Posted: Oct 27, 2018
Due: TBA-you have at least three weeks to do the problems

Problem Set No. 2

NB. All problems are equally weighted and will be assigned a letter grade; an overall letter grade for the paper will be computed using York's 0-9 gpa scale.
< This is not a course on formal recursion theory. Your proofs should be informal I. (but not sloppy), correct, and informative (and if possible short). Please do not trade length for correctness or readability.

All problems are from "Theory of Computation".
(1) From Section 2.12: Do 22, 27.

A Note on Notation differences between the book and our conventions in class:

In class we write (x, y) for uncoded pair (two numbers). We write $\langle x, y\rangle$ for coded pair, i.e., $2^{x+1} 3^{y+1}$.
In particular, in Problem 27, $K_{0}=\left\{(x, y): \phi_{x}(y) \downarrow\right\}$.
In the text we write instead $\langle x, y\rangle$ for an uncoded pair (following modern set theory notation) and invent the notation $[x, y]$ for a coded pair.
Please use the class notation in your answers!
(2) Exhibit a partial computable function f such that the problem " $f(x) \downarrow$ " is unsolvable. Justify why your function has the stated here property.
(3) From Section 2.12 also do 42, 44.
(4) From Section 2.12 also do the following from scratch, without invoking Rice's Lemma!: 46, 49, 50, 51.

