Lassonde School of Engineering

Dept. of EECS
Professor G. Tourlakis
EECS 1028 Z. Problem Set No1
Posted: Jan. 13, 2024
Due: Feb. 2, 2024; by 6:00pm, in eClass.

Q: How do I submit?

A:
(1) Submission must be a SINGLE standalone file to eClass. Submission by email is NOT accepted.
(2) Accepted File Types: PNG, JPEG, PDF, RTF, MS WORD, OPEN OFFICE, ZIP
${ }^{(3)}$ Deadline is strict, electronically limited.
(4) MAXIMUM file size $=10 \mathrm{MB}$
2) It is worth remembering (from the course outline):

The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course, as you recall.

1. True or False and Why. (NOTE: NO Why - NO Points)
(a) (2 MARKS) $\{\{a\},\{b\}\}=\{a, b\}$
(b) (2 MARKS) $\emptyset \in \emptyset$.
(c) (2 MARKS) $\bigcup\{\{c\},\{d\}\}=\{c, d\}$
(d) $(2$ MARKS $) ~ \emptyset \subseteq \emptyset$
(e) $(2 \mathrm{MARKS}) \emptyset \in\{1\}$
2. (3 MARKS) Is the class $\{\{x\}$: all atoms $x\}$ a set? Why yes or no exactly?
3. (5 MARKS) Is the class $\{\{x, y, z\}$: for all sets and atoms x, y, and $z\}$ a set? Why yes or no exactly?
4. (3 MARKS) Let A, B, C be sets or atoms. Prove that $\{A, B, C\}$ is a set, without using any of Principles $0,1,2$. Rather use results (theorems) that we already established in class/Notes.
5. (5 MARKS) Prove that Principle 2 implies that we have infinitely many stages available.

Hint. Arguing by contradiction, assume instead that we only have finitely many stages. So repeatedly applying Principle 2 we can form a non ending sequence of stages

$$
\begin{equation*}
\cdots<\Sigma^{\prime}<\Sigma^{\prime \prime}<\Sigma^{\prime \prime \prime}<\Sigma^{\prime \prime \prime \prime}<\cdots \tag{1}
\end{equation*}
$$

If the sequence (1) contains only a finite number of distinct $\Sigma^{\prime \prime} \ldots{ }^{\prime}$, then at least two of the $\Sigma^{\prime \prime} \ldots{ }^{\prime}$ in (1) are the same stage. Use this conclusion and properties of " $<$ " to get a contradiction
6. (4 MARKS) Prove that, for any set A we have that $\mathbb{U}-B$ is a proper class.

Page 2
 G. Tourlakis

7. (4 MARKS) Prove for any classes \mathbb{A}, \mathbb{B}, that $\mathbb{A}-\mathbb{B}=\mathbb{A}-\mathbb{A} \cap \mathbb{B}$.

Hint. This is a simple case of proving lhs $\subseteq r h s$ by doing "Let $x \in l h s$. BLA BLA BLA and concluding $x \in r h s "$, and then $A L S O$ doing $r h s \subseteq l h s$ by doing "Let $x \in r h s$. BLA BLA BLA and concluding $x \in l h s$ ".
8. Use notation by explicitly listing all the members of each rhs \{???\} to complete the following incomplete equalities:
(a) $(2$ MARKS $) 2^{\emptyset}=\{? ? ?\}$
(b) (2 MARKS) $2^{\{1,2,3\}}=\{? ? ?\}$

