Lassonde Faculty of Engineering EEC

EECS2001B. Problem Set No
Posted: Sept. 17, 2022
Due: Oct. 21, 2022, by 3:00 pm; in the course's deClass, "Assignment \#1".

Q: How do I submit?

A:
(1) The text of all answers is expected to be typed.
(2) Submission must be ONLY ONE file
(3) Accepted File Types: PDF, RTF, MS WORD, ZIP
(4) Deadline is strict, electronically limited.
(5) MAXIMUM file size $=10 \mathrm{MB}$

The answers must be typed (but you may draw symbols by hand, if it is easier for you; MS Word has an equation editor that does almost all the symbols we use).

The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation
each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course.

1. (5 MARKS) By induction on the length of derivations prove that $\mathcal{P R} \subseteq \mathcal{P}$.
2. (2 MARKS) Using the preceding problem conclude that $\mathcal{P} \mathcal{R} \subseteq \mathcal{R}$.
3. (3 MARKS) Prove that $\lambda x .2^{x}$ is primitive recursive without using the primitive recursiveness of $\lambda x y \cdot x^{y}$.
4. (5 MARKS) Prove that the function

$$
\lambda x . x 2 \mathrm{~s}\left\{2^{2^{2}}\right.
$$

is in $\mathcal{P} \mathcal{R}$.
5. p. 234 of the text, Section 2.12: Do
(a) (4 MARKS) Do Exercise 6.
(b) (5 MARKS) Do Exercise 10.

Hint for (b). Express the outputs of max and min by expressions that involve x, y and only use,$+ \therefore$.
6. (4 MARKS) Put the recursion
$s w(0, y)=y$
$s w(x+1, y)=0$
in normal primitive recursion form.
7. (3 MARKS) Show that the function in Problem 3 above can be programmed by a Loop-program that does not nest Loop-end instructions in depth more than two such instructions.
8. (5 MARKS) Write a very simple loop program that computes the function in Problem 4. Be sure that your program has loop nesting equal to 3 -no more, no less!

Page 2
 G. Tourlakis

9. (4 MARKS) Revisit problem 6 and prove that $s w \in \mathcal{P} \mathcal{R}$ not by virtue of showing that the indicated recursion is indeed primitive, but rather prove it by expressing the call $s w(x, y)$ for any x, y by a composition in terms of the known to be primitive recursive $\lambda z u . z \times u$ and $\lambda z u . z \doteq u$.
