Why one should reset the noninput variables of M if it is used more than once in a program.

Consider the URM $M^{\mathbf{z}}_{\mathbf{x}}$ —that is, URM with input/output choice as shown—below:

 $\begin{array}{lll} 1: & \mathbf{x} \leftarrow \mathbf{x} + 1 \\ 2: & \mathbf{x} \leftarrow \mathbf{x} + 1 \\ 3: & \mathbf{z} \leftarrow 0 \end{array}$

4: stop

Here $M_{\mathbf{x}}^{\mathbf{z}} = \lambda z.2$.

What happens if we stack two copies of M on top of each other? Let's choose the same I/O variables.

We obtain, $N_{\mathbf{x}}^{\mathbf{z}}$ below:

 $1: \mathbf{x} \leftarrow \mathbf{x} + 1$ $2: \mathbf{x} \leftarrow \mathbf{x} + 1$ $3: \mathbf{z} \leftarrow 0$ $4: \mathbf{x} \leftarrow \mathbf{x} + 1$ $5: \mathbf{x} \leftarrow \mathbf{x} + 1$ $6: \mathbf{z} \leftarrow 0$ $7: \mathbf{z} \leftarrow 0$

7: stop

Note that $N_{\mathbf{x}}^{\mathbf{z}} = \lambda z.4$. This is odd given that N is

MM

and each M separately computes $\lambda z.2$.

What happened?

The bottom *M* does not work as expected! WHY?

Because the noninput variable (\mathbf{x}) of the second M was NOT set to 0. The second M starts off with *initial value* for \mathbf{x} equal to 2.

EECS 2001Z. George Tourlakis. Winter 2019