Lassonde School of Engineering

Dept. of EECS

Professor G. Tourlakis

EECS 1028 Z. Problem Set No3

Posted: Feb. 23, 2024

Due: Mar. 22, 2024; by 6:00pm, in eClass.

Q: How do I submit?

A:

- (1) Submission must be a SINGLE standalone file to eClass. Submission by email is not accepted.
- (2) Accepted File Types: PNG, JPEG, PDF, RTF, MS WORD, OPEN OFFICE, ZIP
- (3) Deadline is strict, electronically limited.
- (4) MAXIMUM file size = 10MB

It is worth remembering (from the course outline):

The homework **must** be each individual's <u>own work</u>. While consultations with the <u>instructor</u>, tutor, and <u>among students</u>, are part of the <u>learning process</u> and are encouraged, **nevertheless**, at the end of all this consultation each student will have to produce an <u>individual report</u> rather than a *copy* (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course, as you recall.

Page 1 G. Tourlakis

- 1. (4 MARKS) Show that if \mathbb{F} is a function and dom(\mathbb{F}) is a set then \mathbb{F} is a set.
- **2.** (3 MARKS) True or False and WHY? (without the <u>correct</u> "WHY" this maxes out to 0 (zero) Marks). If \mathbb{P} is a <u>function</u> and ran(\mathbb{P}) is a set, IS then \mathbb{P} a set?
- **3.** (3 MARKS) Prove that if the <u>function</u> f is 1-1, then f^{-1} —the converse of the <u>relation</u> f— is also a function.

Caution! The ONLY assumptions here are

- 1) f is a function and
- 2) it is 1-1.

f MAY be <u>nontotal</u>, <u>non onto</u> and have a lot of other "non" properties that you may HOWEVER NEITHER assume, NOR negate! Either way they are <u>IRRELEVANT</u> to the question!! **You MAY ONLY ASSUME** WHAT I GAVE YOU HERE!!

- **4.** Given a relation $R: A \to A$. Prove
 - (a) (2 MARKS) $\Delta_A \circ R = R$ and
 - (b) (2 MARKS) $R \circ \Delta_A = R$.
- **5.** Let $f: A \to B$ be a 1-1 correspondence. Then Prove:
 - (3 MARKS) $f^{-1}: B \to A$ is also a 1-1 correspondence.
 - (2 MARKS) If $gf = \mathbf{1}_A$, then we have $g = f^{-1}$ where f^{-1} is the converse of f.
 - (2 MARKS) If $fh = \mathbf{1}_B$, then we have $h = f^{-1}$ where f^{-1} is the <u>converse</u> of f.

Hint. You may use relational notation if convenient, that is, " $f \circ g$ " instead of "gf".

6. (4 MARKS) Let < be an abstract (strict) order and \mathbb{B} be <u>any</u> class.

Prove that $\langle | \mathbb{B} |$ is an order <u>on</u> \mathbb{B} .

Hint. The notation "< |B|" is given in the online Notes (where this Exercise is suggested for practice).

Page 2 G. Tourlakis

- 7. Suppose we know that each of A_n , $n \ge 0$, is countable. Then do the following:
 - (a) (3 MARKS) Prove that $\{A_i : i \in \mathbb{N}\}$ is a set.

 If you used some of the Principles 0–3 in this subquestion, be explicit!

 Hint. The countability of the A_n is irrelevant to this subquestion.
 - (b) (4 MARKS) Prove that $\bigcup \{A_i : i \in \mathbb{N}\} = \bigcup_{i \geq 0} A_i$ is countable.
 - (c) (2 MARKS) Did you need the Axiom of Choice in any of the two subquestions above?

 Explain WHY clearly —in a FEW words— you had to, or did not have to.
- **8.** (a) (1 MARK) What does the name \mathbb{V} stand for?
 - (b) (6 MARKS) Prove that the relation $\sim \underline{\mathbf{on}} \ \mathbb{V}$ is symmetric, transitive and reflexive.

Page 3 G. Tourlakis