EECS 4111/5111 — Fall 2019

Posted: Sep. 23, 2019
Due: TBA

Problem Set No. 1

NB. All problems are equally weighted and will be assigned a letter grade; an overall letter grade for the paper will be computed using York's 0-9 gpa scale.

The problem set list for grad students enrolled in EECS 5111 is the entire list here. Undergrads should omit any problems marked "Grad".

This is not a course on formal recursion theory. Your proofs should be informal (but NOT sloppy), completely argued, correct, and informative (and if possible short). However, please do not trade length for correctness or readability.

All problems are from the "Theory of Computation Text", or are improvestations that I completely articulate here.
(1) For total f, prove that if its graph $y=f(\vec{x})$ is recursive, then $f \in \mathcal{R}$.

Hint. Use Unbounded Search to define the function.
(2) Show by a simple counterexample that if we omit the qualifier "total" above, then this does not work. That is, show that there is an f that has a recursive graph, but $f \notin \mathcal{R}$.
(3) Let $\|x\|$ denote the decimal length of the natural number x. Prove that $\lambda x .\|x\| \in \mathcal{P} \mathcal{R}$.
Hint. Use Bounded Search to define the function.
(4) Prove that $\lambda x \cdot\left\lfloor\log _{10} x\right\rfloor \in \mathcal{P} \mathcal{R}$.

Hint. Use Bounded Search to define the function.

From Section 2.12 .

(5) Do problems 6, 9, 11, 12.
(6) In class I claimed that $p_{n} \leq 2^{2^{n}}$ for all n. Prove this.

Hint. Do "strong" induction (that is, I.H. will be "assume for n or less").
Work with $p_{0} p_{1} \cdots p_{n}+1 .^{\dagger}$
(7) (Grad). Do problems 22, 25.

Hint for 25 . Prove an easy lemma (induction): $A_{x}(2)>x+1$, for all $x \geq 0$.

[^0]EECS 4111/5111. George Tourlakis. Fall 2019

[^0]: ${ }^{\dagger}$ As Euclid did in order to prove that there are infinitely many primes.

