) (2 MARKS) $\emptyset \in \emptyset$.

FALSE. Why? By definition of " \emptyset ", $x \in \emptyset$ is FALSE for ALL x. In particular is false for $x=\emptyset$.
(c) $(2$ MARKS $) \bigcup\{\{c\},\{d\}\}=\{c, d\}$

TRUE. By definition of \bigcup, lhs is what we get is the set built by "emptying" $\{c\}$ and $\{d\}$ inside an empty pair of braces $\}$. But that is the rhs!

Page 1

(d) $(2$ MARKS $) \emptyset \subseteq \emptyset$

TRUE. We want, for any $x, \overbrace{x \in \emptyset}^{\mathrm{f}} \rightarrow x \in \emptyset$.
The labelling of the lhs of " \rightarrow " shows that the implication is true.
(e) $(2 \mathrm{MARKS}) \emptyset \in\{1\}$

FALSE. The only contents of rhs is " 1 " -an atom- which does not equal \emptyset-a set.
2. (3 MARKS) Is the class $\{\{x\}$: all atoms $x\}$ a set? Why yes or no exactly?
Answer. YES!
The Why: All atoms are available at stage 0 . Thus, at stage 1 we can build each $\{x\}$ where x is an atom.
But then, at stage 2 we can build the class containing $A L L$ such $\{x\}$ as a set.
3. (5 MARKS) Is the class $\mathbb{F}=\{\{x, y, z\}$: for all sets and atoms x, y, and $z\}$ a set? Why yes or no exactly?

Answer. NO, it is a proper class. Why? Because IF \mathbb{F} is a SET, THEN

1. $\{\{x\}$: for all sets and atoms $x\}$ is ALSO a SET by the subclass theorem since $\{\{x\}$: for all sets and atoms $x\} \subseteq \mathbb{F}$.
2. Hmm. YET, $\mathbb{U}=\bigcup\{\{x\}$: for all sets and atoms $x\}$ (the lhs contains precisely ALL x without the " $\left\}\right.$ " around them). So \mathbb{U} is a set. ${ }^{\dagger}$ Contradiction!
3. (3 MARKS) Let A, B, C be sets or atoms. Prove that $\{A, B, C\}$ is a set, without using any of Principles $0,1,2$. Rather use results (theorems) that we already established in class/Notes.

Proof. $\{A, B\}$ and $\{C\}$ (because it equals $\{C, C\}$) are sets (theorem for (not ordered) Pair). But then so is $\{A, B, C\}=\{A, B\} \cup\{C\}$ by union theorem.

[^0]Page 2
G. Tourlakis
5. (5 MARKS) Prove that Principle 2 implies that we have infinitely many stages available.
Hint. Arguing by contradiction, assume instead that we only have finitely many stages. So repeatedly applying Principle 2 we can form a non ending sequence of stage names

$$
\begin{equation*}
\cdots<\Sigma^{\prime}<\Sigma^{\prime \prime}<\Sigma^{\prime \prime \prime}<\Sigma^{\prime \prime \prime \prime}<\cdots \tag{1}
\end{equation*}
$$

If the sequence (1) contains only a finite number of distinct $\Sigma^{\prime \prime} \ldots{ }^{\prime}$, then at least two of the $\Sigma^{\prime \prime} \ldots{ }^{\prime}$ in (1) are the same stage. Use this conclusion and properties of " $<$ " to get a contradiction.

Proof.

We are using Principle 2 as: "given stage Σ. Then there is a stage Σ^{\prime} after it, that is, $\Sigma<\Sigma^{\prime}$."

Assuming only finitely many stages, the stages themselves named, in (1) above, at some point repeat, that is,
two names Σ_{i} and Σ_{j} in the sequence (1) name the same stage. We can say this as $\Sigma_{i}=\Sigma_{j}$.

So, we have the situation below, where I am switching to subscript notation it being more user friendly than "accent" notation

$$
\cdots \Sigma_{i}<\Sigma_{i+1}<\cdots<\Sigma_{j-1}<\Sigma_{j} \cdots
$$

By transitivity of " $<$ ", we have $\Sigma_{i}<\Sigma_{j}$ which is impossible since the two stage names Σ_{i} and Σ_{j} name the same stage.
6. (4 MARKS) Prove that, for any set A we have that $\mathbb{U}-B$ is a proper class.

Proof. See also the posted "news" item with date Jan. 29.
So by notation, B is a set. The set A is irrelevant to the question as it does not relate to the conclusion. We ignore it.
We argue that $\mathbb{U}-B$ is a proper class by contradiction.
Page 3

So assume otherwise, that $\mathbb{U}-B$ is a set.

$$
\text { By the union theorem so is }(\mathbb{U}-B) \cup B \text {. }
$$

But the above union equals \mathbb{U} and we have a contradiction as this implies that \mathbb{U} is a set.

To believe the above claim of equality we note that $(\mathbb{U}-B) \cup B \subseteq \mathbb{U}$ since \mathbb{U} contains every set and atom.
For $\mathbb{U} \subseteq(\mathbb{U}-B) \cup B$ let $x \in$ lhs (of " \subseteq "). We have two cases:
Case 1. $x \in B$. Then $x \in r h s$ by definition of Union.
Case 2. $x \notin B$. Since $x \in \mathbb{U}$ then $x \in \mathbb{U}-B$ by def. of "-". Then $x \in r h s$ by definition of Union.
7. (4 MARKS) Prove for any classes \mathbb{A}, \mathbb{B}, that $\mathbb{A}-\mathbb{B}=\mathbb{A}-\mathbb{A} \cap \mathbb{B}$.

Hint. This is a simple case of proving $l h s \subseteq r h s$ by doing "Let $x \in l h s$. BLA BLA BLA and concluding $x \in r h s "$, and then ALSO doing rhs $\subseteq l h s$ by doing "Let $x \in r h s$. BLA BLA BLA and concluding $x \in l h s "$.

Proof. Please DO follow the Hint and NEVER MIND "de Morgan Law" and other "exotica" that we have not covered -which means, if you use it, you must prove it!!

Two directions:
\subseteq Case. Let $x \in l h s$. Then

$$
\begin{equation*}
x \in \mathbb{A} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
x \notin \mathbb{B} \tag{2}
\end{equation*}
$$

By (2), we have $x \notin \mathbb{A} \cap \mathbb{B}$ (the opposite requires $x \in \mathbb{B}$). This and (1) mean (by def of "-") $x \in r h s$.
\supseteq Case. Let $x \in r h s$. Then

$$
\begin{equation*}
x \in \mathbb{A} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
x \notin \mathbb{A} \cap \mathbb{B} \tag{4}
\end{equation*}
$$

By $(3,4)$, we CANNOT have $x \in \mathbb{B}$ (else along with (3) we contradict (4)). So it is

$$
\begin{equation*}
x \notin \mathbb{B} \tag{5}
\end{equation*}
$$

(3) and (5) jointly prove $x \in l h s$.
8. Use notation by explicitly listing all the members of each rhs \{???\} to complete the following incomplete equalities:
This is a "handout"! We have done it in class!

Answers.

(a) (2 MARKS) $2^{\emptyset}=\{\emptyset\}$
(b) (2 MARKS) $2^{\{1,2,3\}}=\{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

[^0]: ${ }^{\dagger}$ Union theorem.

