
1

0.0.1 Proposition. P is closed under unbounded search; that is, if λx~y.g(x, ~y)
is in P, then so is λ~y.(µx)g(x, ~y).

Proof. See Notes #2. �

� Why “unbounded” search? Because we do not know a priori how many times
we have to go around the loop. This depends on the behavior of g. �

Before we get more immersed into partial functions let us redefine equality
for function calls.

0.0.2 Definition. Let λ~x.f(~xn) and λ~y.g(~ym).

We extend the notion of equality f(~an) = g(~bm) to include the case of
undefined calls:

For any ~an and ~bm, f(~an) = g(~bm) means precisely one of

• For some k ∈ N, f(~an) = k and g(~bm) = k

• f(~an) ↑ and g(~bm) ↑

For short,

f(~an) = g(~bm) ≡ (∃z)
(
f(~an) = z ∧ g(~bm) = z ∨ f(~an) ↑ ∧g(~bm) ↑

)
�

0.0.3 Lemma. If f = prim(h, g) and h and g are total, then so is f .

� The definition is due to Kleene and he preferred, as I do in the text, to use a
new symbol for the extended equality, namely '.

Regardless, by way of this note we will use the same symbol for equality for
both total and nontotal calls, namely, “=” (this conventions is common in the
literature, e.g., [Rog67]). �

Proof. Let f be given by:

f(0, ~y) = h(~y)

f(x+ 1, ~y) = g(x, ~y, f(x, ~y))

We do induction on x to prove

“For all x, ~y, f(x, ~y) ↓” (∗)

Basis. x = 0: Well, f(0, ~y) = h(~y), but h(~y) ↓ for all ~y, so

f(0, ~y) ↓ for all ~y (∗∗)

As I.H. (Induction Hypothesis) take that

f(x, ~y) ↓ for all ~y and fixed x (†)

EECS 2001Z. George Tourlakis. Winter 2019



2

Do the Induction Step (I.S.) to show

f(x+ 1, ~y) ↓ for all ~y and the fixed x of (†) (‡)

Well, by (†) and the assumption on g,

g
(
x, ~y, f(x, ~y)

)
↓, for all ~y and the fixed x of (†)

which says the same thing as (‡). Having proved the latter and the Basis, (∗∗),
we have proved (∗) by induction on x. �

0.0.4 Corollary. R is closed under primitive recursion.

Proof. Let h and g be in R. Then they are in P. But then prim(h, g) ∈ P as we
showed in class/text and Notes #2. By 0.0.3, prim(h, g) is total. By definition
of R, as the subset of P that contains all total functions of P, we have
prim(h, g) ∈ R. �

� Why all this dance in colour above? Because to prove f ∈ R you need TWO
things: That

1. f ∈ R

AND

2. f is total

But aren’t all the total functions in R anyway?

NO! They need to be computable too! I.e., of the form M~xn
y for some URM

M .

Aren’t they all?

NO! See next section, and heed the last sentence in the last �-remark! �

0.1 Diagonalisation

We start with an example.

0.1.1 Example. Suppose we have a 3× 3 matrix

1 1 0
1 0 1
0 1 1

and we are asked: Find a sequence of three numbers, using only 0 or 1, that
does not fit as a row of the above matrix—i.e., is different from all rows.

EECS 2001Z. George Tourlakis. Winter 2019



3

Sure, you reply: Take 0 0 0.

That is correct. But what if the matrix were big, say, 100×100, or 10350000×
10350000, or even infinite?

Is there a finitely describable technique that can produce an “unfit” row for
any square matrix, no mater how big; even for an infinite one?

Yes, it is Cantor’s “diagonal method” or “diagonalisation” which
he introduced in his famous “Set Theory”.

He noticed that any row that fits in the matrix as the, say, i-th row, intersects
the main diagonal at the same spot that the i-th column does.

Thus if we take the main diagonal —a sequence that has the same length as
any row— and change every one of its entries, then it will not fit anywhere as
a row! Because no row can have an entry that is different than the entry at the
location where it intersects the main diagonal!

This idea would give the answer 0 1 0 to our original question.

While the array 1000 11 3 also follows the principle of making every entry
on the diagonal different than the original, and works, we were constrained in
this example to “using only 0 or 1”, else one could also “cheat” and provide “42
42 42” as an example that does not fit, since no entry is 0 or 1.

More seriously, in a case of a very large or infinite matrix it is best to have
a simple technique that works even if we do not know much about the elements
of the matrix. Read on! �

0.1.2 Example. We have an infinite matrix of 0-1 entries. Can we produce an
infinite sequence of 0-1 entries that does not match any row in the matrix?

Pause. What is an infinite sequence? Our intuitive understanding of the
term is captured mathematically by the concept of a total function f with
left field (and hence domain) N. The n-th member of the sequence is f(n).J

Yes, take the main diagonal and flip every entry (0 to 1; 1 to 0).

Now, the diagonal entries have matrix coordinates (i, i) for i = 0, 1, 2, . . .

Note that row i of the matrix intersects the diagonal at entry (i, i), in other
words,

the entry i of row i is the matrix entry (i, i) (∗)

So, can this constructed 0-1 array —let’s call it d— fit as row i, for some i?
If yes, then, by (∗), d(i) equals the matrix entry at (i, i) —let’s say, a.
But by construction of d, d(i) = 1− a. Since a 6= 1− a we have NO fit!

Thus d fits nowhere, i being arbitrary.

EECS 2001Z. George Tourlakis. Winter 2019



4

You can see clearly now why the Cantor technique demonstrated here and
in the previous example is called “the diagonal method” or “diagonalisation”.
It uses the diagonal of a matrix in a clever and simple way. �

0.1.3 Example. We have an infinite matrix of entries from N (many may be
> 1). Can we produce an infinite sequence of N-entries that does not match

any row in the matrix? Yes, take the main diagonal and change every entry
from a to a+ 1.

If the original diagonal has an a in row i, the constructed row has an a+ 1
in column i, so it will not fit as row i since a 6= a+ 1. So it fits nowhere, i being
arbitrary.

Seeing that an infinite numerical array is the (sorted by input) sequence of
outputs of a total function f with left and right fields equal to N, this example
shows that if we have a sequence of such one-argument functions, say

f0, f1, f2, f3, . . .

then these define the infinite matrix

f0(0) f0(1) f0(2) . . . f0(i) . . .
f1(0) f1(1) f1(2) . . . f1(i) . . .

...
fi(0) fi(1) fi(2) . . . fi(i) . . .

...

The procedure in blue type above constructs a function d = λx.1+fx(x), which
as an array,

d(0), d(1), . . .

does not fit in the matrix anywhere as a row —because d(i) is different from
fi(i) for all i.

That is, we constructed a function d that cannot be one of the fi! �

0.1.4� Example. (Cantor’s original theorem, somewhat amended) Let S
denote the set of all infinite sequences of 0s and 1s.

Can we arrange all of S in an infinite matrix —one element per row?

No, since the preceding example 0.1.2 shows how to construct an infinite
0-1 sequence that is NOT possibly a row of the matrix.

Thus would miss at least one infinite sequence (i.e., we would fail to list it
as a row), namely the one constructed by diagonalisation.

But arranging all members of S as an infinite matrix—one element per row—
is tantamount to saying that we can enumerate all the members of S using
members of N as indices.

EECS 2001Z. George Tourlakis. Winter 2019



5

So we cannot do that.

In Set Theory jargon we say, S is uncountable or also not enumerable.

By contrast, a set is countable or enumerable if it can be so enumerated
as an infinite sequence. From the definition of “infinite sequence” this means
that a set S is countable iff for some total f with domain N we have S = ran(f).

BTW, the amendment we did to Cantor’s theorem here is twofold.

• He did not care about sequences; he wanted to show that the set of reals

in the unit interval, [0, 1]
Def
= {x ∈ R : 0 ≤ x ≤ 1}, is uncountable. Well,

any such real IS essentially an infinite “binary sequence” that starts with
a dot “.” (“is essentially” means “is represented by”)

• Cantor actually used base-10, not base-2 representation of the reals in [0, 1].

� �

Example 0.1.4 shows that uncountable sets exist. Here is a more interesting
one.

0.1.5 Example. (0.1.2 Retold) Consider the set T{0,1} of all total functions
from N to {0, 1}. Is this countable?

Well, if there is an enumeration of these one-variable functions

f0, f1, f2, f3, . . . (1)

consider the function g : N → {0, 1} given by d(x) = 1 − fx(x). Clearly, this
must appear in the listing (1) since it has the correct left and right fields, and
is total.

Too bad! If d = fi then d(i) = fi(i), by evaluating both sides at i. How-
ever, by definition of d, we also have d(i) = 1 − fi(i). A contradiction since
fi(i) 6= 1− fi(i).

For the contradiction it is crucial that the fi are total! For if, say,
fi(i) ↑ then we get no contradiction as fi(i) = 1−fi(i) in this case! (Cf.
Definition 0.0.2.

The above argument is a “mathematized” version of 0.1.2; as already noted,
an infinite sequence of 0s and 1s is just a total function from N to {0, 1}. �

0.1.6� Remark. An analogous argument to the above shows that the set of all
total functions from N to N is also uncountable.

Indeed, taking d(x) = fx(x) + 1 as in 0.1.3 works in this case to “systemati-
cally change the diagonal” f0(0), f1(1), . . . since we are not constrained to keep
the function values in {0, 1}. Indeed, IF d = fi —that is, the “array” d fits as
row number i— then

fi(i) + 1
construction

= d(i)
assumption just stated

= fi(i)

EECS 2001Z. George Tourlakis. Winter 2019



6

Hence fi(i) + 1 = fi(i), a contradiction since both sides are defined. This
mathematises the technique in Example 0.1.3. � �

0.2 A digression regarding R
Add the symbol “;” (without the quotes) to the URM alphabet. Use ; as inter-
instruction glue to turn a URM written vertically —one instruction per line—
into a “horizontal” string ofg symbols.

Easy to believe (and verify) fact (with a pseudo program, or indeed one
written in C or JAVA) that

We can computationally test if a string over the augmented alphabet
is a syntactically correct URM or not.

But then we can enumerate (e.g., put in a growing list), indeed computa-
tionally, all URMs as follows:

1. Enumerate the next string over the augmented alphabet, choosing “next”
in the lexicographic order. Incidentally, this can be done via a pro-
gram.

2. For each string generated above do: Test it whether it is a URM or not.
If not, Goto 1.

If yes, then add it to the growing list of URMs and then Goto 1.

You can now enumerate all partial recursive functions of one vari-
able!

Simply, for each URM M added to the list, enumerate all Mx
y for all pairs

of variables (x,y) found in M . Do so lexicographically (recall that x is re-
ally a string of the form X11 . . . 1). Examples of (x,y) pairs: “(X11, X11)”,
“(X11, X1), (X11111111, X111)”. This enumeration too can be done al-
gorithmically!

� So, the set of all P functions of one variable is countable.

The above sentence in blue type says less than what we proved in
outline: We proved that the enumeration is computable, we showed! �

But then, as R ⊂ P,

the set of all R functions of one variable is countable. (†)

Indeed, in the enumeration of the P functions of one variable just
omit the non total ones!

� This latter enumeration is just mathematical. We will see later that it cannot
be done computationally, but we do not care for the goal in hand here:

EECS 2001Z. George Tourlakis. Winter 2019



7

We saw that the set of all total functions of one variable is uncountable
(0.1.6). Thus, R is a proper subset of since a set cannot be both countable
and uncountable.

That is, there are total functions that are not URM-computable.
This is why we always warn: When one wants to prove that f ∈ R one

must do two things! One is that f is computable (in P). Never take this for
granted! �

EECS 2001Z. George Tourlakis. Winter 2019



8

EECS 2001Z. George Tourlakis. Winter 2019



9

Bibliography

[Rog67] H. Rogers, Theory of Recursive Functions and Effective Computability,
McGraw-Hill, New York, 1967.

EECS 2001Z. George Tourlakis. Winter 2019


	Diagonalisation
	A digression regarding R

