York University Department of Electrical Engineering and Computer Science Lassonde School of Engineering

MATH 1028Z. MID TERM TAKE-HOME (For ALL), March 4, 2024; 13:30-14:30 Professor George Tourlakis

Question 1. (4 MARKS) Prove that the relation \subseteq —where NO *left/right* fields are restricting it— is a proper class. **Proof.** For *every* <u>SET</u> A, we have $\emptyset \subseteq A$. But ALL the sets A collected into a class form the proper class \mathbb{V} .

Thus

$$\mathbb{V} \subseteq \operatorname{ran}(\subseteq) \tag{1}$$

Since all sets ARE in \mathbb{V} , we also trivially have also $ran(\subseteq) \subseteq \mathbb{V}$ which turns (1) into

$$\operatorname{ran}(\subseteq) = \mathbb{V} \tag{2}$$

We know however from class and notes (4.1.5) that if \mathbb{P} is a relation that *IS* a <u>set</u>, then ran(\mathbb{P}) is a set. By (2) ran(\subseteq) is a proper class. So \subseteq <u>CANNOT</u> be a set.

Question 2. (4 MARKS) Suppose $\mathbb{A} \subseteq \mathbb{B}$. Prove that if \mathbb{A} is a proper class, then so is \mathbb{B} .

Proof. By contradiction: So Let \mathbb{B} be a set. Then so is \mathbb{A} by the "subclass theorem". This contradiction to the problem's main assumption implies that our red "Let" is false. So \mathbb{B} is a proper class.

Question 3. (4 MARKS) Prove that the equality relation, =, <u>acting</u> on all objects of set theory, that is, on ALL sets and atoms, is a proper class.

Proof. Suppose instead that = is a set relation. Then by Theorem 4.1.5 — from class/web Notes—dom(=) is a set as well.

But dom(=) contains all sets and atoms, since = is the class $\{(x, x) : \text{for all sets and atoms } x\}$.

That is, $dom(=) = \mathbb{U}$, a proper class.

We just contradicted Theorem 4.1.5, so the **opposite** of what we assumed is true: = is a <u>non set</u> class; a proper class. \Box

Question 4. (a) (4 MARKS) For any classes \mathbb{A}, \mathbb{B} show that $\mathbb{A} \cap (\mathbb{A} \cup \mathbb{B}) = \mathbb{A}$.

(b) (4 MARKS) For any classes \mathbb{A} , \mathbb{B} show that $\mathbb{A} \cup (\mathbb{A} \cap \mathbb{B}) = \mathbb{A}$.

Caution. In each case you must show that BOTH sides of "=" have the same elements. **RECOM-MENDED** to use the technique "Assume $x \in lhs$. Here is my proof for $x \in rhs$ ". Repeat with the other direction: "Assume $x \in rhs$. ETC., ETC."

Proof.

(a') For (a) I need to show

$$\mathbb{A} \cap (\mathbb{A} \cup \mathbb{B}) \subseteq \mathbb{A} \tag{a_1}$$

Here it is.

Let $x \in lhs$ of " \subseteq ". By definition of " \cap ", $x \in$ the leftmost " \mathbb{A} " in (a_1) . Hence, trivially, is also in the rightmost " \mathbb{A} " (the rhs of " \subseteq ") *DONE* (a_1) .

and, also show

$$\mathbb{A} \cap (\mathbb{A} \cup \mathbb{B}) \supseteq \mathbb{A} \tag{a_2}$$

Here it is.

Let $x \in rhs$ of " \supseteq ". By definition of " \cup ", $x \in \mathbb{A} \cup \mathbb{B}$ as it needs to only be in one or the other operands of " \cup "; it is in \mathbb{A} . Now x being in both \mathbb{A} and in $\mathbb{A} \cup \mathbb{B}$ it is in their *intersection*, i.e., in lhs of " \supseteq ". *DONE* (a_2).

(b') For (b) I need to show

•

$$\mathbb{A} \cup (\mathbb{A} \cap \mathbb{B}) \subseteq \mathbb{A} \tag{b_1}$$

Here it is.

- Let $x \in lhs$ of " \subseteq ". By definition of " \cup ", I have two cases:
 - i. $x \in$ the leftmost "A" in (b_1) . Hence, trivially, is also in the rightmost "A" (the rhs of " \subseteq ") DONE (b_1) .

ii. $x \in \mathbb{A} \cap \mathbb{B}$. Then $x \in \mathbb{A}$ by def. of \cap and we are *DONE with the last case for* (b_1) . and, also show

$$\mathbb{A} \cup (\mathbb{A} \cap \mathbb{B}) \supseteq \mathbb{A} \tag{b_2}$$

Here it is.

Let $x \in rhs$ of " \supseteq ". By definition of " \cup ", $x \in \mathbb{A} \cup (\mathbb{A} \cap \mathbb{B})$ as it needs to only be in one or the other operands of " \cup ". *DONE* (b_2).