Lassonde School of Engineering
 Dept. of EECS
 Professor G. Tourlakis
 EECS 1028 Z. Problem Set No3 -SOLUTIONS

Posted: Mar. 22, 2024

1. (4 MARKS) Show that if \mathbb{F} is a function and $\operatorname{dom}(\mathbb{F})$ is a set then \mathbb{F} is a set.

Proof. The function is $\mathbb{F}: \operatorname{dom}(\mathbb{F}) \rightarrow \operatorname{ran}(\mathbb{F})$.
In particular it is onto $\operatorname{ran}(\mathbb{F})$ - every function $\mathbb{G}: \mathbb{A} \rightarrow \mathbb{B}$ is onto its range: Any $b \in \operatorname{ran}(\mathbb{G})$ implies that b is one of the generated outputs, meaning $(\exists x \in \operatorname{dom}(\mathbb{G})) \mathbb{G}(x)=b$.

Thus $\mathbb{F}[\operatorname{dom}(\mathbb{F})]=\operatorname{ran}(\mathbb{F})($ Because: $\mathbb{F}[\operatorname{dom}(\mathbb{F})] \subseteq \operatorname{ran}(\mathbb{F})$ is trivial -all the outputs of a function go in its range; by definition of range. The " \supseteq " is by the argument above.

By a theorem in the Notes (5.1.9), $\operatorname{ran}(\mathbb{F})$ is a set since $\operatorname{dom}(\mathbb{F})$ is.
Hence so is $\mathbb{F} \subseteq \operatorname{dom}(\mathbb{F}) \times \operatorname{ran}(\mathbb{F})$ by the subclass theorem.
2. (3 MARKS) True or False and WHY? (without the correct "WHY" this maxes out to 0 (zero) Marks). If \mathbb{P} is a function and $\operatorname{ran}(\mathbb{P})$ is a set, IS then \mathbb{P} a set?

Answer. False. Consider the function below \mathbb{P} (trivially single-valued: thus a function). It has $\operatorname{ran}(\mathbb{P})=\{0\}$, a set.

$$
\mathbb{P}=\{(x, 0): x=x\}
$$

If this function is a set then so is its domain by a known theorem from class (4.1.5).
However $\operatorname{dom}(\mathbb{P})=\{x: x=x\}=\mathbb{U}$ that we know is a proper class.
3. (3 MARKS) Prove that if the function f is $1-1$, then f^{-1} - the converse of the relation f - is also a function.
Caution! The ONLY assumptions here are

1) f is a function and
$2)$ it is $1-1$.
f MAY be nontotal, non onto and have a lot of other "non" properties that you may HOWEVER NEITHER assume, NOR negate! Either way they are IRRELEVANT to the question!! You MAY ONLY ASSUME WHAT I GAVE YOU HERE!!
Proof. Given that f is $1-1$, hence for all x, y, z we have

$$
\begin{equation*}
x f z \wedge y f z \rightarrow x=y \tag{1}
\end{equation*}
$$

Let me write the above in terms of " $f^{-1 "}$, the converse RELATION.

$$
\begin{equation*}
z f^{-1} x \wedge z f^{-1} y \rightarrow x=y \tag{2}
\end{equation*}
$$

(2) says that the RELATION " f^{-1} " is SINGLE-VALUED; A FUNCTION.
4. Given a relation $R: A \rightarrow A$. Prove
(a) (2 MARKS) $\Delta_{A} \circ R=R$

Proof.

- Do $\Delta_{A} \circ R \subseteq R$: Let $x \Delta_{A} \circ R y$. Then $x \Delta_{A} z$ and $z R y$ for some z. But $x=z$ by def. of Δ_{A}. Thus the red part becomes $x R y$.
- Do $R \subseteq \Delta_{A} \circ R$: Let $x R y$. Then also

$$
\underbrace{x \Delta_{A} x}_{\text {Def. of } \Delta_{A}} R y
$$

Therefore $x \Delta_{A} \circ R y$.
(b) (2 MARKS) $R \circ \Delta_{A}=R$.

Proof.

- Do $R \circ \Delta_{A} \subseteq R$: Let $x R \circ \Delta_{A} y$. This says $x R z$ and $z \Delta_{A} y$ for some z. By Δ-definition, $z=y$ and the red part becomes $x R y$. Done.

Page 2

G. Tourlakis

- Do $R \subseteq R \circ \Delta_{A}$: Let $x R y$. We also have $y \Delta_{A} y$ by $\Delta_{A^{-}}$-definition. Thus $x R y \Delta_{A} y$, hence $x R \circ \Delta_{A} y$. Done.

5. Let $f: A \rightarrow B$ be a 1-1 correspondence. Then Prove:

- (3 MARKS) $f^{-1}: B \rightarrow A$ is also a $1-1$ correspondence.

Proof.

(a) f^{-1} is a function by Exercise 3. above.
(b) f^{-1} is 1-1. Indeed, Let $x f^{-1} y$ and $z f^{-1} y$. This means the same as (definition of " $f^{-1 "}$) yfx and $y f z$. Since f is a function (single-valued) $x=z$. This conclusion and the red "Let" assumption establish that f^{-1} is 1-1.
(c) By assumption, f is total on A and onto B. From Notes/Class (4.4.15) we have

$$
\begin{equation*}
A=\operatorname{dom}(f)=\operatorname{ran}\left(f^{-1}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{dom}\left(f^{-1}\right)=\operatorname{ran}(f)=B \tag{2}
\end{equation*}
$$

(1) and (2) prove that f^{-1} is total on B and onto A.

- (2 MARKS) If $g f=\mathbf{1}_{A}$, then we have $g=f^{-1}$ where f^{-1} is the converse of f.
Proof. Note that our f is the same as above, a 1-1 correspondence $A \stackrel{f}{\sim} B$.
Now apply f^{-1} to the right side of the given equality:

$$
\begin{equation*}
(g f) f^{-1}=\mathbf{1}_{A} f^{-1} \stackrel{\text { exerc. }}{=} \mathbb{U}^{-1} \tag{3}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
(g f) f^{-1} \stackrel{\text { composition }}{=}{ }^{\text {is assoc. }} g\left(f f^{-1}\right)=g \mathbf{1}_{B} \stackrel{\text { 国 }}{=} g \tag{4}
\end{equation*}
$$

We are done by (3) and (4).
Wait! Why is $f f^{-1}=\mathbf{1}_{B}$? Because by Exercise 5 c above, for ANY $x \in B$, it is $f^{-1}(x)=y$ for a unique $y \in A$. Thus, $f(y)=x$ by definition of converse.
Substituting y by $f^{-1}(x)$ we obtain $f f^{-1}(x)=f\left(f^{-1}(x)\right)=f(y)=$ $x \in B$. That is, is $f f^{-1}=\mathbf{1}_{B}$.

Page 3

- (2 MARKS) If $f h=\mathbf{1}_{B}$, then we have $h=f^{-1}$ where f^{-1} is the converse of f.
Proof. Similar to the proof of the previous bullet:
Note that our f is the same as above, a 1-1 correspondence $A \stackrel{f}{\sim} B$.
Now apply f^{-1} to the LEFT side (this time) of the given equality:

$$
\begin{equation*}
f^{-1}(f h)=f^{-1} \mathbf{1}_{B} \stackrel{\text { exerc. } \mathbb{U}^{-}}{=} f^{-1} \tag{5}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
f^{-1}(f h)^{\text {composition is assoc. }}\left(f^{-1} f\right) h=\mathbf{1}_{A} h \stackrel{\text { 包 }}{=} h \tag{6}
\end{equation*}
$$

We are done by (5) and (6).
Wait! Why is $f^{-1} f=\mathbf{1}_{A}$? Because by Exercise 5 c above, for ANY $x \in A$, it is $f(x)=y$ for a unique $y \in B$. Thus, $f^{-1}(y)=x$ by definition of converse.
Substituting y by $f(x)$ we obtain $f^{-1} f(x)=f^{-1}(f(x))=f^{-1}(y)=$ $x \in A$. That is, is $f^{-1} f=\mathbf{1}_{A}$.
6. (4 MARKS) Let $<$ be an abstract (strict) order and \mathbb{B} be any class. Prove that $<\mid \mathbb{B}$ is an order on \mathbb{B}.
Hint. The notation " $<\mid B$ " is given in the online Notes (where this Exercise is suggested for practice).
Proof. The notation $<\mid \mathbb{B}$ means $<\cap(\mathbb{B} \times \mathbb{B})$.

First off, for the "on \mathbb{B} " part, whatever kind of relation " $<\cap(\mathbb{B} \times \mathbb{B})$ " proves to be it is a relation (a class of pairs) that is $\subseteq \mathbb{B} \times \mathbb{B}$. So the relation $<\cap(\mathbb{B} \times \mathbb{B})$ is "on \mathbb{B} ".

So I prove that the latter is an order:

- Irreflexive: $(x, y) \notin<$, for all $x=y$ since $<$ is an order. But then such a pair (x, y) cannot be in the intersection $<\cap(\mathbb{B} \times \mathbb{B})$ either. This proves that $<\cap(\mathbb{B} \times \mathbb{B})$ is irreflexive.
- Transitive: Let (x, y) and (y, z) be in $<\cap(\mathbb{B} \times \mathbb{B})$.

So,
(a) the two pairs are in $\mathbb{B} \times \mathbb{B}$ in particular, and thus, all of x, y, z are in \mathbb{B}.
(b) the two pairs are also in $<$ and since this is an order (hence transitive) we have $(x, z) \in<$.

Since x, z are in \mathbb{B} by item (a), we have $(x, z) \in(\mathbb{B} \times \mathbb{B})$. This and the previous sentence imply that $(x, z) \in<\cap(\mathbb{B} \times \mathbb{B})$. Done.
7. Suppose we know that each of $A_{n}, n \geq 0$, is countable.

Then do the following:
(a) (3 MARKS) Prove that $\left\{A_{i}: i \in \mathbb{N}\right\}$ is a set.

If you used some of the Principles $0-3$ in this subquestion, be explicit!
Hint. The countability of the A_{n} is irrelevant to this subquestion.
Proof. Each A_{n} has a unique label from \mathbb{N}. Since that qualifies the assignment of these labels/indices as a valid labelling (no two different sets among the A_{i} have the same label) and since the label class \mathbb{N} is a set, then by Principle 3 , the family $F=\left\{A_{0}, A_{1}, A_{2}, A_{3}, \ldots\right\}$ is a set.
(b) (4 MARKS) Prove that $\bigcup\left\{A_{i}: i \in \mathbb{N}\right\}=\bigcup_{i \geq 0} A_{i}$ is countable.

Proof. Let A_{n} be enumerated as

$$
A_{n}=\left\{a_{n, 0}, a_{n, 1}, a_{n, 2}, a_{n, 3}, \ldots\right\}
$$

Arrange all these enumerations as rows in an infinite \times infinite Matrix and traverse as shown by the NE arrows to effect an enumeration of $\bigcup\left\{A_{i}: i \in \mathbb{N}\right\}$.

Page 5
G. Tourlakis
(c) (2 MARKS) Did you need the Axiom of Choice in any of the two subquestions above?
Explain WHY clearly -in a FEW words- you had to, or did not have to.
Answer. The Axiom of Choice is technically needed in the above subquestion (b) only. Each A_{n} has infinitely many enumerations and I need to choose ONE row out of EACH ONE of these infinitely many enumerations. A mathematical "agent" that will do this for me is the Axiom of Choice.

While we must be aware when the Axiom is needed (namely, when I am facing in my PROOF infinitely many choices that I CANNOT describe FINITELY), nevertheless in this introductory course we are content with just awareness. We are not asked to, and we do not explicitly, show how exactly we use the Axiom.
8. (a) (1 MARK) What does the name \mathbb{V} stand for?

Answer. This is the proper class of all sets. It is \mathbb{U} with all atoms removed.
(b) (6 MARKS) Prove that the relation $\sim \underline{\text { on }} \mathbb{V}$ is symmetric, transitive and reflexive.
Proof.
Reflexive For any $A \in \mathbb{V}$, I have $A \sim A$.
The identity function $\mathbf{1}_{A}: A \rightarrow A$ is the 1-1 correspondence in this case.
Symmetric Let $A \sim B$ because $f: A \rightarrow B$ is a 1-1 correspondence. We saw (in Exercise 5) that $f^{-1}: B \rightarrow A$ is also a 1-1 correspondence. Thus $B \sim A$.
Transitive Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be 1-1 correspondences. Then so is $g f: A \rightarrow C$, i.e., $A \stackrel{g f}{\sim} C$.
Indeed, $g f: A \rightarrow C$ is total, 1-1, and onto.

Total Is $g f(x) \downarrow$ for all $x \in A$? Well, $g f(x)=g(f(x))$ and $f(x) \downarrow$. So $f(x)$ is an object in B. But $g(b) \downarrow$ for all objects in B. So $g(f(x)) \downarrow$ for all $x \in A$.
Onto We want to show that the equation

$$
\begin{equation*}
g f(x)=c \tag{1}
\end{equation*}
$$

has an x-solution for all $c \in C$. Well, $g(y)=c$ has solutions for all $c \in C$ since g is onto C.
We can now solve (1):

- First find $y \in B$ for $g(y)=c$. I can do that as g is onto.
- As f is onto B, $\underline{\mathrm{I} \text { can find }} x \in A$ so that $f(x)=y$.

We have $g(f(x))=g(y)=c$. We solved (1)-solution is x - since $f g(x)=f(g(x))=c$.
1-1 Prove that $g f$ or $f \circ g$ is 1-1. Assume, in relational notation that

$$
\begin{equation*}
x f \circ g z \wedge y f \circ g z \tag{2}
\end{equation*}
$$

and prove $x=y$. First, (2) implies that $x f w g z$ for some w and $y f u g z$ for some u.
Since g is 1-1, we have $w=u$. Then we have $x f w$ and $y f w$. Since f is $1-1$, it is $x=y$. Done.

