Lassonde School of Engineering

Dept. of EECS
Professor G. Tourlakis
EECS 1028 Z. Problem Set No
Posted: Feb. 23, 2024
Due: Mar. 22, 2024; by 6:00 pm, in Class.

Q: How do I submit?

A:
(1) Submission must be a SINGLE standalone file to eClass. Submission by email is not accepted.
(2) Accepted File Types: PNG, JPEG, PDF, RTE, MS WORD, OPEN OFFICE, ZIP
${ }^{(3)}$ Deadline is strict, electronically limited.
${ }^{\text {(4) }}$ MAXIMUM file size $=10 \mathrm{MB}$
(3)

It is worth remembering (from the course outline):
The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course, as you recall.

1. (4 MARKS) Show that if \mathbb{F} is a function and $\operatorname{dom}(\mathbb{F})$ is a set then \mathbb{F} is a set.
2. (3 MARKS) True or False and WHY? (without the correct "WHY" this maxes out to 0 (zero) Marks). If \mathbb{P} is a function and $\operatorname{ran}(\mathbb{P})$ is a set, IS then \mathbb{P} a set?
3. (3 MARKS) Prove that if the function f is $1-1$, then f^{-1} - the converse of the relation f - is also a function.
Caution! The ONLY assumptions here are
1) f is a function and
$2)$ it is $1-1$.
f MAY be nontotal, non onto and have a lot of other "non" properties that you may HOWEVER NEITHER assume, NOR negate! Either way they are IRRELEVANT to the question!! You MAY ONLY ASSUME WHAT I GAVE YOU HERE!!
4. Given a relation $R: A \rightarrow A$. Prove
(a) (2 MARKS) $\Delta_{A} \circ R=R$ and
(b) $(2 \mathrm{MARKS}) R \circ \Delta_{A}=R$.
5. Let $f: A \rightarrow B$ be a $1-1$ correspondence. Then Prove:

- (3 MARKS) $f^{-1}: B \rightarrow A$ is also a $1-1$ correspondence.
- (2 MARKS) If $g f=\mathbf{1}_{A}$, then we have $g=f^{-1}$ where f^{-1} is the converse of f.
- (2 MARKS $)$ If $f h=\mathbf{1}_{B}$, then we have $h=f^{-1}$ where f^{-1} is the converse of f.

Hint. You may use relational notation if convenient, that is, " $f \circ g$ " instead of " $g f$ ".
6. (4 MARKS) Let $<$ be an abstract (strict) order and \mathbb{B} be any class.

Prove that $<\mid \mathbb{B}$ is an order on \mathbb{B}.
Hint. The notation " $<\mid B$ " is given in the online Notes (where this Exercise is suggested for practice).
Page 2
G. Tourlakis
7. Suppose we know that each of $A_{n}, n \geq 0$, is countable.

Then do the following:
(a) (3 MARKS) Prove that $\left\{A_{i}: i \in \mathbb{N}\right\}$ is a set.

If you used some of the Principles $0-3$ in this subquestion, be explicit! Hint. The countability of the A_{n} is irrelevant to this subquestion.
(b) (4 MARKS) Prove that $\bigcup\left\{A_{i}: i \in \mathbb{N}\right\}=\bigcup_{i \geq 0} A_{i}$ is countable.
(c) (2 MARKS) Did you need the Axiom of Choice in any of the two subquestions above?
Explain WHY clearly -in a FEW words - you had to, or did not have to.
8. (a) (1 MARK) What does the name \mathbb{V} stand for?
(b) (6 MARKS) Prove that the relation $\sim \underline{\text { on }} \mathbb{V}$ is symmetric, transitive and reflexive.

