York University Department of Electrical Engineering and Computer Science Lassonde School of Engineering

MATH 1028Z. MID TERM TAKE-HOME (For ALL), March 4, 2024; 13:30-14:30

Professor George Tourlakis

By putting my name and student ID on this MID TERM page, I attest to the fact that my answers included here and submitted by eClass are my own work, and that I have acted with integrity, abiding by the *Senate Policy on Academic Honesty* that the instructor discussed at the beginning of the course and *linked the full Policy to the Course Outline*.

Student NAME (Clearly):_____

Student NUMBER (Clearly):_____

DATE (Clearly):_____

README FIRST! INSTRUCTIONS: 1. Please read ALL these instructions carefully before you start writing.

- 2. Please answer ALL the questions.
- **3.** Write all your answers on the pages of this book, below the questions.
- **4.** If you need more space please use the blank back pages but if so *do indicate* that what you wrote there is part of your answer and must be marked. Otherwise it will be viewed as "scratch work".
- 5. This is a TIME-LIMITED ON LINE *MID TERM*. You have 60 MIN to answer the MidTerm questions. <u>ABSOLUTELY</u> last opportunity to <u>upload</u> is **BY 14:30 (pm)**

Just like Assignments, here too Only <u>a SINGLE</u> file of $SIZE \leq 10MB$ can be uploaded per student.

- 6. eClass will reject files bigger than 10MB.
- 7. If you submit photographed copy it still must be ONE file that you submit. Either ZIP the PNG or JPEG images OR import them in MS Word and submit *ONE* Word *file* with the photos attached.
- **8.** Please write your answers by hand —see also 3. above— **as you normally do for assignments**.
- 9. Whichever theorems were *proved* in class or appeared in the assignments you may use without proof, **unless I am asking you to prove them in this MidTerm**. If you are not sure whether some statement has **indeed** been proved *in class*, I recommend that you prove it in order to be "safe".

Question	MAX POINTS	MARK
1	4	
2	4	
3	4	
4	8	
TOTAL	20	

Question 1. (4 MARKS) Prove that the relation \subseteq —where **NO** *left/right* fields are restricting it— is a proper class.

Mid Term Test

Question 2. (4 MARKS) Suppose $\mathbb{A} \subseteq \mathbb{B}$. Prove that if \mathbb{A} is a proper class, then so is \mathbb{B} .

Question 3. (4 MARKS) Prove that the equality relation, =, acting on all objects of set theory, that is on ALL sets and atoms, is a proper class.

Question 4. (a) (4 MARKS) For any classes \mathbb{A}, \mathbb{B} show that $\mathbb{A} \cap (\mathbb{A} \cup \mathbb{B}) = \mathbb{A}$.

(b) (4 MARKS) For any classes \mathbb{A} , \mathbb{B} show that $\mathbb{A} \cup (\mathbb{A} \cap \mathbb{B}) = \mathbb{A}$.

Caution. In each case you must show that BOTH sides of "=" have the same elements. **RECOM-MENDED** to use the technique "Assume $x \in lhs$. Here is my proof for $x \in rhs$ ". Repeat with the other direction: "Assume $x \in rhs$. ETC., ETC."

6