Proof. See Notes #2.

1

Why "unbounded" search? Because we do not know a priori how many times we have to go around the loop. This depends on the behavior of g.

Before we get more immersed into *partial functions* let us **redefine equality** for function calls.

0.0.2 Definition. Let $\lambda \vec{x} \cdot f(\vec{x}_n)$ and $\lambda \vec{y} \cdot g(\vec{y}_m)$.

We extend the notion of equality $f(\vec{a}_n) = g(\vec{b}_m)$ to include the case of *undefined calls*:

For any \vec{a}_n and \vec{b}_m , $f(\vec{a}_n) = g(\vec{b}_m)$ means precisely one of

- For some $k \in \mathbb{N}$, $f(\vec{a}_n) = k$ and $g(\vec{b}_m) = k$
- $f(\vec{a}_n) \uparrow \text{ and } g(\vec{b}_m) \uparrow$

For short,

$$f(\vec{a}_n) = g(\vec{b}_m) \equiv (\exists z) \Big(f(\vec{a}_n) = z \land g(\vec{b}_m) = z \lor f(\vec{a}_n) \uparrow \land g(\vec{b}_m) \uparrow \Big)$$

0.0.3 Lemma. If f = prim(h, g) and h and g are total, then so is f.

The definition is due to Kleene and he preferred, as I do in the text, to use a new symbol for the extended equality, namely \simeq .

Regardless, by way of this note we will use the same symbol for equality for **both** total and nontotal calls, namely, "=" (this conventions is common in the literature, e.g., [Rog67]).

Proof. Let f be given by:

$$f(0, \vec{y}) = h(\vec{y}) f(x+1, \vec{y}) = g(x, \vec{y}, f(x, \vec{y}))$$

We do induction on x to prove

"For all
$$x, \vec{y}, f(x, \vec{y}) \downarrow$$
" (*)

Basis. x = 0: Well, $f(0, \vec{y}) = h(\vec{y})$, but $h(\vec{y}) \downarrow$ for all \vec{y} , so

$$f(0, \vec{y}) \downarrow \text{ for all } \vec{y}$$
 (**)

As I.H. (Induction Hypothesis) take that

$$f(x, \vec{y}) \downarrow \text{ for all } \vec{y} \text{ and fixed } x$$
 (†)

2

 $\langle \mathbf{S} \rangle$

Do the Induction Step (I.S.) to show

$$f(x+1, \vec{y}) \downarrow \text{ for all } \vec{y} \text{ and the fixed } x \text{ of } (\dagger)$$
 (‡)

Well, by (\dagger) and the assumption on g,

$$g(x, \vec{y}, f(x, \vec{y})) \downarrow$$
, for all \vec{y} and the fixed x of (†)

which says the same thing as (\ddagger) . Having proved the latter and the Basis, (**), we have proved (*) by induction on x.

0.0.4 Corollary. \mathcal{R} is closed under primitive recursion.

Proof. Let h and g be in \mathcal{R} . Then they are in \mathcal{P} . But then $prim(h, g) \in \mathcal{P}$ as we showed in class/text and Notes #2. By 0.0.3, prim(h, g) is total. By definition of \mathcal{R} , as the subset of \mathcal{P} that contains all total functions of \mathcal{P} , we have $prim(h, g) \in \mathcal{R}$.

Why all this dance in colour above? Because to prove $f \in \mathcal{R}$ you need **TWO** things: That

1. $f \in \mathcal{R}$

AND

2. f is total

But aren't all the total functions in \mathcal{R} anyway?

NO! They need to be computable too! I.e., of the form $M_{\mathbf{y}}^{\vec{\mathbf{x}}_n}$ for some URM M.

Aren't they all?

NO! See next section, and heed the last sentence in the last *e*-remark!

0.1 Diagonalisation

We start with an example.

0.1.1 Example. Suppose we have a 3×3 matrix

1	1	0
1	0	1
0	1	1

and we are asked: Find a sequence of three numbers, *using only* 0 *or* 1, that does not *fit* as a row of the above matrix—i.e., is *different from all rows*.

Sure, you reply: Take 0 0 0.

That is correct. But what if the matrix were big, say, 100×100 , or $10^{350000} \times 10^{350000}$, or even *infinite*?

Is there a *finitely describable technique* that can produce an "unfit" row for any square matrix, no mater how big; even for an infinite one?

Yes, it is Cantor's "*diagonal method*" or "diagonalisation" which he introduced in his famous "Set Theory".

He noticed that any row that fits in the matrix as the, say, *i*-th row, intersects the main diagonal at the same spot that the *i*-th column does.

Thus if we take the main diagonal —a sequence that has the same length as any row— and *change every one of its entries*, then it will not fit anywhere as a row! Because no row can have an entry that is different than the entry at the location where it intersects the main diagonal!

This idea would give the answer $0 \quad 1 \quad 0$ to our original question.

While the array 1000 11 3 also follows the principle of making every entry on the diagonal different than the original, and works, we were constrained in this example to "using only 0 or 1", else one could also "cheat" and provide "42 42 42" as an example that does not fit, since no entry is 0 or 1.

More seriously, in a case of a very large or infinite matrix it is best to have a *simple technique* that *works* even if we do not know much about the elements of the matrix. Read on!

0.1.2 Example. We have an infinite matrix of 0-1 entries. Can we produce an *infinite sequence* of 0-1 entries that does not match any row in the matrix?

Pause. What is an *infinite sequence*? Our intuitive understanding of the term is captured **mathematically** by the concept of a **total** function f with left field (and hence domain) \mathbb{N} . The *n*-th member of the sequence is f(n).

Yes, take the main diagonal and flip every entry (0 to 1; 1 to 0).

Now, the diagonal entries have matrix coordinates (i, i) for i = 0, 1, 2, ...

Note that row i of the matrix intersects the diagonal at entry (i, i), in other words,

the entry i of row i is the matrix entry (i, i) (*)

So, can this constructed 0-1 array —let's call it d— fit as row i, for some i? If yes, then, by (*), d(i) equals the matrix entry at (i, i)—let's say, a.

But by construction of d, d(i) = 1 - a. Since $a \neq 1 - a$ we have **NO fit**! Thus d fits nowhere, i being arbitrary.

You can see clearly now why the Cantor technique demonstrated here and in the previous example is called "the diagonal method" or "diagonalisation". It uses the diagonal of a matrix in a clever and simple way. \Box

0.1.3 Example. We have an infinite matrix of entries from \mathbb{N} (many may be > 1). Can we produce an infinite sequence of \mathbb{N} -entries that does not match any row in the matrix? Yes, take the main diagonal and **change** every entry from *a* to *a* + 1.

If the original diagonal has an a in row i, the constructed row has an a + 1 in column i, so it will not fit as row i since $a \neq a + 1$. So it fits nowhere, i being arbitrary.

Seeing that an infinite numerical array is the (sorted by input) sequence of outputs of a **total** function f with left and right fields equal to \mathbb{N} , this example shows that if we have a sequence of such one-argument functions, say

$$f_0, f_1, f_2, f_3, \dots$$

then these define the infinite matrix

The procedure in blue type above constructs a function $d = \lambda x \cdot 1 + f_x(x)$, which as an array,

 $d(0), d(1), \ldots$

does not fit in the matrix anywhere as a row —because d(i) is different from $f_i(i)$ for all i.

That is, we constructed a function d that cannot be one of the $f_i!$

Ś

0.1.4 Example. (Cantor's original theorem, somewhat amended) Let S denote the set of all infinite sequences of 0s and 1s.

Can we arrange all of S in an infinite matrix —one element per row?

No, since the preceding example 0.1.2 shows how to **construct** an infinite 0-1 sequence that is NOT possibly a row of the matrix.

Thus would miss at least one infinite sequence (i.e., we would fail to list it as a row), namely **the one constructed by diagonalisation**.

But arranging all members of S as an infinite matrix—one element per row is tantamount to saying that we can enumerate all the members of S using members of \mathbb{N} as indices.

So we cannot do that.

In Set Theory jargon we say, S is uncountable or also not enumerable.

By contrast, a set is countable or enumerable if it can be so enumerated as an infinite sequence. From the definition of "infinite sequence" this means that a set S is countable iff for some total f with domain \mathbb{N} we have S = ran(f).

BTW, the amendment we did to Cantor's theorem here is twofold.

- He did not care about sequences; he wanted to show that the set of reals in the unit interval, $[0,1] \stackrel{Def}{=} \{x \in \mathbb{R} : 0 \le x \le 1\}$, is uncountable. Well, any such real IS essentially an infinite "binary sequence" that starts with a dot "." ("is essentially" means "is represented by")
- Cantor actually used base-10, not base-2 representation of the reals in [0, 1].

Example 0.1.4 shows that uncountable sets exist. Here is a more interesting one.

0.1.5 Example. (0.1.2 Retold) Consider the set $\mathcal{T}_{\{0,1\}}$ of all total functions from \mathbb{N} to $\{0,1\}$. Is this countable?

Well, if there is an enumeration of these one-variable functions

$$f_0, f_1, f_2, f_3, \dots$$
 (1)

consider the function $g : \mathbb{N} \to \{0, 1\}$ given by $d(x) = 1 - f_x(x)$. Clearly, this *must* appear in the listing (1) since it has the correct left and right fields, and is total.

Too bad! If $d = f_i$ then $d(i) = f_i(i)$, by evaluating both sides at *i*. However, by definition of *d*, we also have $d(i) = 1 - f_i(i)$. A contradiction since $f_i(i) \neq 1 - f_i(i)$.

For the contradiction it is crucial that the f_i are total! For if, say, $f_i(i) \uparrow$ then we get no contradiction as $f_i(i) = 1 - f_i(i)$ in this case! (Cf. Definition 0.0.2.

The above argument is a "mathematized" version of 0.1.2; as already noted, an infinite sequence of 0s and 1s is just a total function from \mathbb{N} to $\{0, 1\}$.

0.1.6 Remark. An analogous argument to the above shows that the set of all total functions from \mathbb{N} to \mathbb{N} is also uncountable.

Indeed, taking $d(x) = f_x(x) + 1$ as in 0.1.3 works in this case to "systematically change the diagonal" $f_0(0), f_1(1), \ldots$ since we are not constrained to keep the function values in $\{0, 1\}$. Indeed, **IF** $d = f_i$ —that is, the "array" d fits as row number i— then

$$f_i(i) + 1 \stackrel{\text{construction}}{=} d(i) \stackrel{\text{assumption just stated}}{=} f_i(i)$$

Ş

Hence $f_i(i) + 1 = f_i(i)$, a contradiction since both sides are defined. This mathematises the technique in Example 0.1.3.

0.2 A digression regarding \mathcal{R}

Add the symbol ";" (without the quotes) to the URM alphabet. Use ; as interinstruction glue to turn a URM written vertically —one instruction per line into a "horizontal" string ofg symbols.

Easy to believe (and verify) fact (with a pseudo program, or indeed one written in C or JAVA) that

We can computationally test if a string over the augmented alphabet is a syntactically correct URM or not.

But then we can **enumerate** (e.g., *put in a growing list*), indeed computationally, all URMs as follows:

- 1. Enumerate *the next* string over the augmented alphabet, choosing "next" in the *lexicographic* order. Incidentally, this can be done via a program.
- 2. For each string generated above do: Test it whether it is a URM or not. If not, Goto 1.

If yes, then add it to the growing list of URMs and then Goto 1.

You can now enumerate all partial recursive functions of one variable!

Simply, for each URM M added to the list, enumerate all $M_{\mathbf{y}}^{\mathbf{x}}$ for all pairs of variables (\mathbf{x}, \mathbf{y}) found in M. Do so lexicographically (recall that \mathbf{x} is really a string of the form X11...1). Examples of (\mathbf{x}, \mathbf{y}) pairs: "(X11, X11)", "(X11, X1), (X11111111, X111)". This enumeration too can be done algorithmically!

Ś

So, the set of all \mathcal{P} functions of one variable is countable.

The above sentence in blue type says less than what we proved in outline: We proved that the enumeration is computable, we showed!

But then, as $\mathcal{R} \subset \mathcal{P}$,

the set of all \mathcal{R} functions of one variable is countable. (†)

Indeed, in the enumeration of the \mathcal{P} functions of one variable just *omit* the non total ones!

This latter enumeration is just *mathematical*. We will see later that it *cannot* be done computationally, but we do not care for the goal in hand here:

We saw that the set of **all** total functions of one variable is **uncountable** (0.1.6). Thus, \mathcal{R} is a **proper** subset of since a set cannot be both countable and uncountable.

That is, there are total functions that are not URM-computable.

This is why we always warn: When one wants to prove that $f \in \mathcal{R}$ one must do two things! One is that f is computable (in \mathcal{P}). Never take this for granted!

Ż

EECS 2001Z. George Tourlakis. Winter 2019

8

Bibliography

[Rog67] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill, New York, 1967.