Lassonde School of Engineering

Dept. of EECS

Professor G. Tourlakis

EECS 1028 Z. Problem Set No2-SOLUTIONS Posted: Feb. 19, 2024

The concept of "late assignments" does not exist in this course, as you recall.

1. (3 MARKS) Give an example of two equivalence relations R and S on the set $A=\{1,2,3\}$ such that $R \cup S$ is not an equivalence relation.
Proof. It is obvious that $R \cup S$ will inherit trivially reflexivity and symmetry. Let us find specific R and S whose union will fail transitivity.
Take $R=\{(1,1),(2,2),(3,3),(1,2),(2,1)\}$ and $S=\{(1,1),(2,2),(3,3),(2,3),(3,2)\}$. Clearly, each is an equivalence relation on A.
But $\{(1,1),(2,2),(3,3),(1,2),(2,1),(2,3),(3,2)\}$ is not. At least $(1,3)$ is needed for transitivity.
2. (3 MARKS) Let P be a reflexive relation on A that satisfies $a P b \wedge a P c \rightarrow$ $b P c$. Prove that P is an equivalence relation on A.

Caution. This $a P b \wedge a P c \rightarrow b P c$ is not exactly transitivity!

Proof.

(a) Symmetry: Let $a P b$. By reflexivity I have $a P a$. By the rule given, $a P b \wedge a P a \rightarrow b P a$.
(b) Transitivity: Let $a P b$ and $b P c$, hence (by symm.), $b P \underline{a} \wedge b P \underline{c}$. By the rule given we get $\underline{a} P \underline{c}$.
3. (3 MARKS) Show for a relation \mathbb{S} that if both the range and the domain are sets, then \mathbb{S} is a set.
Proof. We know that $\mathbb{S} \subseteq \underbrace{\overbrace{\operatorname{dom}(\mathbb{S})}^{\text {set }} \times \underbrace{\operatorname{ran}(\mathbb{S})}_{\text {set }}}_{\text {set }}$. From the diagram to the left, and the subclass theorem, we are done.
Page 1
G. Tourlakis
4. (3 MARKS) Let $A \neq \emptyset$ be a set. Prove that A^{2} is an equivalence relation on A.

Proof. Since we did not say that A is a relation, the exponent ${ }^{2}$ refers to $A \times A$.

Given that

$$
\begin{equation*}
A^{2}=\{(x, y): x \in A \wedge y \in A\} \tag{1}
\end{equation*}
$$

we have
(a) Reflexive: Indeed, if $a \in A$ then also $a \in A$, hence $(x, x) \in A^{2}$.
(b) Symmetric: Say $(x, y) \in A^{2}$. Then $x \in A$ and $y \in A$. Swapping the roles of x and y and looking at (1) we have $(y, x) \in A^{2}$ as well.
(c) Transitive: Let

$$
\begin{equation*}
(x, y) \in A^{2} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
(y, z) \in A^{2} \tag{3}
\end{equation*}
$$

This entails -IN PARTICULAR! - that $x \in A$ (by (2)) and $z \in A$ (by (3)). Thus $(x, z) \in A^{2}$ (by (1)).
5. (4 MARKS) Let R be symmetric. Show that so is R^{n} for the arbitrary $n>0$.
Hint. No need for induction. Show this by noting (from class that) $R^{n}=\overbrace{R \circ \cdots \circ R}^{n}$.

Proof. Let R be symmetric, and also let $x R^{n} y$. The latter means that we have

$$
\begin{equation*}
x R a_{1} R a_{2} \cdots R a_{n-2} R a_{n-1} R y, \text { for some } a_{i} \tag{1}
\end{equation*}
$$

By the red assumption, (1) can be written backwards as

$$
\begin{equation*}
y R a_{n-1} R a_{n-2} \cdots R a_{2} R a_{1} R x, \text { for the same } a_{i} \text { as in (1) } \tag{2}
\end{equation*}
$$

(2) says $y R^{n} x$. Done.
6. (3 MARKS) Show that a relation \mathbb{R} is symmetric iff $\mathbb{R}=\mathbb{R}^{-1}$.

Caution. There are two directions here.

Proof.

(a) Let \mathbb{R} be symmetric. Prove that $\mathbb{R}=\mathbb{R}^{-1}$.

$$
x \mathbb{R}^{-1} y \stackrel{\text { def of inverse }}{\Longleftrightarrow} y \mathbb{R} x \stackrel{\text { red hyp }}{\Longleftrightarrow} x \mathbb{R} y
$$

So $\mathbb{R}^{-1}=\mathbb{R}$.
(b) Let $\mathbb{R}^{-1}=\mathbb{R}$. I will prove that \mathbb{R} is symmetric, that is, $x \mathbb{R} y \equiv y \mathbb{R} x$:

$$
x \mathbb{R} y \stackrel{\text { red Let }}{\Longleftrightarrow} x \mathbb{R}^{-1} y \stackrel{\text { def }}{\Longleftrightarrow \text { inver. }} \Longleftrightarrow \Longleftrightarrow \mathbb{R} x
$$

7. (3 MARKS) Show that if a relation \mathbb{S} is transitive, then so is \mathbb{S}^{-1}.

Proof. Assume $a \mathbb{S}^{-1} b \wedge b \mathbb{S}^{-1} c$.
The above says (I swapped order for visual ease)

$$
\begin{equation*}
c \mathbb{S} b \wedge b \mathbb{S} a \tag{1}
\end{equation*}
$$

By transitivity of \mathbb{S} I get $c \mathbb{S} a$
from (1). But that says $a \mathbb{S}^{-1} c$. By the red assumption we just proved transitivity of \mathbb{S}^{-1}.

[^0]8. (5 MARKS) Let R on A be reflexive and symmetric. Prove that R^{+}is an equivalence relation.
Proof. Since R^{+}is transitive we will focus on proving reflexivity and symmetry.
(a) Reflexivity. Since
$$
R^{+}=\bigcup_{n=1}^{\infty} R^{n}
$$
and as we observe -by (\dagger) or straight from the definition of transitive closure - that we have
\[

$$
\begin{equation*}
R \subseteq R^{+} \tag{1}
\end{equation*}
$$

\]

we are done by reflexivity of R : If $a \in A$, then $a R a$ hence $a R^{+} a$ by (1).
(b) Symmetry. Let $a R^{+} b$. By (\dagger), we have,

$$
\begin{equation*}
\text { for some } n>0, a R^{n} b \tag{2}
\end{equation*}
$$

By Problem 5, we have $b R^{n} a$, hence (def. of \bigcup)

$$
b \bigcup_{n=1}^{\infty} R^{n} a
$$

By the above and (\dagger), we have

$$
b R^{+} a
$$

Given the red Let, what we concluded immediately above is what we needed to establish symmetry.

[^0]: ${ }^{\dagger}$ I remarked in class more than once that the unidirectional definition of symmetry, " $x \mathbb{R} y \rightarrow y \mathbb{R} x$ " is really an equivalence " $x \mathbb{R} y \equiv y \mathbb{R} x$ " as we get the \leftarrow direction by repeating the definition right-to-left.

