$\langle \mathbf{S} \rangle$

Lassonde School of Engineering

Dept. of EECS

Professor G. Tourlakis EECS 1028 Z. Problem Set No2 —SOLUTIONS Posted: Feb. 19, 2024

The concept of "late assignments" does not exist in this course, as you recall.

1. (3 MARKS) Give an example of two equivalence relations R and S on the set $A = \{1, 2, 3\}$ such that $R \cup S$ is *not* an equivalence relation.

Proof. It is obvious that $R \cup S$ will inherit trivially reflexivity and symmetry. Let us find specific R and S whose union will fail transitivity.

Take $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}$ and $S = \{(1, 1), (2, 2), (3, 3), (2, 3), (3, 2)\}$. Clearly, each is an equivalence relation on A.

But $\{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)\}$ is not. At least (1, 3) is needed for transitivity.

2. (3 MARKS) Let P be a reflexive relation on A that satisfies $aPb \wedge aPc \rightarrow bPc$. Prove that P is an equivalence relation on A.

Caution. This $aPb \wedge aPc \rightarrow bPc$ is <u>not</u> exactly transitivity!

Proof.

- (a) Symmetry: Let aPb. By reflexivity I have aPa. By the rule given, $aPb \wedge aPa \rightarrow bPa$.
- (b) Transitivity: Let aPb and bPc, hence (by symm.), $bP\underline{a} \wedge bP\underline{c}$. By the rule given we get $\underline{a}P\underline{c}$.
- **3.** (3 MARKS) Show for a relation S that if both the range and the domain are sets, then S is a set.

Proof. We know that $\mathbb{S} \subseteq \underbrace{\operatorname{dom}(\mathbb{S})}_{set} \times \operatorname{ran}(\mathbb{S})_{set}$. From the diagram to the left, and the subclass theorem, we are done.

Page 1

G. Tourlakis

4. (3 MARKS) Let $A \neq \emptyset$ be a set. Prove that A^2 is an equivalence relation on A.

Proof. Since we did not say that A is a relation, the exponent ² refers to $A \times A$.

Given that

$$A^{2} = \{(x, y) : x \in A \land y \in A\}$$
(1)

we have

- (a) Reflexive: Indeed, if $a \in A$ then also $a \in A$, hence $(x, x) \in A^2$.
- (b) Symmetric: Say $(x, y) \in A^2$. Then $x \in A$ and $y \in A$. Swapping the roles of x and y and looking at (1) we have $(y, x) \in A^2$ as well.
- (c) Transitive: Let

$$(x,y) \in A^2 \tag{2}$$

and

$$(y,z) \in A^2 \tag{3}$$

This entails — *IN PARTICULAR!*— that $x \in A$ (by (2)) and $z \in A$ (by (3)). Thus $(x, z) \in A^2$ (by (1)).

5. (4 MARKS) Let R be symmetric. Show that so is \mathbb{R}^n for the arbitrary n > 0.

Hint. No need for induction. Show this by noting (from class that) $R^{n} = \overbrace{R \circ \cdots \circ R}^{n \cdot R}.$

Proof. Let R be symmetric, and also let xR^ny . The latter means that we have

 $xRa_1Ra_2\cdots Ra_{n-2}Ra_{n-1}Ry$, for some a_i (1)

By the red assumption, (1) can be written backwards as

$$yRa_{n-1}Ra_{n-2}\cdots Ra_2Ra_1Rx$$
, for the same a_i as in (1) (2)

(2) says $y \mathbb{R}^n x$. Done.

G. Tourlakis

6. (3 MARKS) Show that a relation \mathbb{R} is symmetric iff $\mathbb{R} = \mathbb{R}^{-1}$. Caution. There are two directions here.

Proof.

(a) Let \mathbb{R} be symmetric. Prove that $\mathbb{R} = \mathbb{R}^{-1}$.

$$x\mathbb{R}^{-1}y \stackrel{def}{\longleftrightarrow} \stackrel{of \ inverse}{\longrightarrow} y\mathbb{R}x \stackrel{red \ hyp}{\longleftrightarrow} {}^{\dagger}x\mathbb{R}y$$

So $\mathbb{R}^{-1} = \mathbb{R}$.

(b) Let $\mathbb{R}^{-1} = \mathbb{R}$. I will prove that \mathbb{R} is symmetric, that is, $x\mathbb{R}y \equiv y\mathbb{R}x$:

$$x \mathbb{R} y \stackrel{red \ Let}{\longleftrightarrow} x \mathbb{R}^{-1} y \stackrel{def \ inver.}{\longleftrightarrow} y \mathbb{R} x$$

7. (3 MARKS) Show that if a relation \mathbb{S} is transitive, then so is \mathbb{S}^{-1} . *Proof.* Assume $a\mathbb{S}^{-1}b \wedge b\mathbb{S}^{-1}c$.

The above says (I swapped order for visual ease)

$$cSb \wedge bSa$$
 (1)

By transitivity of $\mathbb S$ I get

 $c\mathbb{S}a$

from (1). But that says $a \mathbb{S}^{-1}c$. By the red assumption we just proved transitivity of \mathbb{S}^{-1} .

[†]I remarked in class <u>more than once</u> that the unidirectional definition of symmetry, " $x\mathbb{R}y \to y\mathbb{R}x$ " is really an equivalence " $x\mathbb{R}y \equiv y\mathbb{R}x$ " as we get the \leftarrow direction by repeating the definition right-to-left.

8. (5 MARKS) Let R on A be reflexive and symmetric. Prove that R^+ is an equivalence relation.

Proof. Since R^+ is transitive we will focus on proving reflexivity and symmetry.

(a) *Reflexivity*. Since

$$R^{+} = \bigcup_{n=1}^{\infty} R^{n} \tag{\dagger}$$

and as we observe —by (\dagger) or straight from the definition of transitive closure— that we have

$$R \subseteq R^+ \tag{1}$$

we are done by reflexivity of R: If $a \in A$, then aRa hence aR^+a by (1).

(b) Symmetry. Let aR^+b . By (†), we have,

for some
$$n > 0$$
, aR^nb (2)

By Problem 5, we have $bR^n a$, hence (def. of \bigcup)

$$b\bigcup_{n=1}^{\infty}R^{n}a$$

By the above and (\dagger) , we have

$$bR^+a$$

Given the red Let, what we concluded immediately above is what we needed to establish symmetry. $\hfill \Box$