Lassonde School of Engineering

Dept. of EECS

Professor G. Tourlakis EECS 1028 Z. Problem Set No3 —SOLUTIONS Posted: Mar. 22, 2024

1. (4 MARKS) Show that if \mathbb{F} is a function and dom(\mathbb{F}) is a set then \mathbb{F} is a set.

Proof. The function is $\mathbb{F} : \operatorname{dom}(\mathbb{F}) \to \operatorname{ran}(\mathbb{F})$.

In particular it is onto $\operatorname{ran}(\mathbb{F})$ —<u>every</u> function $\mathbb{G} : \mathbb{A} \to \mathbb{B}$ is onto its range: Any $b \in \operatorname{ran}(\mathbb{G})$ implies that b is one of the <u>generated outputs</u>, meaning $(\exists x \in \operatorname{dom}(\mathbb{G}))\mathbb{G}(x) = b$.

Thus $\mathbb{F}[\operatorname{dom}(\mathbb{F})] = \operatorname{ran}(\mathbb{F})$ (Because: $\mathbb{F}[\operatorname{dom}(\mathbb{F})] \subseteq \operatorname{ran}(\mathbb{F})$ is trivial —all the outputs of a function go in its range; by definition of range. The " \supseteq " is by the argument above.

By a theorem in the Notes (5.1.9), ran (\mathbb{F}) is a set since dom (\mathbb{F}) is.

Hence so is $\mathbb{F} \subseteq \operatorname{dom}(\mathbb{F}) \times \operatorname{ran}(\mathbb{F})$ by the subclass theorem.

2. (3 MARKS) True or False and WHY? (without the <u>correct</u> "WHY" this maxes out to 0 (zero) Marks). If P is a <u>function</u> and ran(P) is a set, IS then P a set?

Answer. False. Consider the function below \mathbb{P} (trivially single-valued: thus a function). It has $ran(\mathbb{P}) = \{0\}$, a <u>set</u>.

$$\mathbb{P} = \Big\{ (x,0) : x = x \Big\}$$

If this function is a set then so is its domain by a known theorem from class (4.1.5).

However dom(\mathbb{P}) = {x : x = x} = \mathbb{U} that we know is a **proper** class. \Box

G. Tourlakis

Page 1

3. (3 MARKS) Prove that if the <u>function</u> f is 1-1, then f^{-1} —the converse of the <u>relation</u> f— is also a function.

Caution! The ONLY assumptions here are

- 1) f is a function and
- 2) it is 1-1.

f MAY be <u>nontotal</u>, <u>non onto</u> and have a lot of other "non" properties that you may <u>HOWEVER NEITHER</u> assume, NOR negate! Either way they are <u>IRRELEVANT</u> to the question!! **You MAY ONLY ASSUME WHAT I GAVE YOU HERE!!**

Proof. Given that f is 1-1, hence for all x, y, z we have

$$xfz \wedge yfz \to x = y \tag{1}$$

Let me write the above in terms of " f^{-1} ", the converse RELATION.

$$zf^{-1}x \wedge zf^{-1}y \to x = y \tag{2}$$

(2) says that the RELATION " f^{-1} " is SINGLE-VALUED; A **FUNC-TION**.

- **4.** Given a relation $R: A \to A$. Prove
 - (a) (2 MARKS) $\Delta_A \circ R = R$ **Proof**.
 - Do $\Delta_A \circ R \subseteq R$: Let $x\Delta_A \circ Ry$. Then $x\Delta_A z$ and zRy for some z. But x = z by def. of Δ_A . Thus the red part becomes xRy.
 - Do $R \subseteq \Delta_A \circ R$: Let xRy. Then also

$$\underbrace{x\Delta_A x}_{Def. of \Delta_A} Ry$$

Therefore $x\Delta_A \circ Ry$.

(b) (2 MARKS) $R \circ \Delta_A = R$.

Proof.

• Do $R \circ \Delta_A \subseteq R$: Let $xR \circ \Delta_A y$. This says xRz and $z\Delta_A y$ for some z. By Δ -definition, z = y and the red part becomes xRy. Done.

Page 2

G. Tourlakis

- Do $R \subseteq R \circ \Delta_A$: Let xRy. We also have $y\Delta_A y$ by Δ_A -definition. Thus $xRy\Delta_A y$, hence $xR \circ \Delta_A y$. Done.
- **5.** Let $f : A \to B$ be a 1-1 correspondence. <u>Then Prove</u>:
 - (3 MARKS) $f^{-1}: B \to A$ is also a 1-1 correspondence. **Proof**.
 - (a) f^{-1} is a function by Exercise 3. above.
 - (b) f^{-1} is 1-1. Indeed, Let $xf^{-1}y$ and $zf^{-1}y$. This means the same as (definition of " f^{-1} ") yfx and yfz. Since f is a function (single-valued) x = z. This conclusion and the red "Let" assumption establish that f^{-1} is 1-1.
 - (c) By assumption, f is total on A and onto B. From Notes/Class (4.4.15) we have

$$A = \operatorname{dom}(f) = \operatorname{ran}(f^{-1}) \tag{1}$$

and

$$\operatorname{dom}(f^{-1}) = \operatorname{ran}(f) = B \tag{2}$$

(1) and (2) prove that f^{-1} is total on B and onto A.

• (2 MARKS) If $gf = \mathbf{1}_A$, then we have $g = f^{-1}$ where f^{-1} is the <u>converse</u> of f.

Proof. Note that our f is the same as above, a 1-1 correspondence $A \stackrel{f}{\sim} B$.

Now apply f^{-1} to the right side of the given equality:

$$(gf)f^{-1} = \mathbf{1}_A f^{-1} \stackrel{exerc. 4}{=} f^{-1}$$
 (3)

On the other hand,

$$(gf)f^{-1 \text{ composition is assoc.}} g(ff^{-1}) = g\mathbf{1}_B \stackrel{4}{=} g \tag{4}$$

We are done by (3) and (4).

Wait! Why is $ff^{-1} = \mathbf{1}_B$? Because by Exercise 5c above, for **ANY** $x \in B$, it is $f^{-1}(x) = y$ for a unique $y \in A$. Thus, f(y) = x by definition of converse.

Substituting y by $f^{-1}(x)$ we obtain $ff^{-1}(x) = f(f^{-1}(x)) = f(y) = x \in B$. That is, is $ff^{-1} = \mathbf{1}_B$.

G. Tourlakis

Page 3

- (2 MARKS) If $fh = \mathbf{1}_B$, then we have h = f
- (2 MARKS) If $fh = \mathbf{1}_B$, then we have $h = f^{-1}$ where f^{-1} is the <u>converse</u> of f.

Proof. Similar to the proof of the previous bullet:

Note that our f is the same as above, a 1-1 correspondence $A \stackrel{f}{\sim} B$. Now apply f^{-1} to the LEFT side (this time) of the given equality:

$$f^{-1}(fh) = f^{-1} \mathbf{1}_B \stackrel{exerc. \ 4}{=} f^{-1} \tag{5}$$

On the other hand,

$$f^{-1}(fh) \stackrel{composition \ is \ assoc.}{=} (f^{-1}f)h = \mathbf{1}_A h \stackrel{4}{=} h \tag{6}$$

We are done by (5) and (6).

Wait! Why is $f^{-1}f = \mathbf{1}_A$? Because by Exercise 5c above, for **ANY** $x \in A$, it is f(x) = y for a unique $y \in B$. Thus, $f^{-1}(y) = x$ by definition of converse.

Substituting y by f(x) we obtain $f^{-1}f(x) = f^{-1}(f(x)) = f^{-1}(y) = x \in A$. That is, is $f^{-1}f = \mathbf{1}_A$.

6. (4 MARKS) Let < be an abstract (strict) order and \mathbb{B} be any class.

Prove that $< |\mathbb{B}$ is an order <u>on</u> \mathbb{B} .

Hint. The notation "< |B" is given in the online Notes (where this Exercise is suggested for practice).

Proof. The notation $< |\mathbb{B} \text{ means} < \cap (\mathbb{B} \times \mathbb{B}).$

First off, for the "<u>on</u> \mathbb{B} " part, whatever kind of <u>relation</u> " $< \cap (\mathbb{B} \times \mathbb{B})$ " proves to be it is a relation (a class of pairs) that is $\subseteq \mathbb{B} \times \mathbb{B}$. So the relation $< \cap (\mathbb{B} \times \mathbb{B})$ is "on \mathbb{B} ".

So I prove that the latter is an order:

• Irreflexive: $(x, y) \notin <$, for all x = y since < is an order. But then such a pair (x, y) cannot be in the intersection $< \cap (\mathbb{B} \times \mathbb{B})$ either. This proves that $< \cap (\mathbb{B} \times \mathbb{B})$ is irreflexive.

Page 4

G. Tourlakis

- Transitive: Let (x, y) and (y, z) be in $< \cap (\mathbb{B} \times \mathbb{B})$. So,
 - (a) the two pairs are in $\mathbb{B} \times \mathbb{B}$ in particular, and thus, all of x, y, z are in \mathbb{B} .
 - (b) the two pairs are also in < and since this is an order (hence transitive) we have $(x, z) \in <$.

Since x, z are in \mathbb{B} by item (a), we have $(x, z) \in (\mathbb{B} \times \mathbb{B})$. This and the previous sentence imply that $(x, z) \in \langle \cap (\mathbb{B} \times \mathbb{B}) \rangle$. Done.

7. Suppose we know that <u>each</u> of A_n , $n \ge 0$, is <u>countable</u>.

Then do the following:

- (a) (3 MARKS) Prove that $\{A_i : i \in \mathbb{N}\}$ is a set. If you used some of the Principles 0–3 in this subquestion, be explicit! *Hint.* The countability of the A_n is irrelevant to this subquestion. *Proof.* Each A_n has a unique label from \mathbb{N} . Since that qualifies the assignment of these labels/indices as a valid labelling (no two different sets among the A_i have the same label) and since the label class \mathbb{N} is a set, then by Principle 3, the family $F = \{A_0, A_1, A_2, A_3, \ldots\}$ is a set. \Box
- (b) (4 MARKS) Prove that $\bigcup \{A_i : i \in \mathbb{N}\} = \bigcup_{i \ge 0} A_i$ is countable. **Proof.** Let A_n be enumerated as

$$A_n = \left\{ a_{n,0}, a_{n,1}, a_{n,2}, a_{n,3}, \dots \right\}$$

Arrange all these enumerations as rows in an infinite \times infinite Matrix and traverse as shown by the NE arrows to effect an enumeration of $\bigcup \{A_i : i \in \mathbb{N}\}.$

G. Tourlakis

Page 5

(c) (2 MARKS) Did you need the Axiom of Choice in any of the two subquestions above?

Explain WHY clearly —in a FEW words— you had to, or did not have to.

Answer. The Axiom of Choice is technically needed in the above subquestion (b) only. Each A_n has infinitely many enumerations and I need to choose ONE row out of EACH ONE of these infinitely many enumerations. A mathematical "agent" that will do this for me is the Axiom of Choice.

While we must be <u>aware</u> when the Axiom is **needed** (namely, when I am facing in my *PROOF* infinitely many choices that I *CANNOT* describe *FINITELY*), nevertheless in this introductory course we are content with just <u>awareness</u>. We are not asked to, and we do not explicitly, show how exactly we <u>use</u> the Axiom.

- 8. (a) (1 MARK) What does the name V stand for?
 Answer. This is the proper class of <u>all sets</u>. It is U with all atoms removed.
 - (b) (6 MARKS) Prove that the relation $\sim \underline{\text{on}} \mathbb{V}$ is symmetric, transitive and reflexive.

Proof.

- **Reflexive** For any $A \in \mathbb{V}$, I have $A \sim A$. The identity function $\mathbf{1}_A : A \to A$ is the 1-1 correspondence in this case.
- **Symmetric** Let $A \sim B$ because $f : A \to B$ is a 1-1 correspondence. We saw (in Exercise 5) that $f^{-1} : B \to A$ is also a 1-1 correspondence. Thus $B \sim A$.
- **Transitive** Let $f : A \to B$ and $g : B \to C$ be 1-1 correspondences. Then so is $gf : A \to C$, i.e., $A \stackrel{gf}{\sim} C$. Indeed, $gf : A \to C$ is total, 1-1, and onto.

Page 6

G. Tourlakis

Total Is $gf(x) \downarrow$ for all $x \in A$? Well, gf(x) = g(f(x)) and $f(x) \downarrow$. So f(x) is an object in B. But $g(b) \downarrow$ for all objects in B. So $g(f(x)) \downarrow$ for all $x \in A$.

Onto We want to show that the equation

$$gf(x) = c \tag{1}$$

has an x-solution for all $c \in C$. Well, g(y) = c has solutions for all $c \in C$ since g is onto C. We can now solve (1):

- First find $y \in B$ for g(y) = c. I can do that as g is onto.
- As f is onto B, <u>I can find</u> $x \in A$ so that f(x) = y.

We have g(f(x)) = g(y) = c. We solved (1) —solution is x— since fg(x) = f(g(x)) = c.

1-1 Prove that gf or $f \circ g$ is 1-1. Assume, in relational notation that

$$xf \circ g\mathbf{z} \wedge yf \circ g\mathbf{z} \tag{2}$$

and prove x = y. First, (2) implies that xfwgz for some wand yfugz for some u.

Since g is 1-1, we have w = u. Then we have xfw and yfw. Since f is 1-1, it is x = y. Done.