
1

0.1 Axt, Loop Program, and Grzegorczyk Hier-
archies

Computable functions can have some quite complex definitions. For example,
a loop programmable function might be given via a loop program that has
depth of nesting of the loop-end pair, say, equal to 200. Now this is complex!
Or a function might be given via an arbitrarily complex sequence of primitive
recursions, with the restriction that the computed function is majorized by some
known function, for all values of the input (for the concept of majorization
see Subsection on the Ackermann function.).

But does such definitional—and therefore, “static”—complexity have any
bearing on the computational—dynamic—complexity of the function? We will
see that it does, and we will connect definitional and computational complexities
quantitatively.

Our study will be restricted to the class PR that we will subdivide into
an infinite sequence of increasingly more inclusive subclasses, Si. A so-called
hierarchy of classes of functions.

0.1.0.1 Definition. A sequence (Si)i≥0 of subsets of PR is a primitive recur-
sive hierarchy provided all of the following hold:

(1) Si ⊆ Si+1, for all i ≥ 0
(2) PR =

⋃
i≥0 Si.

The hierarchy is proper or nontrivial iff Si 6= Si+1, for all but finitely many i.
If f ∈ Si then we say that its level in the hierarchy is ≤ i. If f ∈ Si+1 − Si,

then its level is equal to i+ 1. �

The first hierarchy that we will define is due to Axt and Heinermann [[5]
and [1]].

0.1.0.2 Definition. (The Axt-Heinermann Hierarchy) We define the class
Kn for each n ≥ 0 by recursion on n. We let K0 stand for the closure of
{λx.x, λx.x+ 1} under substitution.

For n ≥ 0, Kn+1 is the closure under substitution of Kn ∪ {prim(h, g) : h ∈
Kn ∧ g ∈ Kn}, where prim(h, g) is the function defined by primitive recursion
from the basis function h and the iterator function g. �

�

Thus, primitive recursion is the “expensive” operation, an application of which
takes us out of a given Kn. On the other hand, as the classes are defined (the
n + 1 case), it follows that any finite number of substitution operations keeps
us in the same class; all Kn, that is, are closed under substitution.

�

We list a number of straightforward properties.

0.1.0.3 Proposition. (Kn)n≥0 is a hierarchy, that is,

(1) Kn ⊆ Kn+1, for n ≥ 0,

and

EECS 4111/5111 c©George Tourlakis Fall 2018

0.1. AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 2

(2) PR =
⋃

i≥0 Ki.

Proof.

(1) Immediate from the definition of Kn+1 in 0.1.0.2.

(2) This is straightforward, from 0.1.0.2 and the inductive definition ofPR
—where we replace I by {λx.x, λx.x + 1} in the original definition, and
replacing Comp by Grzegorczyk substitution. The part ⊇ is rather trivial,
while the ⊆ part can be done by induction on PR, showing that

⋃
i≥0 Ki

contains the same initial functions as PR and is closed under Substitution
and Prim. Recursion. �

0.1.0.4 Proposition. λx.An(x) ∈ Kn, for all n ≥ 0, where λnx.An(x) is the
Ackermann function.

Proof. Induction on n. For n = 0, we note that A0 = λx.x+2 ∈ K0. By 0.1.0.2,
if λx.An(x) ∈ Kn, then λx.An+1(x) ∈ Kn+1—since λx.2 ∈ K0 by substitution,
and K0 ⊆ Kn— and this concludes the induction. �

0.1.0.5 Proposition. For every f ∈ Kn there is a k ∈ N such that f(~x) ≤
Ak

n

(
max(~x)

)
, for all ~x.

Proof. We have proved that the Ackermann function majorises every primitive
recursive function. The induction proof over PR demonstrated that compos-
ing finitely many functions fi—each majorised by Aki

n using the same fixed

n—produces a function that is majorised by A
∑

i ki
n . That is, the index n does

not increase through substitution.

Thus, in the present context, and to settle the proposition by induction on n,
we will only need to show that every initial function of K0 is majorised by some
Ar

0 and each initial function of Kn+1, namely,

any f ∈ Kn ∪ {prim(h, g) : h ∈ Kn ∧ g ∈ Kn} (1)

is majorised by some appropriate Ar
n+1.

Well, each of x and x + 1 are less than x + 2 = A0(x) and this settles the
basis. Assume the claim (I.H.) for Kn—fixed n ≥ 0—and tackle that for Kn+1.
By our plan, we need to show the initial function are majorised by some Ar

n+1.

For those f ∈ Kn [cf. (1)] this is the result of the I.H. on n and An(x) ≤
An+1(x) for all x. If now, f = prim(h, g), then, by the I.H. on n, we have, for
all x, z and ~y,

h(~y) ≤ Ar1
n

(
max(~y)

)
(1)

and
g(x, ~y, z) ≤ Ar2

n

(
max(x, ~y, z)

)
(2)

EECS 4111/5111 c©George Tourlakis Fall 2018

3

In our old proof —that any f ∈PR is majorised by some Al
m— recall that we

relied on an intermediate result, namely, that (1) and (2) imply

f(x, ~y) ≤ Ar2x+r1
n

(
max(x, ~y)

)
< An+1

(
r2x+ r1 + max(x, ~y)

)
from which we concluded easily that we have some r such that f(x, ~y) ≤
Ar

n+1

(
max(x, ~y)

)
, for all x and ~y. �

0.1.0.6 Corollary. The Axt-Heinermann hierarchy is proper.

Proof. Indeed, λx.An+1 ∈ Kn+1 −Kn, for all n ≥ 0. By 0.1.0.4, we only need
to see that λx.An+1 /∈ Kn. Indeed, otherwise, we would have, for all x, and
some r, An+1(x) ≤ Ar

n(x) which contradicts Ar
n(x) < An+1(x) a.e. with respect

to x. �

We can also base the definition of classes similar to Kn on simultaneous
recursion:

0.1.0.7 Definition. We define the class K sim
n for each n ≥ 0 by recursion on

n. We let K sim
0 = K0.

For n ≥ 0, K sim
n+1 is the closure under substitution of K sim

n ∪ {f : f is
obtained by simultaneous primitive recursion from functions in K sim

n }. �

The following are straightforward.

0.1.0.8 Proposition. For n ≥ 0, we have Kn ⊆ K sim
n .

�

Thus, PR =
⋃

n≥0 Kn ⊆
⋃

n≥0 K sim
n ⊆PR.

�

Thus, by 0.1.0.4,

0.1.0.9 Corollary. For n ≥ 0, we have λx.An(x) ∈ K sim
n .

0.1.0.10 Proposition. For every f ∈ K sim
n there is a k ∈ N such that f(~x) ≤

Ak
n

(
max(~x)

)
, for all ~x.

Proof. A straightforward modification of the proof of 0.1.0.5. �

0.1.0.11 Corollary. The (K sim
n)n≥0 hierarchy is proper.

Proof. Exactly as in the proof of 0.1.0.6. �
A closely related hierarchy—that is once again defined in terms of how com-

plex a function’s definition is—is based on loop programs [7].

0.1.0.12 Definition. (A Hierarchy of Loop Programs) We denote by L0

the class of all loop programs that do not employ the Loop-end instruction
pair.

Assuming that Ln has been defined, then Ln+1 is the set of programs that
is the closure under program concatenation of this initial set:

Ln ∪
{

LoopX;P ; end : for any variable X and P ∈ Ln

}
�

EECS 4111/5111 c©George Tourlakis Fall 2018

0.1. AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 4

�

Trivially, Ln ⊆ Ln+1 and the maximum nesting depth of the Loop-end pair
increases by one as we pass from Ln to Ln+1. Of course, by virtue of Ln ⊆ Ln+1,
not every P ∈ Ln+1 nests the Loop-end pair as deep as n + 1. Thus, R ∈ Ln

iff the depth of nesting of the Loop-end instruction pair is at most n. Nesting
depth equal to 0 means the absence of a Loop-end instruction pair.

�

The following is immediate.

0.1.0.13 Proposition. (Ln)n≥0 is a proper L-hierarchy. That is,

(1) Ln ⊂ Ln+1, for n ≥ 0

and

(2) L =
⋃

n≥0 Ln

We are more interested in the induced (by the Ln sets) hierarchy of primitive
recursive classes:

0.1.0.14 Definition. We denote by Ln, for n ≥ 0, the class

{P ~xr
xk

: P ∈ Ln ∧ the ~xr and xk occur in P} �

0.1.0.15 Proposition. For n ≥ 0, we have that K sim
n = Ln.

Proof. In outline, the instruction pair Loop-end implements one simultaneous
recursion. On the other hand, by the definition of K sim

n , this class contains
functions obtained from those of K sim

0 = K0 by n nested simultaneous recur-
sions (and possibly some substitutions).

In detail, one can do induction on n and imitate the proofs of PR ⊆ L
and L ⊆PR that we have done in class. Briefly,

• By induction on n, note first that, trivially, K sim
0 = L0. Taking the I.H.

on n, we turn to the establishing K sim
n+1 ⊆ Ln+1. Well, assume we can

program in Ln all the hi and gi, i = 1, . . . , n, that are in K sim
n .

Consider a simultaneous recursion that produces fi (same i-range). They
are by definition in K sim

n+1 .

We see, via pseudo code, that the fi are in L sim
n+1 —establishing K sim

n+1 ⊆
Ln+1— by programming the latter, adding a single loop around the pro-
grams for the gi: The variables Fi will eventually hold fi(a, ~y), where X

EECS 4111/5111 c©George Tourlakis Fall 2018

5

holds the value a initially.

F1 = h1(~y)

...

Fn = hn(~y)

i = 0

Loop X

F1 = g1(i, ~y, F1, . . . , Fn)

F2 = g2(i, ~y, F1, . . . , Fn)

...

Fn = gn(i, ~y, F1, . . . , Fn)

i = i+ 1

end

• By induction on n, of the program hierarchy Ln. We have K sim
0 = L0.

Taking the I.H. that Ln ⊆ K sim
n we next show that Ln+1 ⊆ K sim

n+1 .
Assume that for a P ∈ Ln we have that all PY are in Ln. This rephrases
the I.H.

What about the functions that we compute by the Ln+1 program, Q,
below?

Loop X

P

end

Well, our work in the Loop Program section showed that the above com-
putes all functions obtained by a single simultaneous recursion on all the
PY . Since by the I.H. all PY are in K sim

n , we have that all the QY are in
K sim

n+1 , thus Ln+1 ⊆ K sim
n+1 .

This proof ignored the trivial effects of substitution (K sim
n+1) and (equiva-

lently) program concatenation (Ln+1). �

Thus, everything we said about the (K sim
n)n≥0 hierarchy carries over to

the (Ln)n≥0 hierarchy—after all, it is the same hierarchy under two different
definitions.

0.1.0.16 Proposition. The PR- (or L -)hierarchy, (Ln)n≥0, is proper.

0.1.0.17

�

Example. Here are some functions and predicates in the “lower”
(small n) classes of the (K sim

n)n≥0 hierarchy.

The following are in K1 and hence in K sim
1 = L1.

EECS 4111/5111 c©George Tourlakis Fall 2018

0.1. AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 6

(1) λxy.x+ y. Indeed,

0 + y = y

(x+ 1) + y = (x+ y) + 1

and λy.y and λz.z + 1 are in K0 = K sim
0 .

(2) λxy.x(1 .− y). Indeed,

x(1 .− 0) = x

x(1 .− (y + 1)) = 0

and λy.y and λz.0 are in K0 = K sim
0 .

(3) λx.1 .− x. By substitution operations from the previous function.

(4) λx.x .− 1. Indeed,

0 .− 1 = 0

(x+ 1) .− 1 = x

and λy.y and λz.0 are in K0 = K sim
0 .

(5) λx. bx/2c ∈ K sim
1 .

This example shows that K1 6= K sim
1 , since λx. bx/2c /∈ K1 as follows from

results of [7] and [9] that were retold in [8].

(6) switch = λxyz.if x = 0 then y else z. Indeed, we have the recursion

switch(0, y, z) = y

switch(x+ 1, y, z) = z

where λy.y is in K0 = K sim
0 .

The following are in K2 and hence in K sim
2 = L2.

(a) λxy.x .− y. Indeed,

x
.− 0 = x

x
.− (y + 1) = (x

.− y)
.− 1

and λy.y and λz.z
.− 1 are in K1 ⊆ K sim

1 .

(b) λxy.xy. Indeed,

x0 = 0

x(y + 1) = xy + x

and λy.0 and λwz.w + z are in K1 ⊆ K sim
1 .

EECS 4111/5111 c©George Tourlakis Fall 2018

7

(c) λx.2x. Indeed,

20 = 1

2y+1 = 2y + 2y

and λy.1 and λwz.w + z are in K1 ⊆ K sim
1 . �

�

0.1.0.18 Definition. As is usual, the predicate classes Kn,∗ and K sim
n,∗ —the

latter being the same as Ln,∗—are defined for all n ≥ 0 as {f(~x) = 0 : f ∈ Kn}
and {f(~x) = 0 : f ∈ K sim

n }, respectively. �

0.1.0.19 Proposition. For n ≥ 1, we have that Kn,∗ and K sim
n,∗ are closed

under ¬ and ∨—and hence under ∧,→, and ≡ as well.

Proof. Let Q(~x) ∈ Kn,∗. Then, for some q ∈ Kn, Q(~x) ≡ q(~x) = 0. Since
r = λ~x.1 .− q(~x) ∈ Kn if n ≥ 1 by 0.1.0.17, we are done, noting ¬Q(~x) ≡
r(~x) = 0. Next, let also S(~y) ≡ s(~y) = 0 with s ∈ Kn. Then Q(~x) ∨ S(~y) ≡
switch(q(~x), 0, r(~y)) = 0; but switch ∈ Kn, for n ≥ 1 (cf. 0.1.0.17).

The cases for K sim
n,∗ are argued identically with the preceding two. �

0.1.0.20 Corollary. The relations λx.x ≤ a, λx.x < a and λx.x = a are in
K1,∗ and hence in K sim

1,∗ .

Proof. By 0.1.0.17(4) and substitution, we have that λx.x
.− a ∈ K1. But

x ≤ a ≡ x .− a = 0. On the other hand, x < a ≡ x+ 1 .− a = 0. Thus the claim
about λx.x < a is true. Noting that λx.a ≤ x is in K1,∗ due to

a ≤ x ≡ ¬x < a

and 0.1.0.19, we have that λx.x = a is in K1,∗ by 0.1.0.19 and the observation
x = a ≡ x ≤ a ∧ a ≤ x. �

0.1.0.21 Proposition. For n ≥ 1, we have that Kn and K sim
n are closed

under definition by cases.

Proof. This is immediate from either of the suggested proofs for definition-by-
cases, noting 0.1.0.17, (1), (2) and (6). �

The three hierarchies that we introduced include increasingly complex classes,
using as a yardstick of complexity the nesting depth of primitive recursion. The
next hierarchy, due to [2], gauges complexity of definition by the (numerical) size
of the function it produces—and, correspondingly, the class complexity at level
n by the size of the functions it contains. As the definition does not necessarily
force a function such as prim(h, g) to exit from a given level, the Grzegorczyk
hierarchy is much more amenable to mathematical analysis.

EECS 4111/5111 c©George Tourlakis Fall 2018

0.1. AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 8

0.1.0.22 Definition. (The Grzegorczyk Hierarchy) We are given a fixed
sequence of functions, (gn)n≥0 by

g0 = λx.x+ 1

g1 = λxy.x+ y

g2 = λxy.xy

and, for n ≥ 2,

gn+1 = λxy.An

(
max(x, y)

)
where λny.An(x) is the Ackermann function that we studied earlier.

The hierarchy (E n)n≥0 is defined as follows: E n is the closure of

{λx.x+ 1, λx.x, gn}

under substitution and bounded primitive recursion, the latter being the schema
below

f(0, ~y) = h(~y)

f(x+ 1, ~y) = q
(
x, ~y, f(x, ~y)

)
f(x, ~y) ≤ B(x, ~y)

where h, q and B are given functions. �
�

A class C is closed under bounded primitive recursion iff whenever h, q, and B
are in C , then so is the f produced as above.

We note that the bounded recursion is an ordinary number-theoretic prim-
itive recursion along with a condition that the function f has actually been
“produced” only if its values are bounded everywhere by those of the given B.

The gn-function included among the initial functions at each level, which
gauges the (numerical) size of functions included in each E n is (a version of)
the Ackermann function. Grzegorczyk used a different version than we do here.
Our choice to use the function due to Robert Ritchie was partly dictated by
ease-of-use considerations, but mostly because we know quite a bit about the
An already. The reader may consult [8] to read a proof that the version we use
here produces the same E n classes as in [2].

�

The class of relations at level n of the Grzegorczyk hierarchy is defined as
usual.

0.1.0.23 Definition. E n
∗ , for n ≥ 0, denotes the class of relations {f(~x) = 0 :

f ∈ E n}. �

0.1.0.24

�

Example. Here are some examples of functions and relations in E 0

and E 0
∗ :

EECS 4111/5111 c©George Tourlakis Fall 2018

9

(1) λxy.x(1
.− y).

x(1
.− 0) = x

x(1 .− (y + 1)) = 0

x(1 .− y) ≤ x

(2) λx.1 .− x. By (1) and substitution.

(3) λx.x .− 1.
0 .− 1 = 0

(x+ 1) .− 1 = x

x
.− 1 ≤ x

(4) λxy.x
.− y.

x .− 0 = x

x .− (y + 1) = (x .− y) .− 1

x .− y ≤ x

(5) λxy.x ≤ y and λxy.x < y are in E 0
∗ . Indeed, x ≤ y ≡ x .− y = 0 and

x < y ≡ (x+ 1) .− y = 0. �
�

0.1.0.25 Lemma. For all n ≥ 0, E 0 ⊆ E n.

Proof. E n contains the initial functions of E 0 and is closed under the same
operations. �

0.1.0.26 Theorem. For n ≥ 0, E n
∗ is closed under Boolean operations and also

under bounded quantification, namely, (∃y)<z, (∃y)≤z, (∀y)<z, (∀y)≤z.

Proof. We implicitly use 0.1.0.25. For Boolean operations it suffices to consider
¬ and ∨ only. So, let R(~x) ≡ r(~x) = 0 and Q(~y) ≡ q(~y) = 0, where r and q
are in E n. Now, ¬R(~x) ≡ 1 .− r(~x) = 0 and we are done by 0.1.0.24(2). On
the other hand, R(~x) ∨ Q(~y) ≡ r(~x)

(
1
.− (1

.− q(~y))
)

= 0 and we are done by
0.1.0.24(1).

For closure under bounded quantification, let P (y, ~x) ≡ p(y, ~x) = 0, where
p ∈ E n. Let χ∃ be the characteristic function of (∃y)<zP (y, ~x). Noting that

(∃y)<0P (y, ~x) is false, and (∃y)<z+1P (y, ~x) ≡ P (z, ~x) ∨ (∃y)<zP (y, ~x)

we have that χ∃ satisfies the bounded recursion below:
χ∃(0, ~x) = 1

χ∃(z + 1, ~x) = χ∃(z, ~x)
(

1
.−
(
1
.− p(z, ~x)

))
χ∃(z, ~x) ≤ 1

and we are done. The “1” in the inequality above is the output of λx.1 which
is in E 0. Clearly χ∃ belongs where p does, and (∃y)<zP (y, ~x) ≡ χ∃(z, ~x) = 0.

EECS 4111/5111 c©George Tourlakis Fall 2018

0.1. AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 10

To conclude the proof for the remaining cases of quantification, note that
(∃y)≤zR ≡ R ∨ (∃y)<zR; moreover, the universal quantifier cases follow from
the closure of E n

∗ under negation. �
The following result is, modulo choice of Ackermann function, from [2].

0.1.0.27 Lemma. (Bounding Lemma) (1) For each f ∈ E 0, there are i and
k such that f(~x) ≤ xi + k everywhere.

(2) For each f ∈ E 1, there are C and k such that f(~x) ≤ C max(~x) + k every-
where.

(3) For each f ∈ E 2, there are C, n, and k such that f(~x) ≤ C max(~x)n + k
everywhere.

(4) For each f ∈ E n+1, n ≥ 2, there is a k such that f(~x) ≤ Ak
n

(
max(~x)

)
everywhere.

Proof.

All proofs are by induction over the appropriate E n.

(1) The claim trivially holds for the initial functions and propagates with bounded
recursion since the I.H. applies to whichever bounding function B was em-
ployed. Consider the substitution, using g and h in E 0.

g(~w, x
↑

h(~y)

, ~z)

By I.H. on h we have h(~y) ≤ yi + k, for all ~y.

By I.H. on g we have one of

• g(~w, x, ~z) ≤ x+ l, for all ~w, x, ~z, thus, g(~w, h(~y), ~z) ≤ yi + k+ l, for all
~w, ~y, ~z.

• g(~w, x, ~z) ≤ wj + l′, for all ~w, x, ~z, thus, g(~w, h(~y), ~z) ≤ wj + l′, for all
~w, ~y, ~z.

• g(~w, x, ~z) ≤ zm + l′′, for all ~w, x, ~z, thus, g(~w, h(~y), ~z) ≤ zm + l′′, for
all ~w, ~y, ~z.

(2) The basis and the propagation of the claim with bounded recursion are as
above [note, incidentally, that x + y ≤ 2 max(x, y)]. Let us now look at a
substitution h(~y, g(~x), ~z). We have, by the I.H. applied to h,

h(~y, g(~x), ~z) ≤ C max(~y, g(~x), ~z) + k

I.H. for g

≤ C max(~y, C ′max(~x) + k′, ~z) + k

≤ CC ′max(~y, ~x, ~z) + Ck′ + k

(3) Left as an exercise.

EECS 4111/5111 c©George Tourlakis Fall 2018

11

(4) The claim is true for the initial functions and propagates with bounded
recursion for the reason named earlier. As for substitution, we know that
the subscript n will not change and thus if Aki

n majorize the component-

functions of the substitution, then A
∑

ki
n majorizes the result (to say this

briefly we overkilled the exponent). �

We can now prove that E n ⊂ E n+1 for all n.

0.1.0.28 Theorem. (E n)n≥0 is a proper primitive recursive hierarchy.

Proof. First, E n ⊆ E n+1, for all n, since every bounded recursion in E n can use
as bounding functions the bounds from E n+1 and thus is a bounded recursion in
E n+1 too. Thus, for E 0 ⊆ E 1 use C max(~x)+k, for E 1 ⊆ E 2 use C max(~x)r +k,
and for E n ⊆ E n+1, for n ≥ 2, use use Ak

n and the facts that Ak
n ∈ E n+1 and

A0(x) ≤ A1(x) ≤ A2(x) ≤ . . . An−1(x) ≤ An(x) ≤ . . .

�

I am implying an induction over E n in the above argument, that shows E n ⊆
E n+1. But this requires the initial An−1 of E n to be in E n+1. Is it? Yes, if we
assume that An−2 is: Induction on n!

�

Reverting to the unified notation “gn” and noting that gn+1 ∈ E n+1 − E n

by 0.1.0.27, we promote ⊆ above to ⊂:

E n ⊂ E n+1, for all n.

Now, trivially, E n ⊆ PR, for all n. On the other hand, every primitive
recursion is a bounded recursion with bounding function Ak

n for some k, so
PR ⊆

⋃
n≥0 E n as well. �

0.1.0.29

�

Exercise. In view of 0.1.0.27, prove that switch (the “full” if-then-
else) and max are not in E 0. �

�

We defined bounded summation and multiplication and saw that, as opera-
tions, they do not take us out of PR. More interesting is this:

0.1.0.30 Proposition. For n ≥ 2, E n is closed under bounded summation.

Proof. We only need a bounding function for
∑

i<z f(i, ~x) in E n.
For n = 2, f(i, ~x) = O(max(i, ~x)r), for some r, due to 0.1.0.27. But then,∑

i<z

f(i, ~x) =
∑
i<z

O(max(i, ~x)r) = O(zmax(z, ~x)r)

Since, for any constants C and D, λz~x.Czmax(z, ~x)r +D is in E 2, our bounding
function is obtained by choosing the right C and D.

EECS 4111/5111 c©George Tourlakis Fall 2018

0.1. AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 12

For n > 2, let, by 0.1.0.27, r be such that f(i, ~x) ≤ Ar
n−1(max(i, ~x)), for all

i, ~x. Then ∑
i<z

f(i, ~x) ≤
∑
i<z

Ar
n−1
(

max(i, ~x)
)
≤ zAr

n−1
(

max(z, ~x)
)

(1)

But λxy.xy and λz~x.Ak
n−1
(

max(z, ~x)
)

are in E n for n > 2. We have obtained
the required bounding function in (1). �

A definition of bounded search that is used in [2] [cf. also [6]] is the following:

0.1.0.31 Definition. (Alternative Bounded Search) For any total number-
theoretic function λy~x.f(y, ~x) we define

(
◦
µy)<zf(y, ~x)

Def
=

{
min{y : y < z ∧ f(y, ~x) = 0} if (∃y)<zf(y, ~x) = 0

0 otherwise

(
◦
µy)≤zf(y, ~x) means (

◦
µy)<z+1f(y, ~x), and (

◦
µy)<zR(y, ~x) means (

◦
µy)<zχR(y, ~x),

where χR is the characteristic function of R. �

0.1.0.32 Theorem. For n ≥ 0, E n is closed under (
◦
µy)<z.

Proof. Let f ∈ E n. We set g(z, ~x) = (
◦
µy)<zf(y, ~x). Notice that

g(0, ~x) = 0

g(z + 1, ~x) = if (∃y)<zf(y, ~x) = 0 then g(z, ~x)

else if f(z, ~x) = 0 then z else 0

g(z, ~x) ≤ z

The above bounded recursion works for n ≥ 1, but will not work for n = 0 due
to 0.1.0.29; some acrobatics will be necessary:

We note that the right hand side of the second equation is obtained by
substituting g(z, ~x) into the “recursive call slot” w, making the iterator function
of the recursion be {

It(x,w, z) = if x = 0 then w

else
(

1 .− f(z, ~x)
)
z

where χ(z, ~x)—the value at (z, ~x) of the characteristic function of (∃y)<zf(y, ~x) =
0—goes into x in It, while the recursive call goes in w.

The apparent problem is the two possible independent outputs, w and z
that make It /∈ E 0. Well, “apparent” is the operative word. In this context,
whatever gets into w (that is, g(z, ~x)) is ≤ z (in fact, < z) so the new iterator

Ĩt below works equally well with It toward defining g, and does not have this
apparent problem!Ĩt(x,w, z) = if x = 0 then

(
1 .− (w .− z)

)
w

else
(

1 .− f(z, ~x)
)
z

EECS 4111/5111 c©George Tourlakis Fall 2018

13

Indeed, Ĩt ∈ E 0, since
Ĩt(0, w, z) =

(
1 .− (w .− z)

)
w

Ĩt(x+ 1, w, z) =
(

1 .− f(z, ~x)
)
z

Ĩt(x,w, z) ≤ z

�
The absence of the full switch from E 0 restricts the result about closure

under definition by cases:

0.1.0.33 Corollary. For n ≥ 1, E n is closed under definition by cases.
E 0 is closed under definition by cases provided the produced function f sat-

isfies f(~x) ≤ xi + k everywhere, for some i and k.

Proof. For n ≥ 1 the usual proof works. For E 0, if f is given as by-cases from
fi and Ri, where the fi are in E 0 and the Ri in E 0

∗ , then

f(~x) = (
◦
µy)≤xi+k

(
y = f1(~x) ∧R1(~x) ∨ . . . ∨ y = fn+1(~x) ∧Rn+1(~x)

)
(1)

where we wrote Rn+1 for the “otherwise” relation. The reader should carefully
identify all the results that we proved so far about the Grzegorczyk classes that
make (1) work. �

0.1.0.34 Theorem. E 2 is closed under simultaneous bounded recursion, where,
additionally to the standard schema, k bounding functions Bi, for i = 1, . . . , k,
are given, and the functions fi resulting from the schema must satisfy fi(x, ~y) ≤
Bi(x, ~y) everywhere.

Proof. Consider the schema below, where the hi, gi and Bi are in E 2.

f1(0, ~yn) = h1(~yn)
...

fk(0, ~yn) = hk(~yn)

f1(x+ 1, ~yn) = g1(x, ~yn, f1(x, ~yn), . . . , fk(x, ~yn))
...

fk(x+ 1, ~yn) = gk(x, ~yn, f1(x, ~yn), . . . , fk(x, ~yn))

f1(x, ~yn) ≤ B1(x, ~yn)
...

fk(x, ~yn) ≤ Bk(x, ~yn)

(1)

The pairing function J = λxy.(x+y)2+x is in E 2, and so are its projections K =

λz.(
◦
µx)≤z(∃y)≤zJ(x, y) = z and L = λz.(

◦
µy)≤z(∃x)≤zJ(x, y) = z. Thus, we

EECS 4111/5111 c©George Tourlakis Fall 2018

0.1. AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 14

have the coding-decoding scheme—λ~zk. [[z1, . . . , zk]]
(k)

and Πk
i —in E 2, where,

by recursion on k, we define

[[z1, . . . , zk]]
(k)

=

{
z1 if k = 1

J
(

[[z1, . . . , zk−1]]
(k−1)

, zk

)
if k > 1

(1)

The role of the Πk
i is to decode numbers of the form [[z1, . . . , zk]]

(k)
, thus, they

must satisfy, for 1 ≤ i ≤ k,

Πk
i

(
[[z1, . . . , zk]]

(k)
)

= zi

In terms of the K and L, the Πk
i are expressible as follows (Exercise!):

For k ≥ 2, Πk
i =

{
LKk−i if 2 ≤ i ≤ k
Kk−1 if i = 1

(2)

(1) and (2) confirm the claim “λ~zk. [[z1, . . . , zk]]
(k)

and Πk
i are in E 2”, which

we made above. The Hilbert-Bernays proof of how to simulate a simultaneous
recursion by a single recursion goes through unchanged if we replace the orig-
inally used prime power coding/decoding by the alternative [[. . .]]/Πk

i adopted
here. Noting that

[[f1(x, ~yn), . . . , fk(x, ~yn)]]
(k) ≤ [[B1(x, ~yn), . . . , Bk(x, ~yn)]]

(k)

and that the right hand side of the above ≤ is in E 2 (as a function of x, ~yn) by
substitution, we obtain that

λx~yn. [[f1(x, ~yn), . . . , fk(x, ~yn)]]
(k) ∈ E 2

and therefore, for i = 1, . . . , k, fi = λx~yn.Π
k
i

(
[[f1(x, ~yn), . . . , fk(x, ~yn)]]

(k))
is

in E 2. �

0.1.0.35 Corollary. E n, for n ≥ 2, is closed under simultaneous bounded re-
cursion.

�

We have introduced four primitive recursive hierarchies—of Axt-Hienermann,
Dennis Ritchie, and Grzegorczyk—the yardstick of “complexity” of a class at
each level n being that of its definition, whether the measure was numerical size
of produced functions (Grzegorczyk) or nesting depth of primitive recursion (in
all the others).

We conclude this subsection by showing that this definitional complexity
tracks very accurately the computational complexity of the primitive recursive
functions. The URM formalism will be the computing model to which the com-
putational complexity will related.

�

EECS 4111/5111 c©George Tourlakis Fall 2018

15

The “main lemma” toward connecting the four hierarchies to each other
on one hand, and with the computational complexity of their functions on the
other, will be the Ritchie∗-Cobham property of the Grzegorczyk classes, that

for n ≥ 0, f ∈ E n iff f is computable by some URM within time t ∈ E n

(RC)
We will need a simulation tool, namely, we will show that the computation

of a URM can be simulated by a very simple simultaneous primitive recursion.
The reader should review the yields operation that connects successive IDs in a
computation.

�

Important! Unlike much practice in theory of algorithms, where run time is
expressed as a function of input length, in the present section we will gauge run
time as function of input (numerical) value.

�

Thus, for the record:

0.1.0.36 Definition. Consider the function f = M~xn
y , where M is a URM—

whether M is normalized or not is immaterial for the purpose of this definition.
A function λ~xn.t(~xn) majorizes the run time complexity of M~xn

y iff, for all ~an,
if f(~an) ↓ with an M -computation of length l, then l ≤ t(~an); else if f(~an) ↑,
then also t(~an) ↑.

We say that λ~xn.f(~xn) is computable within time λ~xn.t(~xn). �

0.1.0.37 Simulation lemma. Let M be a normalized URM with variables
V1, V2, . . . Vn+1, Vn+2, . . . , Vm, of which V1 is the output variable while the Vi,
for i = 2, . . . , n + 1, are input variables. With reference to the yields operation
between IDs, we define m+ 1 simulating functions—for all y,~an—as follows:

vi(y,~an) = the value of variable Vi in the y-th ID of a (possibly non terminating)
computation with input ~an

I(y,~an) = instruction number in the y-th ID of a (possibly non terminating)
computation with input ~an

All the simulating functions are in K2
sim.

�

All the simulating functions are total, since once the instruction stop is reached
the computation continues forever “trivially”, that is, without changing either
the Vi or the instruction number.

�

Proof. We have the following simultaneous recursion that defines the simulating
functions:

v1(0,~an) = 0

vi(0,~an) = ai−1, for i = 2, . . . , n+ 1

vi(0,~an) = 0, for i = n+ 2, . . . ,m

I(0,~an) = 1

∗Dennis Ritchie.

EECS 4111/5111 c©George Tourlakis Fall 2018

0.1. AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 16

For y ≥ 0 and i = 1, . . . ,m, we have

vi(y+1,~an) =

c if I(y,~an) = k where “k : Vi ← c” is in M

vi(y,~an) + 1 if I(y,~an) = k where “k : Vi ← Vi + 1” is in M

vi(y,~an)
.− 1 if I(y,~an) = k where “k : Vi ← Vi

.− 1” is in M

vi(y,~an) otherwise

I(y + 1,~an) =

l1 if I(y,~an) = k where “k : if Vi = 0 goto l1 else

goto l2” is in M and vi(y,~an) = 0

l2 if I(y,~an) = k where “k : if Vi = 0 goto l1 else

goto l2” is in M and vi(y,~an) > 0

k if I(y,~an) = k where “k : stop” is in M

I(y,~an) + 1 otherwise

Since the iterator functions only utilize the functions λx.a, λx.x+ 1, λx.x
.− 1,

λx.x, and predicates λx.x = a, and λx.x > a—all in K sim
1 and K sim

1,∗ —it

follows that all the simulating functions are in K sim
2 , as claimed. �

0.1.0.38 Example. Let M be the program below

1 : V1 ← V1 + 1
2 : V2 ← V2

.− 1
3 : if V2 = 0 goto 4 else goto 1
4 : stop

Let us assume that V2 is the input variable and V1 is the output variable. The
simulating equations take the concrete form below, where a denotes the input
value:

v1(0, a) = 0

v2(0, a) = a

For y ≥ 0 we have

v1(y + 1, a) =

{
v1(y, a) + 1 if I(y, a) = 1

v1(y, a) otherwise

v2(y + 1, a) =

{
v2(y, a)

.− 1 if I(y, a) = 2

v2(y, a) otherwise

I(y + 1, a) =

4 if I(y, a) = 3 ∧ v2(y, a) = 0

1 if I(y, a) = 3 ∧ v2(y, a) > 0

4 if I(y, a) = 4

I(y, a) + 1 otherwise

�

EECS 4111/5111 c©George Tourlakis Fall 2018

17

� �

0.1.0.39 Corollary. The simulating functions are in K4.

Proof. The above mentioned predicates and functions that are part of the it-
erator are in K1 and K1,∗. Moreover, K1 is closed under definition by cases
(0.1.0.21). To convert the simultaneous recursion to a single recursion and back,
we need pairing functions and their projections.

The quadratic pairing function J = λxy.(x + y)2 + x is appropriate. Im-
mediately, J ∈ K2 by 0.1.0.17. Now, let us place its projections, K and L,
in the Axt hierarchy. We know from class/text that Kz = z

.− b
√
zc2 and

Lz = b
√
zc .− Kz. By the results of 0.1.0.17 we need only locate λz. b

√
zc in

the hierarchy.
We start by noting that if z + 1 is a perfect square, that is, z + 1 = (k+ 1)2

for some k, then z + 1 = k2 + 2k + 1 hence z = k2 + 2k, thus

k2 ≤ z < (k + 1)2

hence k = b
√
zc. This yields⌊√

z + 1
⌋

= k + 1 =
⌊√

z
⌋

+ 1 (1)

Suppose next that z + 1 is not a perfect square. That is,

m2 < z + 1 < (m+ 1)2 (2)

for some m, and hence m2 ≤ z < (m+ 1)2. This entails m ≤
√
z < m+ 1, thus

m = b
√
zc. But m =

⌊√
z + 1

⌋
as well, by (2).

At the end of all this we obtain the following recursion:
⌊√

0
⌋

= 0⌊√
z + 1

⌋
=

{
b
√
zc+ 1 if z + 1 = (b

√
zc+ 1)2

b
√
zc otherwise

By reference to 0.1.0.17—and noting that x = y ≡ (x
.− y) + (y

.− x) = 0, thus
λxy.x = y ∈ K2,∗—we see that λz. b

√
zc ∈ K3, and thus so are K and L. But

then, the coding/decoding scheme that is based on this J,K,L is in K3.

Referring back to our proof of the Hilbert-Bernays theorem, you will recall
that —translating the technique from 〈. . .〉-coding to [[. . .]]-coding— the coded
iteration-part of the simultaneous recursion that we be captured in our prime-
power coding method as

F (y + 1,~a) =
〈
. . . , gi

(
y,~a,

(
F (y,~a)

)
0
, . . . ,

(
F (y,~a)

)
m

)
, . . .

〉
where (in the present context)

(F (y,~a)
)
0

= I(y,~a), and, for i = 1, . . . ,m, (F (y,~a)
)
i

= vi(y,~a)

EECS 4111/5111 c©George Tourlakis Fall 2018

0.1. AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 18

here becomes

F (y + 1,~a) = [[. . . , gi

(
y,~a,Πm+1

1 (F (y,~a)), . . . ,Πm+1
m+1(F (y,~a))

)
, . . .]]

(m+1)
(3)

where

Πm+1
1 (F (y,~a)) = I(y,~a), and, for i = 2, . . . ,m+ 1,Πm+1

i (F (y,~a)) = vi(y,~a)

Thus, the presence of the Πm+1
i in the iterator part (3), causes F ∈ K4 since

K,L are in K3, and thus so are the Πm+1
i .

Therefore, the recursion that simulates the simultaneous recursion of the
simulation lemma yields the function

F = λy~an. [[I(y,~an), v1(y,~an), . . . , vm(y,~an)]]
(m+1)

in K4. This guarantees that

λy~an.Π
m+1
i

(
[[I(y,~an), v1(y,~an), . . . , vm(y,~an)]]

(m+1)
)

are in K4, for i = 1, . . . ,m+ 1. � � �

0.1.0.40 Corollary. The simulating functions are in E 2.

Proof. Given that the iterators in the simultaneous recursion employed in 0.1.0.37
are trivially in E 2, we only need to provide E 2-bounds for all the produced func-
tions (0.1.0.34). Well, I(y,~an) ≤ k, where k is the label of the stop instruction
of M . On the other hand, since all we do with the iterators can at most add 1
in each step, we also have the bounds v(y,~an) ≤ max~an +y+C, a bound which
is in E 2 as a function of y and ~an, seeing that max(x, y) = x .− y + y. The
“ +C” accounts for all the constants that may be assigned to a variable during
the computation (instructions of type Vi ← a). �

We can now prove (the nontrivial) half of the Ritchie-Cobham property:

0.1.0.41 Lemma. If f = M~xn
z runs on M within time t ∈ E n, for some n ≥ 2,

then f ∈ E n.

Proof. Let the simulating functions of M be as in 0.1.0.37, where z is “V1”,
the output variable. Then, for all ~an, we have f(~an) = v1

(
t(~an),~an

)
, and this

settles the claim by 0.1.0.40. �
The “easy” half of the Ritchie-Cobham property is proved by doing a bit of

programming.

0.1.0.42 Lemma. For n ≥ 2, any λ~x.f(~x) ∈ E n is URM-computable within
time λ~x.t(~x) ∈ E n.

EECS 4111/5111 c©George Tourlakis Fall 2018

19

Proof. Induction over E n.
We settle the case of the initial functions first (cf. 0.1.0.22). λx.x is com-

putable, as MV2

V1
, within O(x) steps by the normalized URM M below

1 : if V2 = 0 goto 5 else goto 2
2 : V1 ← V1 + 1
3 : V2 ← V2

.− 1
4 : goto 1
5 : stop

while λx.x+ 1 is computable, as NV2

V1
, also within O(x) steps by the normalized

URM N below:
1 : if V2 = 0 goto 5 else goto 2
2 : V1 ← V1 + 1
3 : V2 ← V2

.− 1
4 : goto 1
5 : V1 ← V1 + 1
6 : stop

while λx.x+ 1 is computable, as NV2

V1
, also within O(x) steps by the normalized

URM N below:
�

The non normalized URM P below

1 : V1 ← V1 + 1
2 : stop

computes λx.x+ 1 as PV1

V1
in O(1) steps.

�

λxy.xy is computable by the following loop-program, R, within time O(xy),
as RXY

Z :
Loop X

Loop Y
Z ← Z + 1

end
end

A straightforward URM simulation of the above is

1 : goto 7 {Comment. Loop X begins}
2 : goto 5 {Comment. Loop Y begins}
3 : Z ← Z + 1
4 : Y ← Y .− 1
5 : if Y = 0 goto 6 else goto 3 {Comment. Loop Y ends}
6 : X ← X

.− 1
7 : if X = 0 goto 8 else goto 2 {Comment. Loop X ends}
8 : stop

This still runs within O(xy) time. With the case of n = 2 done, we now turn to
the initial functions of E n+1 for n ≥ 2.

EECS 4111/5111 c©George Tourlakis Fall 2018

0.1. AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 20

The only new case is An. We show that it is computable by some URM
M within time Ak

n, for some k.
We know that An ∈ Ln. So let An = P x

z , where the program P ∈ Ln

terminates within O(Ak
n(x)) steps (Exercise!†)

But how about computing P x
z on a URM? We can efficiently translate any

loop program into a URM program!
To this end, note that loop program instructions, other than those of type

X = Y and the Loop-end pair, occur also in URM programs and thus can be
the translated as themselves. On the other hand, X = Y can be simulated by
a URM (as we know).

Recursively, assume that we know how to translate R into a URM R̃ and
consider Q:

Q :

{
Loop X
R
end

This is simulated by the URM

B ← X {A new B is associated with each instruction “Loop X”‡}
goto L { L labels the “end” that matches the simulated “Loop X”}

M :
R̃
B ← B

.− 1
L : if B = 0 goto L+ 1 else goto M
L+ 1 :

Let next the run time of a loop program be O(t). If an instruction of type
“B ← X” were to take 1 step in a URM, then the above described simulating
URM would also run within time O(t). But this is not a primitive instruction
of a URM! It takes time O(X) to perform it.

Now, for the P above in particular —which computes An— and since t =
O(Ak

n(x)), it follows that for any variable X of P , we have O(X) = O(Ak
n(x)),§

and thus the URM runs within time O
(
(Ak

n(x))2
)

= O(Ak+1
n (x)) due to x2 =

O(A2(x)) = O(An(x)).
We have concluded the basis case for all n ≥ 2.

To conclude the induction over E n (n ≥ 2) we show that the property
propagates with substitution and bounded recursion.

Let then f and g from E n, n ≥ 2, be URM-computable (by programs Mf

and Mg) with run times bounded by tf and tg—both in E n. Consider

λ~x~y.f(~x, g(~y)) (∗)
†Hint. Show that, for any P ∈ Ln, PX

Y runs within time that is also a Ln function. Then

recall that Ln = K sim
n .

‡For a given X the instruction “Loop X” may appear several times. Each occurrence is
associated with a new “B”.
§To see this upper bound think of X as the output variable!

EECS 4111/5111 c©George Tourlakis Fall 2018

21

We can (essentially) concatenate Mg and Mf in that order to compute (∗). The
run time of this program is bounded by λ~x~y.tg(~y) + tf (~x, g(~y)), which is in E n,
just as λ~x~y.f(~x, g(~y)) is. The other cases of substitution are trivial and are
omitted.

Finally, let λx~y.f(x, ~y) be obtained by a bounded recursion from basis h,
iterator g and bound B, all in E n, and all programmable in respective URMs
within time bounds th, tg and tB , all in E n. A URM program for f , in “pseudo
code”, is

z ← h(~y)
i← 0

R : if x = 0 goto L else goto L′

L′ : z ← g(i, ~y, z)
i← i+ 1
x← x .− 1
goto R

L : stop

Its run time is

th(~y) +O
(∑

i<x

tg(i, ~y, f(i, ~y))
)
¶ (1)

Since th, tg and f are all in E n, then so is the function given by expression (1),
due to 0.1.0.30. �

�

The simulation of a loop program by a URM given on p. 20 represents the
general-purpose, “faithful” simulation that, in particular, is true to the fact
that the number of iterations of a loop, Loop X, depend only on the value of
X upon entry in the loop. That is the purpose of the new variable B.

The simulation on p. 19 is expedient but acceptable since neither X nor Y
are present inside the “scope” of either loop.

�

By virtue of Lemmata 0.1.0.41 and 0.1.0.42 we have now proved:

0.1.0.43 Theorem. (The Ritchie-Cobham Property of E n) For n ≥ 2,
a function f is in E n iff it can be computed on some URM within time tf ∈ E n.

�

The Ritchie-Cobham property shows the extremely close relationship between
static and computational complexity of primitive recursive functions: The run
time complexity of a function f in E n+1—as it is measured by the amount of
time it takes to compute it, namely, Ak

n—is exactly predicted by the definitional
complexity of the function: its level in the hierarchy. And conversely! The run
time predicts the definitional complexity. Very accurately.

�

We can now compare all the hierarchies that we introduced:

0.1.0.44 Corollary. For n ≥ 2, we have K sim
n = E n+1.

¶Of course, this denotes, for some C and D, the expression th(~y)+C
∑

i<x tg(i, ~y, f(i, ~y))+
D.

EECS 4111/5111 c©George Tourlakis Fall 2018

0.1. AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 22

Proof. The ⊇ is immediate by 0.1.0.43: Let f ∈ E n+1 and let it run on some
M within time tf ∈ E n+1. Now tf (~x) ≤ Ar

n(max ~x), everywhere, by 0.1.0.27. If
v1 is, as before (0.1.0.37), the simulating function for the output variable of M ,
then

f = λ~x.v1(Ar
n(max ~x), ~x)

But Ar
n ∈ K sim

n (0.1.0.9), thus, f ∈ K sim
n .

For the ⊆ we do induction on n ≥ 2. For n = 2 note that, trivially, K sim
0 ⊆

E 3. Now—by varying r— we can make Ar
1 majorize every function of K sim

1

(0.1.0.10), thus every simultaneous recursion that produces functions in K sim
1

(from functions in K sim
0) is a bounded recursion within E 3 (A1 = λx.2x+ 2 ∈

E 3). Therefore, K sim
1 ⊆ E 3. Repeating this argument we have that

every simultaneous recursion that produces functions in K sim
2 (from

functions in K sim
1) is a bounded recursion within E 3 (since A2 ∈ E 3).

thus, K sim
2 ⊆ E 3.

Taking as an I.H. the validity of the claim for some fixed n ≥ 2, the case
for n + 1 is repeating the idea we employed in the basis: recursions taking
us from K sim

n to K sim
n+1 are bounded recursions performed within E n+2 (⊇

E n+1 ⊇ , by I.H., K sim
n), with bounding function some Ar

n+1—since Ar
n+1 ∈

K sim
n+1 ∩ E n+2. �

By 0.1.0.15 we have at once

0.1.0.45 Corollary. For n ≥ 2, we have Ln = E n+1.

0.1.0.46 Corollary. For n ≥ 4, we have Kn = E n+1.

Proof. The proof follows very closely that of 0.1.0.44. The ⊆ goes through
unchanged, but the ⊇ “starts” later, n ≥ 4, due to the fact that the simulating
function v1 is in K4; cf. 0.1.0.39. �

�

Schwichtenberg has improved 0.1.0.46 by proving the case for n = 3 [4]. This is
retold in [8]. [3] gives a proof for the case n = 2.

�

0.1.0.47

�

Remark. (A Very Hard Problem—Revisited) Corollary 0.1.0.45
adversely impacts a problem of practical significance: That of program correct-
ness. The problem “program correctness” is an instance of the equivalence
problem of programs, since it tasks us to determine whether a program follows
faithfully a specification, the latter being, of course, given by a finite description,
just as the program is.

We strengthen here the observation we made earlier in the course, about
the equivalence problem of primitive recursive functions, that is, the equivalence
problem of loop programs:

Given loop programs P and Q, is it the case that P
~X
Y = Q

~X
Y ?

EECS 4111/5111 c©George Tourlakis Fall 2018

23

We saw that the equivalence problem for PR is unsolvable—indeed, worse:
not even c.e.—as a consequence of the fact λx.1 and λy.χT (x, x, y) are in PR.

As these functions are also in E 3—a fact that can be readily verified by
looking at the proof of the normal form theorem (See Problem Set #3 :-)—it
follows that the equivalence problem for E 3 functions is not c.e. either. By
virtue of 0.1.0.45, this yields the rather disappointing alternative formulation:

The equivalence problem for programs in L2—i.e., those that have loop
depth equal to two—is not c.e.

Thus the various techniques employed to tackle loop correctness can be suc-
cessful in all instances of the problem only when we have un-nested loops—L1-
programs. This holds true even though the loops are “FOTRAN-like”, that is,
they always terminate and the number of iterations of any such loop is known
at the time the loop is entered. It should be noted that Tsichritzis (cf. [9]
and [8]) has shown that programs in L1 have a solvable equivalence problem,
but, on the other hand, the corresponding set of functions, L1 is rather triv-
ial: it is the closure under substitution of {λxy.x + y, λx.x .− 1, λxyz. if x =
0 then y else z, λx, bx/kc , λx.rem(x, k)}. That is, all “looping” can be elimi-
nated if we adopt this enlarged set of initial functions. �

�

EECS 4111/5111 c©George Tourlakis Fall 2018

0.1. AXT, LOOP PROGRAM, AND GRZEGORCZYK HIERARCHIES 24

EECS 4111/5111 c©George Tourlakis Fall 2018

25

Bibliography

[1] P. Axt. Iteration of Primitive Recursion. Zeitschrift für math. Logik, 11:253–
255, 1965.

[2] A. Grzegorczyk. Some classes of recursive functions. Rozprawy Matematy-
czne, 4:1–45, 1953.

[3] H. Müller. Characterization of the Elementary Functions in Terms of Nesting
of Primitive Recursions. Recursive Function Theory: Newsletter, (5):14–15,
April 1973.

[4] H. Schwichtenberg. Rekursionszahlen und die Grzegorczyk-Hierarchie. Arch.
math. Logik, 12:85–97, 1969.

[5] W. Heinermann. Untersuchungen über die Rekursionszahlen rekursiven
Funktionen. PhD thesis, Münster, 1961.

[6] Rózsa Péter. Recursive Functions. Academic Press, New York, 1967.

[7] D.M. Ritchie. Complexity Classification of Primitive Recursive Functions by
their Machine Programs. Term paper for Applied Mathematics 230, Harvard
University, 1965.

[8] G. Tourlakis. Computability. Reston Publishing, Reston, VA, 1984.

[9] D Tsichritzis. The Equivalence Problem of Simple Programs. JACM, 17:729–
738, 1970.

EECS 4111/5111 c©George Tourlakis Fall 2018

	Axt, Loop Program, and Grzegorczyk Hierarchies

