York University
 Department of Electrical Engineering and Computer Science
 Lassonde School of Engineering
 MATH 1028Z. MID TERM TAKE-HOME (For ALL), March 4, 2024;
 13:30-14:30
 Professor George Tourlakis

Question 1. (4 MARKS) Prove that the relation \subseteq —where NO left/right fields are restricting it— is a proper class.
Proof. For every $\underline{\text { SET }} A$, we have $\emptyset \subseteq A$. But ALL the sets A collected into a class form the proper class \mathbb{V}.
Thus

$$
\begin{equation*}
\mathbb{V} \subseteq \operatorname{ran}(\subseteq) \tag{1}
\end{equation*}
$$

Since all sets ARE in \mathbb{V}, we also trivially have also $\operatorname{ran}(\subseteq) \subseteq \mathbb{V}$ which turns (1) into

$$
\begin{equation*}
\operatorname{ran}(\subseteq)=\mathbb{V} \tag{2}
\end{equation*}
$$

We know however from class and notes (4.1.5) that if \mathbb{P} is a relation that $I S$ a set, then $\operatorname{ran}(\mathbb{P})$ is a set. By (2) $\operatorname{ran}(\subseteq)$ is a proper class. So $\subseteq \underline{\text { CANNOT be a set. }}$

Question 2. (4 MARKS) Suppose $\mathbb{A} \subseteq \mathbb{B}$. Prove that if \mathbb{A} is a proper class, then so is \mathbb{B}.
Proof. By contradiction: So Let \mathbb{B} be a set. Then so is \mathbb{A} by the "subclass theorem". This contradiction to the problem's main assumption implies that our red "Let" is false. So \mathbb{B} is a proper class.

Question 3. (4 MARKS) Prove that the equality relation, =, acting on all objects of set theory, that is, on ALL sets and atoms, is a proper class.
Proof. Suppose instead that $=$ is a set relation. Then by Theorem 4.1.5 -from class/web Notes$\operatorname{dom}(=)$ is a set as well.
But $\operatorname{dom}(=)$ contains all sets and atoms, since $=$ is the class $\{(x, x)$: for all sets and atoms $x\}$.
That is, $\operatorname{dom}(=)=\mathbb{U}$, a proper class.
We just contradicted Theorem 4.1.5, so the opposite of what we assumed is true: = is a non set class; a proper class.

Question 4. (a) (4 MARKS) For any classes \mathbb{A}, \mathbb{B} show that $\mathbb{A} \cap(\mathbb{A} \cup \mathbb{B})=\mathbb{A}$.
(b) (4 MARKS) For any classes \mathbb{A}, \mathbb{B} show that $\mathbb{A} \cup(\mathbb{A} \cap \mathbb{B})=\mathbb{A}$.

Caution. In each case you must show that BOTH sides of "=" have the same elements. RECOMMENDED to use the technique "Assume $x \in l h s$. Here is my proof for $x \in r h s$ ". Repeat with the other direction: "Assume $x \in r h s$. ETC., ETC."
Proof.
(a^{\prime}) For (a) I need to show

$$
\begin{equation*}
\mathbb{A} \cap(\mathbb{A} \cup \mathbb{B}) \subseteq \mathbb{A} \tag{1}
\end{equation*}
$$

Here it is.
Let $x \in l h s$ of " \subseteq ". By definition of " \cap ", $x \in$ the leftmost " \mathbb{A} " in $\left(a_{1}\right)$. Hence, trivially, is also in the rightmost " \mathbb{A} " (the rhs of " \subseteq ") DONE $\left(a_{1}\right)$.
and, also show
-

$$
\begin{equation*}
\mathbb{A} \cap(\mathbb{A} \cup \mathbb{B}) \supseteq \mathbb{A} \tag{2}
\end{equation*}
$$

Here it is.
Let $x \in r h s$ of " \supseteq ". By definition of " $\cup ", x \in \mathbb{A} \cup \mathbb{B}$ as it needs to only be in one or the other operands of " \cup "; it is in \mathbb{A}. Now x being in both \mathbb{A} and in $\mathbb{A} \cup \mathbb{B}$ it is in their intersection, i.e., in lhs of " \supseteq ". DONE $\left(a_{2}\right)$.
(b^{\prime}) For (b) I need to show

$$
\begin{equation*}
\mathbb{A} \cup(\mathbb{A} \cap \mathbb{B}) \subseteq \mathbb{A} \tag{1}
\end{equation*}
$$

Here it is.
Let $x \in l h s$ of " \subseteq ". By definition of " \cup ", I have two cases:
i. $x \in$ the leftmost " \mathbb{A} " in $\left(b_{1}\right)$. Hence, trivially, is also in the rightmost " \mathbb{A} " (the rhs of " \subseteq ") DONE $\left(b_{1}\right)$.
ii. $x \in \mathbb{A} \cap \mathbb{B}$. Then $x \in \mathbb{A}$ by def. of \cap and we are DONE with the last case for $\left(b_{1}\right)$.
and, also show
-

$$
\begin{equation*}
\mathbb{A} \cup(\mathbb{A} \cap \mathbb{B}) \supseteq \mathbb{A} \tag{2}
\end{equation*}
$$

Here it is.
Let $x \in r h s$ of " \supseteq ". By definition of " \cup ", $x \in \mathbb{A} \cup(\mathbb{A} \cap \mathbb{B})$ as it needs to only be in one or the other operands of " \cup ". DONE $\left(b_{2}\right)$.

