
Chapter 1

What is Computability?

1.1 Preliminaries

• This course is about the inherent limitations of
computing: The problems we cannot solve by
writing a program !

1

2 What is Computability?

• At the intuitive level, any mathematician or com-
puter scientist and any student of these two fields of
study will have no difficulty in recognising an
algorithm as soon as they see one

• But how about:

• – “is there an algorithm which can determine whether
or not a given computer program (the latter writ-
ten in, say, the C-language) is correct?”∗

and

– “is there an algorithm that will determine whether
or not any given Boolean formula is a tautology,
doing so via computations that take no more
steps than some (fixed) polynomial function of
the input length?”

∗A “correct” program produces, for every input, precisely the output that is expected by
an a priori specification.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

1.1 Preliminaries 3

• What do we mean by

“there is NO algorithm that solves a given
problem”—with or without restrictions on the
algorithm’s efficiency— and how do you validate
such a statement?

This appears to be a much harder statement
to validate than “there IS an algorithm that solves
such and such a problem”

I for the latter, all we have to do is to produce a
correct such algorithm (and a proof that it works as
claimed).

By contrast, the former statement implies, mathe-
matically speaking, a provably failed search over
the entire set of all algorithms , while we were
looking for one that solves our problem.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4 What is Computability?

• “Provably failed” is a funny way to say “we have a
PROOF that the search will fail”.

To have a PROOF that NO Algorithm
A Solves a Problem P we MUST have
a Theory where Algorithms and Prob-
lems are the Objects of Study!

Computability is Precisely That!

� Compare: To prove properties of numbers you
need a Theory about numbers: Number Theory.

Analogously, to prove properties of Algorithms and
Problems you need a Theory about such objects:
Computability.

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

1.1 Preliminaries 5

• How do you define the concept “Computable Func-
tion”?

By defining a Programming Language

where we can PROGRAM such func-

tions!

As a side-effect this approach also makes
Mathematically Precise the concepts
“Algorithm” and, synonymously, “Me-
chanical Procedure”.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

6 What is Computability?

• Now, PEDAGOGICALLY, it is prudent to go from
the Concrete towards the Abstract.

We recognise that in the context of “Programming”
“the concrete experience” of most CS students is
Programming in High-Level languages.†

Thus we adopt the programming language known
as Shepherdson-Sturgis Unbounded Register “Machines”
(URM) —which is a straightforward abstraction‡

of modern high level programming languages like C.

I Discuss and Contrast with TMs.

†“High-Level” meaning “away from the machine level”.
‡Abstraction: A version devoid of unnecessary DETAILS.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

1.1 Preliminaries 7

Within the chapter on URMs we will also ex-
plore a restriction of the URM programming lan-
guage, that of the loop programs of A. Meyer and
D. Ritchie.

I We will learn that while these loop programs can
only compute a very small subset of “all the com-
putable functions”, nevertheless they are significantly
more than adequate for programming solutions to
any “practical”, computationally solvable, problem.

For example, even restricting the nesting of loop in-
structions to as low as two, we can compute —in
principle— enormously large functions, which
with input x can produce astronomical outputs
such as

2·
··

2x
}

10350000 2’s
(1)

The qualification above, “in principle”, stems from
the enormity of the output displayed in (1) —even
for the input x = 0— that renders the above function
way beyond “practical”.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

8 What is Computability?

• The COURSE PLAN

1. Found Computability Theory using URMs as the
programming language.

2. Will look at functions like (1) above, and many
simpler ones, collectively known as “Primitive
Recursive”. These functions provide valuable tools
—such as “CODING”— to the theory.

3. Will show that these functions are exactly the
functions that are computed by the loop pro-
grams we mentioned above.

Then

4. We will get to the three pillars of computability:

– The universal function theorem

– S-m-n theorem

– Kleene Normal Form theorem

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

1.1 Preliminaries 9

5. We will begin our study of algorithmically un-
solvable problems.

– First using the technique of diagonalisation

� I’ll explain the technique when we get there. �

– Then using the more sophisticated technique
of reducing one problem A to another B: “If
I can solve (via programming) B, then
here is how to also solve A from that
knowledge”

We depict this by the symbol A ≤ B. Clearly,
if A ≤ B and if it turns out that A has no
programming solution, then neither does B.

– We note and study the distinction between
“decidable” and “verifiable” problems.

– We prove the startling theorem of Rice.

6. We will demonstrate the intimate connection be-
tween the algorithmic unsolvability phenomenon
of computing on one hand, and the unprovability
phenomenon of applied logic on the other. The
latter phenomenon was discovered by Gödel and
is known as his first incompleteness theorem.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10 What is Computability?

• We conclude the course with aspects of the Com-
plexity of computation. That is,

Question: Among the functions we can compute,
why do some take enormous amount of resources to
compute?

Question: Can we predict (approximately) how
complex a computation is going to be (upper bound
on computation steps!) by looking at the structure
of the program?

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

Chapter 2

Algorithms, Computable
Functions and
Computations

Sept. 13, 2021

2.1 A Theory of Computability

Computability is the part of logic and theoretical com-
puter science that gives

a mathematically precise formulation

to the concepts algorithm, mechanical procedure, and
calculable/computable function.

11

12 Algorithms, Computable Functions and Computations

2.2 The URM

We now embark on defining our high level programming
language URM.

The alphabet of the language is

←,+, .−, :, X, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, if , else,goto, stop
(1)

Just like any other high level programming language,
URM manipulates the contents of variables.

The “inventors”, [SS63] called the variables “registers”.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.2 The URM 13

1) These variables are restricted to be ONLY of natural
number type.

2) Since this programming language is for theoretical
analysis only —rather than practical implementation—
every variable is allowed to hold any natural number
whatsoever, without limitations to its size, hence
the “UR” in the language name (“unbounded register”).

3) The syntax of the variables is simple: A variable
(name) is a string that starts with X and continues
with one or more 1:

URM variable set: X1, X11, X111, X1111, . . . (2)

4) Nevertheless, as is customary for the sake of conve-
nience, we will utilize the bold face lower case letters
x,y, z,u,v,w, with or without subscripts or primes as
metavariables in most of our discussions of the URM,
and in examples of specific programs (where yet more,
convenient metanotations for variables may be em-
ployed).

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

14 Algorithms, Computable Functions and Computations

2.2.1 Definition. (URM Programs) A URM pro-
gram is a finite (ordered) sequence of instructions (or
commands) of the following five types:

L : x← a

L : x← x + 1

L : x← x .− 1 (3)

L : stop

L : if x = 0 goto M else goto R

where L,M,R, a, written in decimal notation,
are in N, and x is some variable.

We call instructions of the last type if-statements.

I Each instruction in a URM program must be num-
bered by its position number, L, in the program, where
“:” separates the position number from the instruction.

I We call these numbers labels. Thus, the label of the
first instruction MUST BE “1”.

I The instruction stop must occur only once in a
program, as the last instruction.

I An if-statmemnt is syntactically illegal (meaning-
less) if any of M or R exceed the label of the program’s
stop instruction. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.2 The URM 15

The semantics of each instruction/command and
of a URM-computation are given below.

2.2.2 Definition. (Instructions and computations; semantics)

A URM computation is a sequence of actions
caused by the execution of the instructions of the URM
as detailed below.

Every computation begins with the instruction la-
beled “1” as the current instruction.

An instruction ACTS if and only if it is THE
CURRENT INSTRUCTION.

The ACTION is as follows:

(i) L : x ← a. Action: The value of x becomes the
(natural) number a. Instruction L + 1 will be the
next current instruction.

(ii) L : x ← x + 1. Action: This causes the value of x
to increase by 1. The instruction labeled L+ 1 will
be the next current instruction.

(iii) L : x ← x .− 1. Action: This causes the value

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

16 Algorithms, Computable Functions and Computations

of x to decrease by 1, if it was originally non zero.
Otherwise it remains 0. The instruction labeled L+
1 will be the next current instruction.

(iv) L : stop. Action: No variable (referenced in the
program) changes value. The next current instruc-
tion is still the one labeled L.

(v) L : if x = 0 goto M else goto R. Action: No
variable (referenced in the program) changes value.
The next current instruction is numbered M if x =
0; otherwise it is numbered R.

�

What is missing? Read/Write statements! We will
come to that!

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.2 The URM 17

We say that a computation terminates, or halts, iff it
ever makes current (as we say “reaches”) the instruction
stop.

Note that the semantics of “L : stop” appear to
require the computation to continue for ever. . .

. . . but it does so in a trivial manner where no variable
changes value, and the current instruction remains the
same: Practically, the computation is over.

When discussing URM programs (or as we just say,
“URMs”) one usually gives them names like

M,N,P,Q,R, F,H,G

.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

18 Algorithms, Computable Functions and Computations

2.3 The Classes P and R of Partial and Total
Computable Functions

NOTATION: We write ~xn for the sequence of variables
x1,x2, . . . ,xn. We write ~an for the sequence of values
a1, a2, . . . , an.

I It is normal to omit the n (vector length) from ~xn
and ~an if it is understood from the context, or we don’t
care, in which case we write ~x and ~a.

2.3.1 Definition. (URM As a Function) A computa-
tion by the URM M computes a function that we
denote by

M~xn
y

in this precise sense:

The notation means that we chose and designated as
input variables of M the following: x1, . . . ,xn. Also
indicates that we chose and designated one variable y
as the output variable.

We call this “the I/O convention for M ’’.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.3 The Classes P and R of Partial and Total Computable Functions 19

We now conclude the definition of the function M~xn
y : For

every choice we make for input values ~an from Nn,

� � “Nn” is borrowed from set theory. It is the cartesian
product of n copies of N = {0, 1, 2, 3, . . .}, that is, Nn is
the set of all length-n sequences a1, a2, . . . , an where each
ai is in N; a natural number. � �

(1) We initialise the computation of URM M , by doing
TWO things:

(a) We initialise the input variables x1, . . . ,xn with
the input values

a1, . . . , an

We also initialise all other (not input) vari-
ables of M to be 0.

This is an implicit READ action.

(b) We next make the instruction labeled “1” cur-
rent, and thus start the computation.

� So, the initialisation is NOT part of the com-
putation! �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

20 Algorithms, Computable Functions and Computations

(2) If the computation terminates, that is, if at some
point the instruction stop becomes current, then the
value of y at that point (and hence at any future
point, by (iv) above), is the value of the function
M~xn

y for input ~an.

This is an implicit WRITE action. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.3 The Classes P and R of Partial and Total Computable Functions 21

2.3.2 Definition. (Computable Functions) A func-
tion f : Nn → N of n variables x1, . . . , xn is called partial

computable iff for some URM, M , we have f = Mx1,...,xn
y .

The set of all partial computable functions is denoted
by P.

The set of all the total functions in P —that is, those
that are defined on all inputs from N— is the set of
computable functions and is denoted by R. The term
recursive is used in the literature synonymously with the
term computable. �

� Saying COMPUTABLE or RECURSIVE without quali-
fication implies the qualifier TOTAL.

It is OK to add TOTAL on occasion for EMPHASIS!!

“PARTIAL” means “might be total or nontotal”; we
do not care, or we do not know . �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

22 Algorithms, Computable Functions and Computations

� BTW, you recall from MATH1019 that the symbol

f :

left field
↓
Nn →

right field
↓
N (1)

simply states that f takes input values from N in each of
its input variables and outputs —if it outputs anything
for the given input!— a number from N. Note also the
terminology in red type in the display (1) above! �

� Probably your 1019 text called Nn and N above “domain”
and “range”. FORGET THAT!

What IS the domain of f really? (in symbols dom(f))

dom(f)
Def
= {~an : (∃y)f(~an) = y}

that is, the set of all inputs that actually cause an output .

The range is the set of all possible outputs:

ran(f)
Def
= {y : (∃~an)f(~an) = y}

A function f : Nn → N is total iff dom(f) = Nn.

Nontotal iff dom(f) (Nn. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.3 The Classes P and R of Partial and Total Computable Functions 23

If ~an ∈ dom(f) we write simply f(~an) ↓. Either way,
we say “f is defined at ~an”.

The opposite situation is denoted by f(~an) ↑ and we
say that “f is undefined at ~an”. We can also say “f is
divergent at ~an”.

• Example of a total function: the “x+y” function on
the natural numbers.

• Example of a nontotal function: the “bx/yc” func-
tion on the natural numbers. All input pairs of the
form “a, 0” fail to produce an output: ba/0c is un-
defined. All the other inputs work.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

24 Algorithms, Computable Functions and Computations

Sept. 15, 2021

2.4 URM “Programming Examples”

2.4.1 Example. Let M be the program

1 : x← x + 1
2 : stop

Then Mx
x is the function f given, for all x ∈ N, by f(x) =

x+ 1, the successor function. �

2.4.2 Remark. (λ Notation) To avoid saying verbose
things such as “Mx

x is the function f given, for all x ∈ N,
by f(x) = x+ 1”, we will often use Church’s λ-notation
and write instead “Mx

x = λx.x+ 1”.

In general, the notation “λ · · · .” marks the beginning
of a sequence of input variables “· · · ” by the symbol “λ”,
and the end of the sequence by the symbol “.” What
comes after the period “.” is the “rule” that indicates
how the output relates to the input.

The template for λ-notation thus is

λ“input”.“output-rule”

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.4 URM “Programming Examples” 25

Relating to the above example, we note that f =
λx.x + 1 = λy.y + 1 is correct and we are saying that
the two functions viewed as tables are the same.

Note that x, y, are “apparent” variables (“dummy” or
bound) and are not free (for substitution).

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

26 Algorithms, Computable Functions and Computations

2.4.3 Example. Let M be the program

1 : x← x .− 1
2 : stop

Then Mx
x is the function λx.x .− 1, the predecessor func-

tion.

The operation .− is called “proper subtraction” —some
people pronounce it “monus”— and is in general defined
by

x .− y =

{
x− y if x ≥ y

0 otherwise

It ensures that subtraction (as modified) does not take us
out of the set of the so-called number-theoretic functions,
which are those with inputs from N and outputs in N.

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.4 URM “Programming Examples” 27

Pause. Why are we restricting computability theory
to number-theoretic functions? Surely, in practice we can
compute with

• negative numbers,

• rational numbers, and

• with nonnumerical entities, such as graphs, trees,
etc.

Theory ought to reflect, and explain, our practices; no?J

It does. Negative numbers and rational numbers can
be coded by natural number pairs.

Computability of number-theoretic functions can han-
dle such pairing (and unpairing or decoding).

Moreover, finite objects such as graphs, trees, and the
like that we manipulate via computers can be also coded
(and decoded) by natural numbers.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

28 Algorithms, Computable Functions and Computations

I After all, the internal representation of all data in

computers is, at the lowest level, via natural numbers

represented in binary notation.

Computers cannot handle infinite objects such as (ir-
rational) real numbers.

But there is an extensive “higher type” computability
theory (which originated with the work of [Kle43]) that
can handle such numbers as inputs and also compute
with them.

However, this theory is way beyond our scope.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.4 URM “Programming Examples” 29

2.4.4 Example. Let M be the program

1 : x← 0
2 : stop

Then Mx
x is the function λx.0, the zero function, usually

denoted by Z. �

� In Definition 2.3.2 we spoke of partial computable and
total computable functions.

We retain the qualifiers partial and total for

all number-theoretic functions, that is, func-

tions

f : Nn → N
even for those that may not be computable.

Total vs. nontotal (no hyphen) has been defined with
respect to a chosen and fixed left field for any function
in computability.

The set union of all total and nontotal number-theoretic
functions is the set of all partial (number-theoretic) func-
tions. Thus partial is not synonymous with nontotal. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

30 Algorithms, Computable Functions and Computations

2.4.5 Example. The unconditional goto instruction, namely,
“L : goto L′”, can be simulated by

L : if x = 0 goto L′ else goto L′

�

2.4.6 Example. Let M be the program

1 : x← x + 1
2 : goto 1
3 : stop

Then Mx
x is the empty function ∅, sometimes written as

λx. ↑.

Thus the empty function is partial computable but
nontotal. We have just established ∅ ∈ P −R. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.4 URM “Programming Examples” 31

2.4.7 Example. Let M be the program segment

k − 1 : x← 0
k : if z = 0 goto k + 4 else goto k + 1
k + 1 : z← z .− 1
k + 2 : x← x + 1
k + 3 : goto k
k + 4 : . . .

What it does:

By the time the computation reaches instruction k+4,
the program segment has set the value of z to 0, and has
made the value of x equal to the value that z had when
instruction k − 1 was current.

In short, the above sequence of instructions simulates
the following sequence

L : x← z
L+ 1 : z← 0
L+ 2 : . . .

where the semantics of L : x ← z are standard in pro-
gramming:

It requires that, upon execution of the instruction, the
value of z is copied into x but the value of z remains
unchanged. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

32 Algorithms, Computable Functions and Computations

2.4.8 Exercise. Write a program segment that simu-
lates precisely L : x ← z; that is, copy the value of
z into x without causing z to change as a side-effect.

�

We say that the “normal” assignment x ← z is non
destructive.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.4 URM “Programming Examples” 33

Because of Exercise 2.4.8 above, without loss of gen-
erality, one may assume that any input variable, x, of a
URM M is read-only.

This means that its value is retained through-
out any computation of the program.

� Why “without loss of generality”? Because if x is not
such, we can make it be! �

Indeed, let’s add a new variable as an input variable,
x′ instead of x.

Then, in detail, do this to make x′ read-only:

• Add at the very beginning of M the instruction 1 :
x← x′ of Exercise 2.4.8.

• Adjust all the following labels consistently, includ-
ing, of course, the ones referenced by if-statements—
a tedious but straightforward task.

• Call M ′ the so-obtained URM.

2.4.9 Example. If M is

M :

{
1 : if y = 0 goto L else goto R

2 : ...

then M ′ is

M ′ :

1 : x← x′

2 : if y = 0 goto L+ 1 else goto R + 1

3 : ...

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

34 Algorithms, Computable Functions and Computations

�

Clearly, M ′ x′,y1,...,yn
z = Mx,y1,...,yn

z , and M ′ does not
change x′.

2.4.10 Example. (Composing Computable Functions)

Suppose that λx~y.f(x, ~y) and λ~z.g(~z) are partial com-
putable, and say

f = F x,~y
u

while

g = G~zx

We assume without loss of generality that x is the only
variable common to F and G. Thus, if we concatenate
the programs G and F in that order, and

1. remove the last instruction of G (k : stop, for some
k) —call the program segment that results from this
G′, and

2. renumber the instructions of F as k, k + 1, . . . (and,
as a result, also the references that if-statements of
F make) in order to give

(
G′F

)
the correct program

structure,

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.4 URM “Programming Examples” 35

then, λ~y~z.f(g(~z), ~y) = (G′F)~y,~zu .

Note that all non-input variables of F will still hold 0
as soon as the execution of (G′F) makes the first instruc-
tion of F current for the first time.

This is because none of these can be changed by G′

under our assumption, thus ensuring that F works
as designed. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

36 Algorithms, Computable Functions and Computations

By repeating the above a finite number of times:

2.4.11 Proposition. If λ~yn.f(~yn) and λ~z.gi(~z), for i =
1, . . . , n, are partial computable, then so is λ~z.f(g1(~z), . . . , gn(~z)).

� Note that

f(g1(~a), . . . , gn(~a)) ↑

if any gi(~a) ↑

Else f(g1(~a), . . . , gn(~a)) ↓ provided f is defined on all
gi(~an). �

For the record, we will define composition to mean the
somewhat rigidly defined operation used in 2.4.11, that
is:

2.4.12 Definition. (Composition) Given any partial
functions (computable or not) λ~yn.f(~yn) and λ~z.gi(~z),
for i = 1, . . . , n, we say that λ~z.f(g1(~z), . . . , gn(~z)) is the
result of their composition. �

2.4.13 Example.

f(r(y), y) fails 2.4.12

f(g(y), h(z)) fails 2.4.12

f(g(y), g′(y, w)) fails 2.4.12

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.4 URM “Programming Examples” 37

f(g(y, z), g′′(y, z)) obeys 2.4.12

�

� We observe that Definition 2.4.12 is “rigid”.

Indeed, note that it requires all the arguments of f
to be substituted by some gi(~z)—unlike Example 2.4.10,
where we substituted a function invocation (cf. terminol-
ogy in 2.4.2) only in one variable of f there, and did
nothing with the variables ~y.

Also, for each call gi(. . .) the argument list, “. . .”, must
be the same; in 2.4.12 it was ~z.

As we will show in examples later, this rigidity is only
apparent. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

38 Algorithms, Computable Functions and Computations

Sept. 20, 2021

We can rephrase 2.4.11, saying simply that

2.4.14 Theorem. P is closed under composition.

2.4.15 Corollary. R is closed under composition.

Proof. Let f , gi be in R.

Then they are in P , hence so is h = λ~y.f
(
g1(~y), . . . , gm(~y)

)
by 2.4.14.

By assumption, the f , gi are total. So, for any ~y, we

have gi(~y) ↓—a number. Hence also f
(
g1(~y), . . . , gm(~y)

)
↓.

That is, h is total, hence, being in P , it is also in R.

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.4 URM “Programming Examples” 39

A very simple recursive definition of a func-
tion.

2.4.16 Definition. (Primitive Recursion) A number-
theoretic function f is defined by primitive recursion
from given functions λ~y.h(~y) and λx~yz.g(x, ~y, z) provided,
for all x, ~y, its values are given by the two equations be-
low:

f(0, ~y) = h(~y)
f(x+ 1, ~y)= g(x, ~y, f(x, ~y))

h is the basis function, while g is the iterator.

� � We can take for granted a fundamental (but difficult)
result (see EECS 1028, W20, course notes), that a unique
f that satisfies the above schema exists. � �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

40 Algorithms, Computable Functions and Computations

Moreover, if both h and g are total, then so
is f as it can easily be shown by induction on x
(Later).

NOTATION. It will be useful to use the notation
f = prim(h, g) to indicate in shorthand that f is defined
as above from h and g (note the order). �

Note that

f(1, ~y) = g(0, ~y, h(~y))︸ ︷︷ ︸
f(0,~y)

f(2, ~y) = g(1, ~y, g(0, ~y, h(~y)))︸ ︷︷ ︸
f(1,~y)

f(3, ~y) = g(2, ~y, g(1, ~y, g(0, ~y, h(~y))))︸ ︷︷ ︸
f(2,~y)

, etc.

(†)

I Thus the “x-value”, 0, 1, 2, 3, etc., equals the num-
ber of times we compose g with itself (i.e., the number of
times we iterate g).

I That is why g is called the Iterator of the definition
and h is called the Basis.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.4 URM “Programming Examples” 41

With (a very) little programming experience, it is easy
to see that f(x, ~y) of 2.4.16 is computed by the pseudo
code below:

1 : z ←h(~y)

2 : for i = 0 to x− 1

3 : z ←g(i, ~y, z)

(‡)

At the end of the loop, z holds f(x, ~y).

Here is how to implement the above as a URM:

2.4.17 Example. (Iterating Computable Functions)

Suppose that λx~yz.g(x, ~y, z) and λ~y.h(~z) are partial
computable, and, say, g = Gi,~y,z

z while h = H~y
z .

By earlier remarks we may assume:
(i) The only variables that H and G have in common are z, ~y.
(ii) The variables ~y are read-only in both H and G.
(iii) i is read-only in G.
(iv) x does not occur in any of H or G. It is an “agent”

that ensures we iterate x times (x is the content of x).

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

42 Algorithms, Computable Functions and Computations

We can now see that the following URM program,
let us call it F , computes f defined as in 2.4.16 from
h and g, where H ′ is program H with the stop in-

struction removed, G′ is program G that has the stop
instruction removed, and instructions renumbered (and
if-statements adjusted) as needed:

Comment. x counts iterations going downwards;
i goes upwards; see (†) p.40 and (‡) p.41

H ′ ~yz this is “z ← h(~y)”

r : i← 0
r + 1 : if x = 0 goto k +m+ 2 else goto r + 2
r + 2 : x← x .− 1

G′ i,~y,z
z this is “z ← g(i, ~y,~z)”

k : i← i + 1
k + 1 : w1 ← 0
...
k +m : wm ← 0
k +m+ 1 : goto r + 1
k +m+ 2 : stop

The instructions wi ← 0 set explicitly to zero all the
variables ofG′ other than i, z, ~y to ensure correct behavior
of G′. Note that the wi are implicitly initialised to zero
only the first time G′ is executed. Clearly, the URM F

simulates the pseudo program above, thus f = F x,~y
z . �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.4 URM “Programming Examples” 43

We have at once:

2.4.18 Proposition. If f, g, h relate as in Definition 2.4.16
and h and g are in P, then so is f . We say that P is
closed under primitive recursion.

Why?

2.4.19 Corollary. If f, g, h relate as in Definition 2.4.16
and h and g are in R, then so is f . We say that R is
closed under primitive recursion.

Proof. As R ⊆ P , we have f ∈ P .

But if h and g are total, then so is f . WHY? See ‡ on
p.41.

So, f ∈ R. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

44 Algorithms, Computable Functions and Computations

What does the following pseudo program do, if g =
Gx,~y

z for some URM G?

1 : x← 0

2 : while g(x, ~y) 6= 0 do

3 : x← x + 1

(1)

I We are out here (exited the while-loop) precisely be-
cause

• Testing for g(x, ~y) 6= 0 never got stuck due to calling
g with some x = m that makes g(m,~y) ↑.

• The loop kicked us out exactly when g(k, ~y) = 0
was detected, for some k, for the first time, in the
while-test.

In short, that k satisfies

k = smallest such that g(k, ~y) = 0 ∧ (∀z < k)g(z, ~y) ↓

Now, this k depends on ~y so we may define it as a
function f , for all INPUTS ~a in ~y, by:

k = f(~a)
Def
= min

{
x : g(x,~a) = 0∧(∀y)

(
y < x→ g(y,~a) ↓

)}
�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.4 URM “Programming Examples” 45

Kleene has suggested the symbol “µ” to denote the
“find the minimum” operation above, thus the above is
rephrased as

f(~a) = (µy)g(y,~a)
Def
=

min

{
y : g(y,~a) = 0 ∧

(∀w)w<yg(w,~a) ↓
}

↑ if there is no min

(2)

where (∀y)y<xR(y, . . .) is short for (∀y)(y < x→ R(y, . . .)).

We call the operation (µy)g(y,~a) —equivalently, the pro-
gram segment “while g(x,~a) 6= 0 do”— unbounded
search.

� Why “unbounded” search? Because we do not know
a priori how many times we have to go around
the loop. This depends on the behavior of g. �

We saw how the minimum can fail to exist in one of
two ways:

• Either g(x,~a) ↓ for all x but we never get g(x,~a) = 0;
that is, we stay in the loop going round and round
forever

or

• g(b,~a) ↑ for a value b of x before we reach any c such
that g(c,~a) = 0, thus we are stuck forever processing
the call g(b,~a) in the while instruction.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

46 Algorithms, Computable Functions and Computations

Can we implement the pseudo-program (1) as
a URM F? YES!

2.4.20 Example. (Unbounded Search on a URM)
So suppose again that λx~y.g(x, ~y) is partial computable,
and, say, g = Gx,~y

z .

By earlier remarks we may assume that ~y and x are
read-only in G and that z is not one of them.

Consider the following program F ~y
x , where G′ is the

program G with the stop instruction removed, and the
instructions of G being renumbered (and if-statements
adjusted) as needed so that its first instruction has la-
bel 2.

1 : x← 0

G′x,~yz

k : if z = 0 goto k + l + 3 else goto k + 1
k + 1 : w1 ← 0
...
k + l : wl ← 0
k + l + 1 : x← x + 1
k + l + 2 : goto 2
k + l + 3 : stop {Comment. Read answer off x.

This is the last x-value used by G′}

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

2.4 URM “Programming Examples” 47

The result of Example 2.4.20 yields at once:

2.4.21 Proposition. P is closed under unbounded search;
that is, if λx~y.g(x, ~y) is in P , then so is λ~y.(µx)g(x, ~y).

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

48 Algorithms, Computable Functions and Computations

2.4.22 Example. Is the function Un
i = λ~xn.xi, where

1 ≤ i ≤ n, in P? Yes, and here is a program, M , for it:

1 : w1 ← 0
...
i : z← wi {Comment. Cf. Exercise 2.4.8}
...
n : wn ← 0
n+ 1 : stop

λ~xn.xi = M ~wn
z . To ensure that M indeed has all the

wi as variables we reference them in instructions at least
once, in any manner whatsoever. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

Chapter 3

Primitive Recursive
Functions

Sept. 22, 2021

3.1 PR-Derivations and PR-Functions

Before we get more immersed into partial functions let
us redefine equality for function calls.

3.1.1 Definition. Suppose that λ~x.f(~xn) and λ~y.g(~ym)
are number-theoretic.

We extend the notion of equality f(~an) = g(~bm) to
include the case of undefined calls :

For any ~an and ~bm, f(~an) = g(~bm) means precisely
one of

• For some k ∈ N, f(~an) = k and g(~bm) = k

49

50 Primitive Recursive Functions

• f(~an) ↑ and g(~bm) ↑

In short,

f(~an) = g(~bm) ≡ (∃z)
(
f(~an) = z∧g(~bm) = z∨f(~an) ↑ ∧g(~bm) ↑

)
�

� The definition is due to Kleene and he preferred, as I do
in the text, but not in these Notes, to use a new symbol
for the extended equality, namely '. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

3.1 PR-Derivations and PR-Functions 51

3.1.2 Lemma. If f = prim(h, g) and h and g are total,
then so is f .

Proof. IWe did this, but do read this alternative proof!
Let f be given by:

f(0, ~y) = h(~y)

f(x+ 1, ~y) = g(x, ~y, f(x, ~y))

We do induction on x to prove

“For all x, ~y, f(x, ~y) ↓” (∗)

Basis. x = 0: Well, f(0, ~y) = h(~y), but h(~y) ↓ for all ~y,
so

f(0, ~y) ↓ for all ~y (∗∗)

As I.H. (Induction Hypothesis) take that

f(x, ~y) ↓ for all ~y and fixed x (†)

Do the Induction Step (I.S.) to show

f(x+ 1, ~y) ↓ for all ~y and the fixed x of (†) (‡)

Well, by (†) and the assumption on g,

g
(
x, ~y, f(x, ~y)

)
↓, for all ~y and the fixed x of (†)

which says the same thing as (‡). �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

52 Primitive Recursive Functions

3.1.3 Corollary. R is closed under primitive recursion.

Proof. Let h and g be in R. Then they are in P . But
then prim(h, g) ∈ P as we showed in class/text and
Notes.

By 3.1.2, prim(h, g) is total.

By definition ofR, as the subset of P that contains
all total functions of P , we have prim(h, g) ∈ R. �

� Why all this dance in colour above? Because to prove
f ∈ R you need TWO things: That

1. f ∈ P

AND

2. f is total

But aren’t all the total functions in R anyway?

NO! They need to be computable too!

We will see in this course soon that NOT all total func-
tions are computable! �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

3.2 The Class of Primitive Recursive Functions Defined (at last!) 53

3.2 The Class of Primitive Recursive Functions
Defined (at last!)

We saw that

1. The successor —S

2. zero —Z

3. and the generalised identity functions —Un
i = λ~xn.xi

are all in P

BECAUSE Each is computable by a URM.

I We have also shown that “computability” of func-
tions is preserved by the operations of composition,
primitive recursion, and unbounded search.

In this section we will explore the properties of the
important SUBset of P known as the primitive re-
cursive functions.

I Most people introduce them via derivations just
as one introduces the theorems of logic via proofs, as in
the definition below.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

54 Primitive Recursive Functions

3.2.1 Definition. (PR-derivations; PR-functions)
The set

I =

{
S,Z,

(
Un
i

)
n≥i>0

}
is the set of Initial PR functions.

A PR-derivation is a finite (ordered!) sequence of
number-theoretic functions

f1, f2, f3, . . . , fi, . . . , fn (1)

such that, for each i, one of the following holds

1. fi ∈ I.

2. fi = prim(fj, fk) and j < i and k < i —that is,
fj, fk appear to the left of fi in (1).

3. fi = λ~y.g
(
r1(~y), r2(~y), . . . , rm(~y)

)
, and all of the λ~y.rq(~y)

and λ~xm.g(~xm) appear to the left of fi in (1).

Any fi in a derivation is called a derived function.∗

The set of primitive recursive functions, PR, is all
those that are derived:

PRDef
= {f : f is derived} �

The above definition defines essentially what Dedekind
([Ded88]) called “recursive” functions.

∗Strictly speaking, primitive recursively derived, but we will not consider other sets of
derived functions in this section, so we omit the qualification.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

3.2 The Class of Primitive Recursive Functions Defined (at last!) 55

Subsequently they were renamed to primitive recursive
(by Kleene) allowing the unqualified term recursive to
be synonymous with (total) computable and apply to the
functions of R.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

56 Primitive Recursive Functions

Facts about derivations

3.2.2 Lemma. The concatenation of two derivations is
a derivation.

Proof. Let
f1, f2, f3, . . . , fi, . . . , fn (1)

and
g1, g2, g3, . . . , gj, . . . , gm (2)

be two derivations. Then so is

f1, f2, f3, . . . , fi, . . . , fn, g1, g2, g3, . . . , gj, . . . , gm

because of the fact that each of the fi and gj satisfies the
three cases of Definition 3.2.1 in the standalone deriva-
tions (1) and (2). But this property of the fi and gj is
preserved after concatenation. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

3.2 The Class of Primitive Recursive Functions Defined (at last!) 57

3.2.3 Corollary. The concatenation of any finite num-
ber of derivations is a derivation.

Proof. True if we have two derivations, by 3.2.2. A third
derivation can be appended at the end of this result and
we still have a derivation by 3.2.2. Ditto with a fourth
derivation.

At this stage of the argument you either say “ETC.” or
decide to do induction on the number of derivations, n,
that we are talking about (the Basis is 3.2.2, for n = 2).

�

3.2.4 Lemma. If

f1, f2, f3, . . . , fk, fk+1, . . . , fn

is a derivation, then so is f1, f2, f3, . . . , fk.

Proof. In f1, f2, f3, . . . , fk every fm, for 1 ≤ m ≤ k, sat-
isfies 1.–3. of Definition 3.2.1 since all conditions are in
terms of what fm is, or what lies to the left of fm.
Chopping the “tail” fk+1, . . . , fn in no way affects what
lies to the left of fm, for 1 ≤ m ≤ k. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

58 Primitive Recursive Functions

3.2.5 Corollary. f ∈ PR iff f appears at the end of
some derivation.

Proof.

(a) The If. Say g1, . . . , gn, f is a derivation. Since f
occurs in it, f ∈ PR by 3.2.1.

(b) The Only If. Say f ∈ PR. Then, by 3.2.1,

g1, . . . , gm, f , gm+2, . . . , gr (1)

for some derivation like the (1) above.

By 3.2.4, g1, . . . , gm, f is also a derivation. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

3.2 The Class of Primitive Recursive Functions Defined (at last!) 59

3.2.6 Theorem. PR is closed under composition and
primitive recursion.

Proof.

• Closure under primitive recursion. So let λ~y.h(~y)
and λx~yz.g(x, ~y, z) be in PR and f = prim(h, g).
Thus we have derivations

h1, h2, h3, . . . , hn, h (1)

and

g1, g2, g3, . . . , gm, g (2)

Then the following is a derivation by 3.2.2.

h1, h2, h3, . . . , hn, h , g1, g2, g3, . . . , gm, g

Therefore so is

h1, h2, h3, . . . , hn, h , g1, g2, g3, . . . , gm, g , prim(h, g)

by applying step 2 of Definition 3.2.1.

This implies prim(h, g) ∈ PR by 3.2.1.

• Similarly, closure under composition. So let λ~y.h(~xn)
and λ~y.gi(~y), for 1 ≤ i ≤ n, be in PR. By 3.2.1 we
have derivations

. . . , h (3)

and

. . . , gi , for 1 ≤ i ≤ n (4)

By 3.2.2,

. . . , h , . . . , g1 , . . . , . . . , gn

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

60 Primitive Recursive Functions

is a derivation, and by 3.2.1, case 3, so is

. . . , h , . . . , g1 , . . . , . . . , gn , λ~y.h(g1(~y), . . . , gn(~y))

This implies λ~y.h(g1(~y), . . . , gn(~y)) ∈ PR by 3.2.1. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

3.2 The Class of Primitive Recursive Functions Defined (at last!) 61

3.2.7� Remark. How do you prove that some f ∈ PR?

Answer. By building a derivation

g1, . . . , gm, f

After a while this becomes easier because

I you might know an h and g in PR such that
f = prim(h, g),

I or you might know some g, h1, . . . , hm in PR, such
that f = λ~y.g

(
h1(~y), . . . , hm(~y)

)
.

If so, just apply 3.2.6.

How do you prove that ALL f ∈ PR have a property Q
—that is, for all f , Q(f) is true?

Answer. By doing induction on the derivation
length of f . � �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

62 Primitive Recursive Functions

Here are two examples demonstarting the above ques-
tions and their answers.

3.2.8 Example. (1) To demonstrate the first Answer
above (3.2.7), show (prove) that λxy.x + y ∈ PR.
Well, observe that

0 + y = y

(x+ 1) + y = (x+ y) + 1

Does the above look like a primitive recursion?

Well, almost.

However, the first equation should have a function
call “H(y)” on the rhs but instead has just a vari-
able y —an input!

Also the second equation should have a rhs like “G(x, y, x+ y)”.

We can do that!

Take H = U 1
1 and G = SU 3

3 —NOTE the “SU 3
3”

with no brackets around U 3
3 ; this is normal practise!

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

3.2 The Class of Primitive Recursive Functions Defined (at last!) 63

Be sure to agree that we now have

•

0 + y = H(y)

(x+ 1) + y = G
(
x, y, x+ y

)
• The functions H = U 1

1 (initial) and G = SU 3
3

(composition) are in PR. By 3.2.6 so is λxy.x+y.

In terms of derivations, we have produced the
derivation:

U 1
1 , S, U

3
3 , SU

3
3 , prim

(
U 1
1 , SU

3
3

)︸ ︷︷ ︸
λxy.x+y

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

64 Primitive Recursive Functions

(2) To demonstrate the second Answer above (3.2.7),
show (prove) that every f ∈ PR is total. Induction
on derivation length, n, where f occurs.

Basis. n = 1. Then f is the only function in the
derivation. Thus it must be one of S, Z, or Um

i .
But all these are total.

I.H. (Induction Hypothesis) Fix an l. Assume that
the claim is true for all f that occur at the end of
derivations of lengths n ≤ l. That is, we assume that
all such f are total.

I.S. (Induction Step) Prove that the claim is true
for all f that occur at the end of a derivation —see
3.2.5— of length n = l + 1.

g1, . . . , gl, f (1)

We have three subcases:

• f ∈ I. But we argued this under Basis.

• f = prim(h, g), where h and g are among the
g1, . . . , gl. By the I.H. h and g are total. Elaboration:
Any such gi is at the end of a derivation of length
≤ l. So I.H. kicks in.

But then so is f by Lemma 3.1.2.

• Similarly, let f = λ~y.h
(
q1(~y), . . . , qt(~y)

)
, where

the functions h and q1, . . . , qt are among the g1, . . . , gl.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

3.2 The Class of Primitive Recursive Functions Defined (at last!) 65

By the I.H. h and q1, . . . , qt are total. But then
so is f by a Lemma in an earlier Note, where we
proved that R is closed under composition. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

66 Primitive Recursive Functions

3.3 A few examples of what we can do with PR
functions

3.3.1 Example. If λxyw.f(x, y, w) and λz.g(z) are in
PR,

how about λxzw.f(x, g(z), w)?

It is in PR since, by COMPOSITION,

f(x, g(z), w) = f(U 3
1 (x, z, w), g(U 3

2 (x, z, w)), U3
3 (x, z, w))

and the Un
i are all primitive recursive.

The reader will see at once that to the right of “=” we
have correctly formed compositions as expected by the
“rigid” definition of composition given in these Notes.

Similarly, for the same functions above,

(1) λyw.f(2, y, w) is in PR. Indeed, this function can
be obtained by composition, since

f(2, y, w) = f
(
SSZw, y, w

)
where I wrote “SSZ(. . .)” as short for S(S(Z(. . .)))
for visual clarity.

Clearly, using SSZ
(
U 2
2 (y, w)

)
above works as well.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

3.3 A few examples of what we can do with PR functions 67

(2) λxyw. f(y, x, w)︸ ︷︷ ︸
the rule part

is in PR. Indeed, this function can

be obtained by composition, since

f(y, x, w) = f
(
U 3
2 (x, y, w), U3

1 (x, y, w), U3
3 (x, y, w)

)
� In this connection, note that while λxy.g(x, y) = λyx.g(y, x),

yet λxy.g(x, y) 6= λxy.g(y, x) in general.

I For example, the “rule” in λxy.x .− y asks that
we subtract the second input (y) from the first (x),
but in λxy.y .− x it asks that we subtract the first
input (x) from the second (y). �

(3) λxy.f(x, y, x) is in PR. Indeed, this function can be
obtained by composition, since

f(x, y, x) = f
(
U 2
1 (x, y), U2

2 (x, y), U2
1 (x, y)

)
(4) λxyzwu.f(x, y, w) is in PR. Indeed, this function

can be obtained by composition, since

λxyzwu.f(x, y, w) =

λxyzwu.f(U 5
1 (x, y, z, w, u), U5

2 (x, y, z, w, u),

U 5
4 (x, y, z, w, u))

�

The above four examples are summarised, named, and
generalised in the following straightforward exercise:

3.3.2 Exercise. (The [Grz53] Substitution Operations)
PR is closed under the following operations:

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

68 Primitive Recursive Functions

(i) Substitution of a function invocation for a variable:

From λ~xy~z.f(~x, y, ~z) and λ~w.g(~w) obtain λ~x~w~z.f(~x, g(~w), ~z).

(ii) Substitution of a constant for a variable:

From λ~xy~z.f(~x, y, ~z) obtain λ~x~z.f(~x, k, ~z).

(iii) Interchange of two variables:

From λ~xy~zw~u.f(~x, y, ~z, w, ~u) obtain λ~xy~zw~u.f(~x, w, ~z, y, ~u).

(iv) Identification of two variables:

From λ~xy~zw~u.f(~x, y, ~z, w, ~u) obtain λ~xy~z~u.f(~x, y, ~z, y, ~u).

(v) Introduction of “don’t care” variables:

From λ~x.f(~x) obtain λ~x~z.f(~x). �

By 3.3.2 composition can simulate the Grzegorczyk op-
erations if the initial functions I are present.

Of course, (i) alone can in turn simulate composition.
With these comments out of the way, we see that the
“rigidity” of the definition of composition is gone.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

3.3 A few examples of what we can do with PR functions 69

3.3.1 Nothing is really “rigid”

3.3.3 Example. The definition of primitive recursion is
also “rigid”. However this is also an illusion since the
practice is very flexible.

Take p(0) = 0 and p(x + 1) = x —this one defin-
ing p = λx.x .− 1 —does not fit the schema.

The schema requires the defined function to have one
more variable than the basis, so no one-variable function
can be directly defined!

We can get around this.

Define first p̃ = λxy.x .− 1 as follows: p̃(0, y) = 0 and
p̃(x+ 1, y) = x.

Now this can be dressed up according to the syntax of
the schema,

p̃(0, y) = Z(y)
p̃(x+ 1, y)= U 3

1 (x, y, p̃(x, y))

that is, p̃ = prim(Z,U 3
1).

Then we can get p by (Grzegorczyk) substitution: p =
λx.p̃(x, 0).

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

70 Primitive Recursive Functions

Incidentally, this shows that both p and p̃ are in PR:

• p̃ = prim(Z,U 3
1) is in PR since Z and U 3

1 are, then
invoking 3.2.6.

• p = λx.p̃(x, 0) is in PR since p̃ is, then invoking 3.3.2.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

3.3 A few examples of what we can do with PR functions 71

Another rigidity in the definition of primitive recur-
sion is that, apparently, one can use only the first vari-
able as the iterating variable.

Not so. This is also an illusion.

I Consider, for example, sub = λxy.x .− y, hence
x .− 0 = x and x .− (y + 1) = p(x .− y)

Clearly, sub(x, 0) = x and sub(x, y+ 1) = p(sub(x, y))
is correct semantically, but the format is wrong:

We are not supposed to iterate along the second vari-
able! Well, we CAN!!!

Define instead s̃ub = λxy.y .− x:

So
y .− 0 = y

y .− (x+ 1)= p
(
y .− x

)

That is,

s̃ub(0, y) = U 1
1 (y)

s̃ub(x+ 1, y)= p
(
U 3
3 (x, y, s̃ub(x, y))

)
Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

72 Primitive Recursive Functions

Then, using variable swapping [Grzegorczyk operation
(iii)], Similarly, we can get sub:

sub = λxy.s̃ub(y, x).

Clearly, both s̃ub and sub are in PR. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

3.3 A few examples of what we can do with PR functions 73

3.3.4 Exercise. Prove that λxy.x×y is primitive recur-
sive. Of course, we will usually write multiplication x×y
in “implied notation”, xy. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

74 Primitive Recursive Functions

3.3.5 Example. The very important “ switch” (or “if-
then-else”) function

sw = λxyz.if x = 0 then y else z

is primitive recursive.

It is directly obtained by primitive recursion on initial
functions: sw(0, y, z) = y and sw(x+ 1, y, z) = z.

Sept. 27, 2021

Dressed up this is:

sw(0, y, z) = U 2
1 (y, z)

sw(x+ 1, y, z) = U 4
3 (x, y, z, sw(x, y, z)) �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

3.3 A few examples of what we can do with PR functions 75

3.3.6 Exercise. PR ⊆ R.

Hint. Use induction on PR-derivation lengths to show
that “If f ∈ PR, then f ∈ R.” �

� Indeed, the above inclusion is proper, as we will see later. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

76 Primitive Recursive Functions

3.3.7� Example. Consider the exponential function xy

given by
x0 = 1
xy+1= xyx

Thus,

if x = 0 and y = 0, then xy = 1, but xy = 0 for all
y > 0 if x = 0.

� BUT note that xy is “mathematically” undefined when
x = y = 0.†

Thus, by Exercise 3.3.6 the exponential cannot be a
primitive recursive function!

This is rather preposterous, since the computational
process for the exponential is trivial; thus it is ridicu-
lous to allow this function be non-PR.

After all, we know exactly where and how it is
undefined and we can remove this undefinability by
redefining “xy” so that “00 = 1”.

†In first-year university calculus we learn that “00” is an “indeterminate form”.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

3.3 A few examples of what we can do with PR functions 77

In computability we do this kind of redefini-
tion a lot in order to remove easily recognisable points
of “non definition” of calculable functions.

We will see further examples, such as the remainder,
quotient, and logarithm functions.

BUT also examples where we CANNOT do
this; and WHY. � �

For those who would rather not “change mathematics”
they can take this point of view if it restores their peace
of mind:

The function we want and talk about here is NOT
the exponential of algebra and calculus, but a DIF-
FERENT ONE that at input (x, y) = (0, 0) yields
1 but for all other inputs yields the “standard” “xy”.
You can give it a different name if you want, as I do in
the text.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

78 Primitive Recursive Functions

3.4 Primitive Recursive Relations

3.4.1 Definition. A relation R(~x) is (primitive) recur-
sive iff its characteristic function,

cR = λ~x.

{
0 if R(~x)

1 if ¬R(~x)

is (primitive) recursive. The set of all primitive recur-
sive (respectively, recursive) relations is denoted by PR∗
(respectively, R∗). �

� Computability theory practitioners often call relations
predicates.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

3.4 Primitive Recursive Relations 79

It is clear that one can go from relation to characteristic function
and back in a unique way,

I Thus, we may think of relations as “0-1 valued”
functions.

The concept of relation is not theoretically necessary
but it greatly simplifies the further development of the
theory of primitive recursive functions. �

The following is useful:

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

80 Primitive Recursive Functions

3.4.2 Proposition. R(~x) ∈ PR∗ iff some f ∈ PR ex-
ists such that, for all ~x, R(~x) ≡ f(~x) = 0.

Proof. For the if-part. Here I know that f ∈ PR and
R(~x) ≡ f(~x) = 0.

I want cR ∈ PR.

This is so since cR = λ~x.1 .− (1 .− f(~x)) (using Grze-
gorczyk substitution and λxy.x .− y ∈ PR; cf. 3.3.3).

For the only if-part, f = cR will do: R(~x) ≡ cR(~x) = 0.

�

3.4.3 Corollary. Same for R∗: R(~x) ∈ R∗ iff some f ∈
R exists such that, for all ~x, R(~x) ≡ f(~x) = 0.

Proof. By the above proof, and 3.3.6 which puts monus
in R as well (and R is closed under Grzegorczyk Ops).

�

3.4.4 Corollary. PR∗ ⊆ R∗.

Proof. By the above corollary and 3.3.6. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

3.4 Primitive Recursive Relations 81

3.4.5 Theorem. PR∗ is closed under the Boolean oper-
ations.

Proof. It suffices to look at the cases of ¬ and ∨, since
R → Q ≡ ¬R ∨Q, R ∧Q ≡ ¬(¬R ∨ ¬Q) and R ≡ Q is
short for (R→ Q) ∧ (Q→ R).

(¬) Say, R(~x) ∈ PR∗. Thus (3.4.1), cR ∈ PR. But
then c¬R ∈ PR, since c¬R = λ~x.1 .− cR(~x), by Grzegor-
czyk substitution and λxy.x .− y ∈ PR.

(∨) LetR(~x) ∈ PR∗ andQ(~y) ∈ PR∗. Then λ~x~y.cR∨Q(~x, ~y)
is given by

cR∨Q(~x, ~y) = if R(~x) then 0 else cQ(~y)

Thus

cR∨Q(~x, ~y) = if cR(~x) = 0 then 0 else cQ(~y)

and therefore is in PR. �

� “if R(~x)” above means “if cR(~x) = 0” �

3.4.6 Remark. Alternatively, for the ∨ case above, note
that cR∨Q(~x, ~y) = cR(~x)× cQ(~y) and invoke 3.3.4. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

82 Primitive Recursive Functions

3.4.7 Corollary. R∗ is closed under the Boolean oper-
ations.

Proof. As above, mindful of 3.3.6. �

3.4.8� Example. The relations x ≤ y, x < y, x = y are
in PR∗.

An addendum to λ notation: Absence of λ is allowed
ONLY for relations! Then it means (the absence, that
is) that ALL variables are active input!

Note that x ≤ y ≡ x .− y = 0 and invoke 3.4.2. Finally
invoke Boolean closure and note that x < y ≡ ¬y ≤ x

while x = y is equivalent to x ≤ y ∧ y ≤ x. � �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

Chapter 4

Thor’s Hammer (Bounded
Search and Friends)

4.1 Bounded Quantification and Search

4.1.1 Proposition. If R(~x, y, ~z) ∈ PR∗ and λ~w.f(~w) ∈
PR, then R(~x, f(~w), ~z) is in PR∗.

Proof. Let g ∈ PR such that

R(~x, y, ~z) ≡ g(~x, y, ~z) = 0, for all ~x, y, ~z

Then

R(~x, f(~w), ~z) ≡ g(~x, f(~w), ~z) = 0, for all ~x, ~w, ~z

Since λ~x~w~z.g(~x.f(~w), ~z) ∈ PR by Grzegorczyk Ops,
we have that R(~x, f(~w), ~z) ∈ PR∗. �

83

84 Thor’s Hammer (Bounded Search and Friends)

4.1.2 Proposition. If R(~x, y, ~z) ∈ R∗ and λ~w.f(~w) ∈
R, then R(~x, f(~w), ~z) is in R∗.

Proof. Similar to that of 4.1.1. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.1 Bounded Quantification and Search 85

4.1.3 Corollary. If f ∈ PR (respectively, in R), then
its graph, z = f(~x) is in PR∗ (respectively, in R∗).

Proof. Using the relation z = y and 4.1.1. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

86 Thor’s Hammer (Bounded Search and Friends)

4.1.4 Exercise. Using unbounded search, prove that if
z = f(~x) is in R∗ and f is total, then f ∈ R. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.1 Bounded Quantification and Search 87

4.1.5 Definition. (Bounded Quantifiers) The abbre-
viations

(∀y)<zR(y, ~x)

(∀y)y<zR(y, ~x)

(∀y < z)R(y, ~x)

all stand for

(∀y)
(
y < z → R(y, ~x)

)
while correspondingly,

(∃y)<zR(y, ~x)

(∃y)y<zR(y, ~x)

(∃y < z)R(y, ~x)

all stand for

(∃y)
(
y < z ∧R(y, ~x)

)
Similarly for the non strict inequality “≤”. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

88 Thor’s Hammer (Bounded Search and Friends)

4.1.6 Theorem. PR∗ is closed under bounded quantifi-
cation.

Proof. By logic it suffices to look at the case of (∃y)<z
since (∀y)<zR(y, ~x) ≡ ¬(∃y)<z¬R(y, ~x).

Let then R(y, ~x) ∈ PR∗ and let us give the name
Q(z, ~x) to

(∃y)<zR(y, ~x) for convenience.

We note that Q(0, ~x) is false (why?) and logic says:

R(0,~x)∨R(1,~x)∨...R(z−1,~x)∨R(z,~x)︷ ︸︸ ︷
Q(z + 1, ~x) ≡

R(0,~x)∨R(1,~x)∨...R(z−1,~x)︷ ︸︸ ︷
Q(z, ~x) ∨R(z, ~x).

Thus, as the following prim. rec. shows, cQ ∈ PR.

cQ(0, ~x) = 1

cQ(z + 1, ~x) = cQ(z, ~x)cR(z, ~x) �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.1 Bounded Quantification and Search 89

4.1.7 Corollary. R∗ is closed under bounded quantifica-
tion.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

90 Thor’s Hammer (Bounded Search and Friends)

Sept. 29, 2021

4.1.8 Definition. (Bounded Search) Let f be a total
number-theoretic function of n+ 1 variables.

The symbol (µy)<zf(y, ~x), for all z, ~x, stands for

{
min{y : y < z ∧ f(y, ~x) = 0} if (∃y)<zf(y, ~x) = 0

z otherwise

So,

unsuccessful search returns the first number to
the right of the search-range.

We define “(µy)≤z” to mean “(µy)<z+1”. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.1 Bounded Quantification and Search 91

4.1.9 Theorem. PR is closed under the bounded search
operation (µy)<z. That is, if λy~x.f(y, ~x) ∈ PR, then
λz~x.(µy)<zf(y, ~x) ∈ PR.

Proof. Set g = λz~x.(µy)<zf(y, ~x) for convenience.

Then the following primitive recursion settles it:

Recall that “ifR(~z) then y else w” means “ifcR(~z) =
0 then y else w”.

Note

0, 1, 2, . . . , z − 1, z =

<z︷ ︸︸ ︷
0, 1, 2, . . . , z − 1, z

So

g(0, ~x) = 0

Why 0 above?

g(z + 1, ~x) = if

F (z,~x)︷ ︸︸ ︷
(∃y)<z

(
f(y, ~x) = 0

)
then g(z, ~x)

else if f(z, ~x) = 0 then z

else z + 1 �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

92 Thor’s Hammer (Bounded Search and Friends)

Since the first line depicts a PR∗ predicate (graph of
f), so do the remaining lines from what we learnt before:

f(y, ~x) = w

f(y, ~x) = 0

(∃y)<zf(y, ~x) = 0

The last one is “F (z, ~x)”

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.1 Bounded Quantification and Search 93

4.1.10 Corollary. PR is closed under the bounded search
operation (µy)≤z.

4.1.11 Exercise. Prove the corollary. �

4.1.12 Corollary. R is closed under the bounded search
operations (µy)<z and (µy)≤z.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

94 Thor’s Hammer (Bounded Search and Friends)

Consider now a set of mutually exclusive relationsRi(~x),
i = 1, . . . , n, that is, Ri(~x)∧Rj(~x) is false, for each ~x as
long as i 6= j.

Then we can define a function f by cases Ri from given
functions fj by the requirement (for all ~x) given below:

f(~x) =

f1(~x) if R1(~x)

f2(~x) if R2(~x)

.

fn(~x) if Rn(~x)

fn+1(~x) otherwise

where, as is usual in mathematics, “if Rj(~x)” is short
for “if Rj(~x) is true”

and the “otherwise” is the condition ¬(R1(~x) ∨ · · · ∨
Rn(~x)).

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.1 Bounded Quantification and Search 95

We have the following result:

4.1.13 Theorem. (Definition by Cases) If the func-
tions fi, i = 1, . . . , n + 1 and the relations Ri(~x), i =
1, . . . , n are in PR and PR∗, respectively, then so is f
above.

Proof. By repeated use (Grz Ops) of if-then-else. So,

f(~x) = if R1(~x) then f1(~x)
else if R2(~x) then f2(~x)

...
else if Rn(~x) then fn(~x)
else fn+1(~x)

�

4.1.14 Corollary. Same statement as above, replacing
PR and PR∗ by R and R∗, respectively.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

96 Thor’s Hammer (Bounded Search and Friends)

The tools we now have at our disposal allow easy certi-
fication of the primitive recursiveness of some very useful
functions and relations. But first a definition:

4.1.15 Definition. (µy)<zR(y, ~x) means (µy)<zcR(y, ~x).

�

I Thus, if R(y, ~x) ∈ PR∗ (resp. ∈ R∗),
then λz~x.(µy)<zR(y, ~x) ∈ PR (resp. ∈ R),
since cR ∈ PR (resp. ∈ R).

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.1 Bounded Quantification and Search 97

4.1.16 Example. The following are in PR or PR∗ as
appropriate:

(1) λxy.bx/yc∗ (the quotient of the division x/y).

This is another example of a nontotal function with
an “obvious” way to remove the points where it is
undefined (recall the case of λxy.xy).

Thus the symbol “bx/yc”

is extended to mean

(µz)≤x(z + 1)y > x (∗)
for all x, y.

u > v

I Pause. Why is the above expression correct for
bx/yc —y 6= 0?

∗For any real number x, the symbol “bxc” is called the floor of x. It succeeds in the
literature (with the same definition) the so-called “greatest integer function, [x]”, i.e., the
integer part of the real number x. Thus, by definition, bxc ≤ x < bxc+ 1.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

98 Thor’s Hammer (Bounded Search and Friends)

Because setting z = bx/yc we have

z ≤ x

y
< z + 1

by the definition of “b. . .c”.

Thus, z is smallest such that x/y < z + 1, or such
that x < y(z + 1). J

It follows that, for y > 0, the search in (∗) yields the
“normal math” value for bx/yc, while it re-defines
bx/0c as = x+ 1.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.1 Bounded Quantification and Search 99

(2) λxy.rem(x, y) (the remainder of the division x/y).

rem(x, y) = x .− ybx/yc.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

100 Thor’s Hammer (Bounded Search and Friends)

(3) λxy.x|y (x divides y).

x|y ≡ rem(y, x) = 0.

Note that if y > 0, we cannot have 0|y —a good
thing!— since rem(y, 0) = y > 0.

Our redefinition of bx/yc yields, however, 0|0, but we
can live with this in practice.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.1 Bounded Quantification and Search 101

(4) Pr(x) (x is a prime).

Pr(x) ≡ x > 1 ∧ (∀y)≤x(y|x→ y = 1 ∨ y = x).

More simply

Pr(x) ≡ x > 1 ∧ (∀y)< x(y|x→ y = 1).

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

102 Thor’s Hammer (Bounded Search and Friends)

(5) π(x) (the number of primes ≤ x).†

The following primitive recursion certifies the claim:

π(0) = 0,

and

π(x+ 1) = if Pr(x+ 1) then π(x) + 1 else π(x).

†The π-function plays a central role in number theory, figuring in the so-called prime
number theorem. See, for example, [LeV56].

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.1 Bounded Quantification and Search 103

Oct. 4, 2021

(6) λn.pn (the nth prime).

First note that the graph y = pn is primitive recur-
sive:

y = pn ≡ Pr(y) ∧ π(y) = n+ 1.

Next note that, for all n,

pn ≤ 22
n

(see Exercise 4.1.18 below),

thus pn = (µy)≤22n(y = pn),

which settles the claim.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

104 Thor’s Hammer (Bounded Search and Friends)

(7) λnx. exp(n, x) (the exponent of pn in the prime fac-
torization of x).

exp(n, x) = (µy)≤x¬(py+1
n |x).

I Is x a good bound? Yes! x = . . . pyn . . . ≥ pyn ≥
2y > y.

�

A good bound allows you to search for ALL val-
ues that you must search for.

It does not stop your search prematurely.

�

4.1.17� Remark. What makes exp(n, x) “ the expo-
nent of pn in the prime factorization of x”, rather
than an exponent, is Euclid’s prime number factor-
ization theorem: Every number x > 1 has a unique
factorization —within permutation of factors— as a
product of primes. � �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.1 Bounded Quantification and Search 105

(8) Seq(x) (x’s prime number factorization contains at
least one prime, and no gaps).

Seq(x) ≡ x > 1 ∧ (∀y)≤x(∀z)≤x(Pr(y) ∧ Pr(z) ∧ y <
z ∧ z|x→ y|x). �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

106 Thor’s Hammer (Bounded Search and Friends)

4.1.18 Exercise. Prove by induction on n, that for all
n we have pn ≤ 22

n

.
Hint. Consider, as Euclid did,‡ p0p1 · · · pn + 1. If this

number is prime, then it is greater than or equal to pn+1

(why?). If it is composite, then none of the primes up to
pn divide it. So any prime factor of it is greater than or
equal to pn+1 (why?). �

‡In his proof that there are infinitely many primes.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.2 CODING Sequences 107

4.2 CODING Sequences

4.2.1 Definition. (Coding Sequences) Any finite se-
quence of numbers, a0, . . . , an, n ≥ 0, is coded by the
number denoted by the symbol

〈a0, . . . , an〉

which is defined as
∏

i≤n p
ai+1
i �

Example. Code 1, 0, 3. I get 〈1, 0, 3〉 = 21+130+153+1

For coding to be useful, we need a simple decoding
scheme.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

108 Thor’s Hammer (Bounded Search and Friends)

By Remark 4.1.17 there is no way to have z = 〈a0, . . . , an〉 =
〈b0, . . . , bm〉, unless

(i) n = m

and

(ii) For i = 0, . . . , n, ai = bi.

Thus, it makes sense to correspondingly define the de-
coding expressions:

(i) lh(z) (pronounced “length of z”) as shorthand for
(µy)≤z¬(py|z)

I A comment and a question:

• The comment: If py is the first prime NOT
in the decomposition of z, and Seq(z) holds,
then since numbering of primes starts at 0,
the length of the coded sequence z is indeed y:

y primes in z︷ ︸︸ ︷
p0, p1, . . . , py−1

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.2 CODING Sequences 109

• Question: Is the bound z for y “good”? Yes!

z = 2a+13b+1 . . . p
exp(y .−1,z)
y .−1 ≥ 2 · 2 · · · 2︸ ︷︷ ︸

y times

= 2y > y

(ii) (z)i is shorthand for exp(i, z) .− 1

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

110 Thor’s Hammer (Bounded Search and Friends)

Note that

(a) λiz.(z)i and λz.lh(z) are in PR.

(b) If Seq(z), then z = 〈a0, . . . , an〉 for some a0, . . . , an.
In this case, lh(z) equals the number of distinct primes
in the decomposition of z, that is, the length n+1 of
the coded sequence. Then (z)i, for i < lh(z), equals
ai. For larger i, (z)i = 0. Note that if ¬Seq(z) then
lh(z) need not equal the number of distinct primes
in the decomposition of z. For example, 10 has 2
primes, but lh(10) = 1.

10 = p0p2

� The tools lh, Seq(z), and λiz.(z)i are sufficient to per-
form decoding, primitive recursively, once the truth of
Seq(z) is established. This coding/decoding scheme is
essentially that of [Göd31], and will be the one we use
throughout these notes. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.2 CODING Sequences 111

4.2.1 Simultaneous Primitive Recursion

Start with total hi, gi for i = 0, 1, . . . , k. Consider the
new functions fi defined by the following “simultaneous
primitive recursion schema” for all x, ~y.

f0(0, ~y) = h1(~y)
...

fk(0, ~y) = hk(~y)

f0(x+ 1, ~y) = g0(x, ~y, f0(x, ~y), . . . , fk(x, ~y))
...

fk(x+ 1, ~y) = gk(x, ~y, f0(x, ~y), . . . , fk(x, ~y))

(2)

Hilbert and Bernays proved the following:

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

112 Thor’s Hammer (Bounded Search and Friends)

4.2.2 Theorem. If all the hi and gi are in PR (resp.
R), then so are all the fi obtained by the schema (2) of
simultaneous recursion.

Proof. IDEA: Code all the functions fi by a single func-
tion F and convert the simultaneous recursion to a single
primitive recursion for F .

Thus, define, for all x, ~y,

F (x, ~y)
Def
= 〈f0(x, ~y), . . . , fk(x, ~y)〉

H(~y)
Def
= 〈h0(~y), . . . , hk(~y)〉 = 2h0(~y)+13h1(~y)+1 . . . p

hk(~y)+1
k

The Iterator “G” is displayed below. See it explained
in the typeset in blue passage below that starts with “I”.

G(x, ~y, z)
Def
= 〈g0(x, ~y, (z)0, . . . , (z)k), . . . , gk(x, ~y, (z)0, . . . , (z)k)〉

We readily have that H ∈ PR (resp. ∈ R) and G ∈ PR
(resp. ∈ R) depending on where we assumed the hi and
gi to be. We can now rewrite schema (2) (p.111) asF (0, ~y) = H(~y)

F (x+ 1, ~y) = G
(
x, ~y, F

(
x, ~y
)) (3)

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.2 CODING Sequences 113

I The 2nd line of (3) is obtained from

F (x+ 1, ~y) = 〈f0(x+ 1, ~y), . . . , fk(x+ 1, ~y)〉
=
〈
g0

(
x, ~y, f0(x, ~y), . . . , fk(x, ~y)

)
, . . . , gk

(
same as g0

)〉
=
〈
g0

(
x, ~y,

(
F (x, ~y)

)
0
, . . . ,

(
F (x, ~y)

)
k

)
, . . . , gk

(
same as g0

)〉

By the above remarks, F ∈ PR (resp. ∈ R) depend-
ing on where we assumed the hi and gi to be. In partic-
ular, this holds for each fi since, for all x, ~y, fi(x, ~y) =(
F (x, ~y)

)
i
. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

114 Thor’s Hammer (Bounded Search and Friends)

4.2.3 Example. We saw one way to justify that λx.rem(x, 2) ∈
PR in 4.1.16. A direct way is the following.

Setting f(x) = rem(x, 2), for all x, we notice that the
sequence of outputs (for x = 0, 1, 2, . . .) of f is

0, 1, 0, 1, 0, 1 . . .

Thus, the following primitive recursion shows that f ∈
PR: {

f(0) = 0

f(x+ 1) = 1 .− f(x)

Here is a way, via simultaneous recursion, to obtain a
proof that f ∈ PR, without using any arithmetic! No-
tice the infinite “matrix”

0 1 0 1 0 1 . . .

1 0 1 0 1 0 . . .

Let us call g the function that has as its sequence of out-
puts the entries of the second row —obtained by shifting
the first row by one position to the left. The first row
still represents our f . Now

f(0) = 0

g(0) = 1

f(x+ 1) = g(x)

g(x+ 1) = f(x)

(1)

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.2 CODING Sequences 115

4.2.4 Example. We saw one way to justify that

λx. bx/2c ∈ PR

in 4.1.16. A direct way is the following.
⌊

0

2

⌋
= 0⌊

x+ 1

2

⌋
=
⌊x

2

⌋
+ rem(x, 2)

where rem is in PR by 4.2.3.

Alternatively, here is a way that can do it —via simul-
taneous recursion— and with only the knowledge of how
to add 1. Consider the matrix

0 0 1 1 2 2 3 3 . . .

0 1 1 2 2 3 3 4 . . .

The top row represents λx. bx/2c, let us call it “f”. The
bottom row we call g and is, again, the result of shifting
row one to the left by one position. Thus, we have a
simultaneous recursion

f(0) = 0

g(0) = 0

f(x+ 1) = g(x)

g(x+ 1) = f(x) + 1

(2)

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

116 Thor’s Hammer (Bounded Search and Friends)

4.3 Pairing Functions

Skip for now, or just read the definition and realise
that λxy. 〈x, y〉 is a pairing function in PR with
projections —λz.(z)0 and λz.(z)1— in PR.

Coding of sequences a0, a1, . . . , an, for n ≥ 1, has a
special case; pairing functions, that is, the case of n = 2.

4.3.1 Definition. A total, 1-1 function J : N×N→ N
is called a pairing function. �

4.3.2� Remark. A decoder is a pair of total functions
K,L from N → N such that, for any z that is equal to
J(x, y) for some x and y, they “compute” said x and y:

K(z) = x

and

L(z) = y

On non-code z, K and L give some nonsense answer
—but answer they will; they are total!— just as the de-
coder λzi.(z)i does when ¬Seq(z) is true.

One usually encounters the (capital) letters K,L in
the literature as (generic) names for projection functions
of some (generic) pairing function. In turn, the generic
symbol for the latter is J rather than “f”. We will con-
form to this notational convention in what follows. � �

The set of “tools” consisting of a pairing function J
and its two projections K and L is a coding/decoding
scheme for sequences of length two. We want to have

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.3 Pairing Functions 117

computable such schemes and indeed there is an abun-
dance of primitive recursive pairing functions that also
have primitive recursive projections.

� One seeks J,K, L triples that are in PR. �

Some of those we will indicate in the examples below
and others we will let the reader to discover in the exer-
cises section.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

118 Thor’s Hammer (Bounded Search and Friends)

4.3.3 Example. The function J = λxy. 〈x, y〉 is pairing.
Good decoders/projections are K = λz.(z)0 and L =
λz.(z)1. All three are already known to us as members
of PR.

This J is not onto. For example, 5 /∈ ran(J). Never-
theless, K and L are total —because λiz.(z)i is; indeed
is in PR. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.3 Pairing Functions 119

4.3.4 Example. The function J = λxy.2x3y is pairing.
As its projections we normally take K = λz. exp(0, z)
and L = λz. exp(1, z) (cf. 4.1.16). All three are already
known to us as members of PR.

This J is not onto. Again, 5 /∈ ran(J). Nevertheless,
K and L are total —because λiz. exp(i, z) is; indeed is
in PR. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

120 Thor’s Hammer (Bounded Search and Friends)

4.3.5 Example. The function J = λxy.2x(2y+1) due to
Grzegorczyk is pairing. Indeed, since 2 is the only even
prime, “2x(2y+1)” is a forgetful depiction of a number’s
prime-number decomposition, where all powers of odd
primes are lumped together in “2y + 1”. Clearly it is
in PR since we have addition, multiplication, successor
and λx.2x in PR.
K = λz. exp(0, z) works: If z = 2x(2y + 1), then

Kz = x as it should.

What is L? �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.3 Pairing Functions 121

4.3.6� Example. In 4.3.4 and 4.3.5 we note that J(x, y) ≥
x and J(x, y) ≥ y, for all x, y. Thus an alternative way to
prove that the related K and L are in PR is to compute
as follows:

Kz = (µx)≤z(∃y)≤z(J(x, y) = z) (1)

and
Lz = (µy)≤z(∃x)≤z(J(x, y) = z) (2)

Equipped with theorems 4.1.6 and 4.1.9, and Defini-
tion 4.1.15, we see that (1) and (2) establish that K
and L are in PR. � �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

122 Thor’s Hammer (Bounded Search and Friends)

4.3.7 Example. Here is a pairing function that does
not require exponentiation. Let J(x, y) = (x + y)2 + x.
Clearly, J ∈ PR.

So let us set z = (x+y)2+x and solve this “equation”
for x and y (uniquely, hopefully). Well, (x + y)2 ≤ z <
(x+ y + 1)2. Thus x+ y ≤

√
z < x+ y + 1, hence

x+ y =
⌊√

z
⌋

(1)

Then, z = b
√
zc2 + x and therefore Kz = z .− b

√
zc2.

By (1), Lz = b
√
zc .− Kz.

As in 4.3.6, the J here satisfies J(x, y) ≥ x and J(x, y) ≥
y. Their primitive recursiveness of K,L also follows from
the calculations Kz = (µx)≤z(∃y)≤z(J(x, y) = z) and
Lz = (µy)≤z(∃x)≤z(J(x, y) = z). �

Why bother about pairing functions when we have the
coding of sequences scheme of the previous subsection?
Because prime-power coding is computationally very in-
efficient, while quadratic schemes such as that of the pre-
vious example allow us to significantly reduce the “com-
putational complexity” of coding/decoding. But can we
code arbitrary length sequences efficiently?

Yes, because any J , K, L scheme can lead to a cod-
ing/decoding scheme for sequences a1, . . . , an, n ≥ 2, for
both the cases of a fixed or variable n.

4.3.8 Definition. Given a primitive recursive pairing
scheme J , K, L.

For any fixed n ≥ 0 we define by induction on n the
symbol [[a0, . . . , an]](n+1):

For n = 0, we define [[x]](1) = x.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

4.3 Pairing Functions 123

For n ≥ 1 we define

[[y0, y1, . . . , yn]](n+1) = J(y0, [[y1, . . . , yn]](n)). �

� Thus,

[[x, y]](2) = J(x, y), [[w, x, y, z]](4) = J
(
w, J

(
x, J(y, z)

))
, etc.

How do we decode a z that is given as z = [[y0, y1, . . . , yk]](k+1)? �

We need functions —called projections— Πk+1
i , for 0 ≤

i ≤ k, such that

Πk+1
i z§ = yi, for i = 0, . . . , k

We can define them easily in terms of the K and L for
the given J .

Well, clearly, Kz = y0, hence

Πk+1
0 = K (1)

Now note
Lz = [[y1, . . . , yk]](k) (2)

Thus,
Πk+1

1 = KL (1′)

Next note
LLz = [[y2, . . . , yk]](k−1) (3)

Thus,
Πk+1

2 = KLL (1′′)

Clearly (do induction on i if you don’t think it is clear),
for 0 ≤ i ≤ k,

i︷ ︸︸ ︷
LL . . . L ¶z = [[yi, . . . , yk]](k−i+1) (i+ 1)

§Note the missing brackets around z!

¶We usually write “Li” for “

i︷ ︸︸ ︷
LL . . . L”.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

124 Thor’s Hammer (Bounded Search and Friends)

Thus Lk = [[yk]](1) = yk and, for 1 ≤ i < k,

Πk+1
i = KLi (1(i+1))

and
Πk+1
k = Lk (1(k))

Another “Clearly”: Given that k is constant, by Grze-
gorczyk substitution all the Πk

i (for a given k) are in PR.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

Chapter 5

Loop Programs

Oct. 6, 2021
This is a retelling of the material in [Tou12].

5.1 Syntax and Semantics of Loop Programs

Loop programs were introduced by D. Ritchie and A.
Meyer ([MR67]) as program-theoretic counterpart to the
number theoretic introduction of the set of primitive re-
cursive functions PR.

This programming formalism among other things con-
nected the definitional (or structural) complexity of prim-
itive recursive functions with their (run time) computational
complexity.
newpage

Loop programs are very similar to programs written in
FORTRAN,

125

126 Loop Programs

but have a number of simplifications,

notably they lack an unrestricted do-while instruction
(equivalently, there is NO goto instruction), and, of course,
like URMs do not have READ/WRITE instructions.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.1 Syntax and Semantics of Loop Programs 127

What they do have is

(1) Each program references (uses) a finite number of
N-valued variables that we denote metamathemati-
cally by single letter names (upper or lower case is
all right) with or without subscripts or primes.∗

(2) Instructions are of the following types (X, Y could be
any variables below, including the case of two iden-
tical variables):

(i) X ← 0

(ii) X ← Y

(iii) X ← X + 1

(iv) Loop X. . . end,

where “. . .” represents a sequence of syntacti-
cally valid instructions (which in 5.1.1 will be
called a “loop program”). The Loop part is
matched or balanced by the end part as it will
become evident by the inductive definition be-
low (5.1.1).

∗The precise syntax of variables will be given shortly, but even after this fact we will
continue using signs such as X, A, Z′, Y ′′34 for variables—i.e., we will continue using metano-
tation.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

128 Loop Programs

� Loop programs do not have X ← X .− 1 as primi-
tive, but can simulate it. They have X ← Y which
URMs do not have as a primitive (but can simulate it). �

Informally, the structure of loop programs can be de-
fined by induction:

5.1.1 Definition. (Inductive definition: Loop Programs)

• Every ONE instruction of type (i)–(iii) standing by
itself is a loop program.

If we already have two loop programs P and Q, then
so are

• P;Q, built by superposition (concatenation)

normally written vertically, without the separator “;”,
like this:

P

Q

and,

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.1 Syntax and Semantics of Loop Programs 129

• for any variable X (that may or may not be in P),

Loop X; P ; end, is a program,

called the loop closure (of P),

and normally written vertically without separators
“;” like this:

Loop X

P

end

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

130 Loop Programs

5.1.2 Definition. The set of all loop programs will
be denoted by L. �

5.2 Loop-Computable Functions

I The informal semantics of loop programs are analo-
gous to the semantics of the URM programs.

1. A loop program terminates “if it has nothing to do”,
that is,

If the current instruction is EMPTY.

2. All three assignment statements behave as in any
programming language,

and after execution of any such instruction, the in-
struction below it (possibly EMPTY) is the next CURRENT
instruction.

3. Assuming we know what the loop programs P and Q
do (their semantics), then “P ;Q” behaves as follows:

• First it does exactly what P does. Then

• if this ever makes the instruction after
P current —this is the first instruction of Q—
then the execution of “P ;Q” continues by exe-
cuting Q.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.2 Loop-Computable Functions 131

4. When the instruction

“Loop X; P; end”

becomes current, its execution DOES ONE of (a) or
(b) below:

I We view the Loop-end construct as an “instruc-
tion” just as a begin-end block is in, say, Pascal.J

(a) NOTHING, if X = 0 at that time

and program execution moves to the first instruc-
tion below the loop.

(b) If X = a > 0 initially, then the instruction exe-
cution has the same effect as the program

a copies

P

P
...

P

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

132 Loop Programs

I So, the semantics of Loop-end is such that
the number of times around the loop is NOT affected
if the program CHANGES X by an assignment
statement inside the loop!

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.2 Loop-Computable Functions 133

The symbol P
~Xn

Y has exactly the same meaning as for
the URMs —including that NON INPUT variables are
intialised to zero— but here “P” is some loop program

It is the function computed by loop program P if we
use ~Xn = X1, X2, . . . , Xn as the input and Y as the
output variables.

All P
~Xn
Y are total.

This is trivial to prove by induction on the formation
of P —that ALL loop Programs Terminate.

Basis : Let P be a one-instruction program. By 1 and
2 of page 130, such a program terminates.

I.H. Fix and Assume for programs P and Q.

I.S.

• What about the program

P
Q

By the I.H. starting at the top of program P we even-
tually overshoot it and make the first instruction of Q current.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

134 Loop Programs

By I.H. again, we eventually overshoot Q and the
whole computation ends.

• What about the program

LoopX;P ; end

Well, if X = 0 initially, then this terminates (does
nothing).

So suppose X has the value a > 0 initially.

Then the program behaves like

a copies

P

P
...

P

By the I.H. for each copy of P above when started
with its first instruction, the instruction pointer of
the computation will eventually overshoot the copy’s
last instruction.

But then starting the computation with the 1st in-
struction of the 1st P , eventually the computation
executes the 1st instruction of the 2nd P ,

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.2 Loop-Computable Functions 135

then, eventually, that of the 3rd P . . .

and, then, eventually, that of the last (a-th) P .

We noted that each copy of P will be overshot by the
computation; THUS the overall computation will be over
after the LAST copy has been overshot. PROVED!

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

136 Loop Programs

5.2.1 Definition. We define the set of loop programmable
functions, L:

The symbol L stands for {P ~Xn

Y : P ∈ L}. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.2 Loop-Computable Functions 137

Two examples. Refer the computation of λx.rem(x, 2)
and λx.bx/2c earlier.

If we let f = λx.rem(x, 2) we saw that the following
sim. recursion computes f .

f(0) = 0

g(0) = 1

f(x+ 1) = g(x)

g(x+ 1) = f(x)

(1)

As a loop program this is implemented as the program
P below —that is, f = PX

F .

G← G+ 1
Loop X
T ← F

F ← G

G← T

end

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

138 Loop Programs

As for λx.bx/2c we saw earlier that if f = λx.bx/2c
then we have:

f(0) = 0

g(0) = 0

f(x+ 1) = g(x)

g(x+ 1) = f(x) + 1

(2)

Loop X

T ← F
F ← G

T ← T + 1
G← T

end

If P is the name of the above program, then PX
F = f .

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.2 Loop-Computable Functions 139

Subtracting by adding!
The program QX

X below computes λx.x .− 1.

How?

X lags from T by one. At the end of the loop T holds
the original value of X, but X is ONE behind its original
value!

T ← 0
Loop X

X ← T

T ← T + 1
end

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

140 Loop Programs

Addition

Program P below computes λxy.x+ y as PXY
Y .

Loop X
Y ← Y + 1
end

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.2 Loop-Computable Functions 141

Multiplication

Program Q below computes λxy.x× y as QXY
Z .

Loop X
Loop Y
Z ← Z + 1
end

end

Why? Because we add 1 —X×Y times— to Z that starts as 0.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

142 Loop Programs

5.3 PR ⊆ L

5.3.1 Theorem. PR ⊆ L.

Proof. By induction over PR and brute-force program-
ming we are proving THIS property of ALL f ∈ PR:

“f is loop programmable”.

Basis: λx.x+ 1 is PX
X where P is X ← X + 1.

Similarly, λ~xn.xi is P
~Xn

Xi
where P is

X1 ← X1;X2 ← X2; . . . ;Xn ← Xn

The case of λx.0 is as easy.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.3 PR ⊆ L 143

Propagation of the property we are proving with Grze-
gorczyk substitution.

Just probe the function substitution case.

How does one compute λ~x~y.f(g(~x), ~y) if g = G
~X
Z and

f = FZ~Y
W?

Same as with URM programs.

One uses program concatenation and minds that Z is
the only variable common between F and G.(

G

F

) ~X~Y

W

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

144 Loop Programs

Propagation with primitive recursion.

So, say h = H
~Y
Z and g = GX,~Y ,Z

Z where H and G are
in L.

We indicate in pseudo-code how to compute f = prim(h, g).

We have

f(0, ~yn) = h(~yn)

f(x+ 1, ~yn) = g(x, ~yn, f(x, ~yn))

The pseudo-code is

z← h(~yn) Computed as H
~Yn
Z

i← 0

Loop x

z ← g(i, ~yn, z) Computed as GI,~Yn,Z
Z

i← i+ 1

end

See the similar more complicated programming for
URMs to recall precautions needed to avoid side-effects.

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.4 L ⊆ PR 145

5.4 L ⊆ PR

To handle the converse of 5.3.1 we will simulate the com-
putation of loop program P by an array of primitive re-
cursive functions.

I want to show the every P
~Xn

Y is in PR.
I prove something simpler instead:

5.4.1 Definition. For any P ∈ L and any variable Y in

P , the symbol PY is an abbreviation of P
~Xn

Y , where ~Xn

are all the variables that occur in P . �

5.4.2 Lemma. For any P ∈ L and any variable Y in
P , we have that PY ∈ PR.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

146 Loop Programs

Proof.

(A) For the Basis, we have cases:

• P is X ← 0. Then PX = λx.0 ∈ PR.

• P is X ← Y . Then PX = λxy.y ∈ PR, while
PY = λxy.y ∈ PR.

• P is X ← X + 1. Then PX = λx.x+ 1 ∈ PR

Let us next do the induction step:

(B) P is Q;R.

(i) Case where NO variables are common be-
tween Q and R.

Let the Q variables be ~zk and theR variables be ~um.

• What can we say about
(
Q;R

)
zi

?

Let λ~zk.f(~zk) = Qzi.

f ∈ PR by the I.H.

But then, so is λ~zk~um.f(~zk) by Grzegorczyk
Ops.

But this is
(
Q;R

)
zi

.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.4 L ⊆ PR 147

• Similarly we argue for
(
Q;R

)
uj

Oct. 18

(ii) Case where ~yn are common between Q and R.

~z and ~u —just as in case (i) above— are the
NON -common variables.

I Thus the set of variables of
(
Q;R

)
is ~yn~zk~um

Now, pick an output variable wi.

• If wi is among the zj, then we are back to
the first bullet of case (i).

Nothing that R does can change zj.

• So let the wi be a component of the vector
~yn~um instead. This case is fully captured by
the figure below.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

148 Loop Programs

– Define fi = λ~y~z.
(
Qyi

)
. By the I.H. on Q

these are in PR. The outputs via the yj
are as shown: fj(~yn, ~zk)

– Define gj = λ~y~u.
(
Rwj

)
. By the I.H. on R

these are in PR. The outputs via the wj
—given what inputs go into the yr— are
as shown: gj(f1(~y, ~z), . . . , fn(~y, ~z), ~um).
Thus λ~y~z~u.gj(f1(~y, ~z), . . . , fn(~y, ~z), ~um) =(
Q;R

)
wj

∈ PR.

inputs

outputs

inputs

outputs

Q

R

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.4 L ⊆ PR 149

(C) P is Loop x;Q; end.

There are two subcases: x in Q; or NOT.

(a) x not in Q:

So, let ~yn be all the variables ofQ; x is NOT one of them.
Let

λx~yn.f0(x, ~yn) denote Px (5)

and, for i = 1, . . . , n,

λx~yn.fi(x, ~yn) denote Pyi (6)

where x —being an input variable— holds the
initial value we give to it before the program P starts.

In what follows we will refer to this initial

value of x as “k”.

Moreover, let

λ~yn.gi(~yn) denote Qyi (7)

I By the I.H., the gi are in PR for i = 1, 2, . . . , n.

We want to prove that the functions in (5) and
(6) are also in PR.

Since f0 = λx~yn.x (Why?),

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

150 Loop Programs

we only deal with the fi for i > 0.

The plan is to set up a simultaneous recur-
sion that produces the fi from the gi.

Now imagine the computation of P with input
x, y1, . . . , yn.

We have two sub-subcases:

• x = 0.

In this sub-subcase, the loop is skipped and
no variables are changed by the program. In
terms of (5) and (6), what I just said trans-
lates into

f0(0, ~yn) = 0 (8)

and

fi(0, ~yn) = yi, for i = 1, . . . , n (9)

• x = k + 1, i.e., positive.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.4 L ⊆ PR 151

The effect of P is

k copies

Q
Q
Q
...
Q

Q

(10)

What is fi(k + 1, ~yn), for i > 0?

Well, consult the picture below:

inputs

outputs

inputs

outputs

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

152 Loop Programs

We now have a simultaneous primitive recursion
that yields the fi from the gi. The gi being in
PR by the I.H. on Q, so are the fi.

(b) x in Q:

So, let x, ~yn be all the variables of Q. Let

λx~yn.f0(x, ~yn) denote Px (11)

and, for i = 1, . . . , n,

λx~yn.fi(x, ~yn) denote Pyi (12)

Moreover, let

λx~yn.g0(x, ~yn) denote Qx (13)

λx~yn.gi(x, ~yn) denote Qyi (14)

By the I.H., the gi are in PR for i = 1, 2, . . . , n.

We want to prove that the functions in (11) and
(12) are also in PR by employing an appropriate
simultaneous recursion. The basis equations are
the same as (8) and (9).

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.4 L ⊆ PR 153

For x = k+1 we simply consult the figure below,
to yield the recurrence equations

inputs

outputs

inputs

outputs

fj(k+1, ~yn) = gj(f0(k, ~yn), f1(k, ~yn), . . . , fn(k, ~yn)), j = 0, . . . , n

As the gj are in PR, so are the fj.

At the end of all this we have the proof of the
Lemma. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

154 Loop Programs

We can now prove

5.4.3 Theorem. L ⊆ PR.

Proof. We must SHOW that if P ∈ L then for any choice
of ~Xn, Y in P we have

P
~Xn

Y ∈ PR

So pick a P and also ~Xn, Y in it.
Let ~Zm the rest of the variables (the non-input vari-

ables) of P , and let

f = PY = P
~Xn, ~Zm

Y

Define

g = P
~Xn

Y

By the lemma, f ∈ PR.

But

g(~Xn) = f(~Xn,

m zeros︷ ︸︸ ︷
0, . . . , 0)

By Grzegorczyk substitution, g = P
~Xn

Y ∈ PR. �
All in all, we have that

PR = L

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.5 Incompleteness of PR 155

5.5 Incompleteness of PR

We can now see that PR cannot possibly contain all
the intuitively computable total functions. We see this as
follows:

(A)

It is immediately believable that we can write a
program that checks if a string over the alphabet

Σ = {X, 0, 1,+,←, ; ,Loop, end} (1)

of loop programs is a correctly formed program
or not.

BTW, the symbols X and 1 above generate all the
variables,

X1, X11, X111, X1111, . . .

We will not ever write variables down as what they
really are —“X 1 . . . 1︸ ︷︷ ︸

k 1s

”— but we will continue using

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

156 Loop Programs

metasymbols like

X, Y, Z,A,B,X ′′, Y ′′′23 , x, y, z
′′′
15

etc., for variables!

(B) We can algorithmically build the list, List1, of ALL
strings over Σ:

List by length; and in each length group lexicograph-
ically.†

(C) Simultaneously to building List1 build List2 as fol-
lows:

For every string α generated in List1, copy it into
List2 iff α ∈ L (which we can test by (A)).

(D) Simultaneously to building List2 build List3:

For every P (program) copied in List2 copy all the

finitely many strings PX
Y (for all choices of X and

Y in P) alphabetically (think of the string PX
Y as

“P ;X;Y ”).

†Fix the ordering of Σ as listed above.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.5 Incompleteness of PR 157

At the end of all this we have an algorithmic list of all
the functions λx.f(x) of PR,

listed by their aliases, the PX
Y programs.

Let us call this list of ALL the one-argument PR
FUNCTIONS

f0, f1, f2, . . . , fx, . . . (1)

Each fi is a λx.fi(x)

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

158 Loop Programs

5.6 A total “intuitively computable” function
not in PR

We can now show that

D
Def
= λx.1 + fx(x) (1)

is intuitively total computable but not in PR.

� We do not have enough tools at our disposal at this point
to prove that D ∈ R; but this is a fact! �

5.6.1 Theorem. D /∈ PR but we can offer an algorithm
for it, AND it s is total.

Proof. (Informal) To compute D(a) for any a ∈ N do:

• We go down List3 until we find the function “fa” in
the form PX

Y , for some P ∈ L and X, Y in P .

• Compute fa(a) using PX
Y .

� This computation TERMINATES since PX
Y ∈ PR. �

• Output 1 + fa(a). This is, by (1), D(a).

Suppose now that D ∈ PR. If I am wrong, and since
D is a one-argument function, it is a PX

y , for some P ∈ L
and X, Y in P .

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

5.6 A total “intuitively computable” function not in PR 159

Let i be the location of this function in the List3.

But then
D = fi (2)

and

fi(i)
(2)
= D(i)

(1)
= 1 + fi(i)

A contradiction since both (extreme) sides of “=” are
numbers (defined). �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

160 Loop Programs

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

Chapter 6

Church’s Thesis

Computability is the part of logic that gives a mathe-
matically precise formulation to the concepts algorithm,
mechanical procedure, and calculable function (or rela-
tion).

Intensive activity by many (Post [Pos36, Pos44], Kleene
[Kle43], Church [Chu36], Turing [Tur37], Markov [Mar60])
led in the 1930s to several formulations, each purporting
to mathematically characterise the concepts algorithm,
mechanical procedure, and calculable function.

All these formulations were quickly proved to be equiv-
alent; that is, the calculable functions admitted by any
one of them were the same as those that were admitted
by any other.

161

162 Church’s Thesis

This led Alonzo Church to formulate his conjecture,
famously known as “Church’s Thesis”, that

any intuitively and informally calculable function is
also calculable within any of these mathematical frame-
works of calculability or computability. It is in P .

� I stress that even if this sounds like a “completeness the-
orem” in the realm of computability, it is not.

Such a theorem would provably say “if the function
f can be informally computed, then it can so be on
a URM (and any other mathematically equivalent
framework)”. Church believes this, but it cannot be
proved since the concept “informally computed” is
not mathematical.

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

6.1 A Leap of Faith 163

Oct.20, 2021

6.1 A Leap of Faith

In the task of proving that a function given mathematically
—but not by a mathematically-based programming lan-
guage such as URM— is URM-computable we are greatly
helped by Church’s Thesis —in short “CT”— which says,
loosely, “give me a pseudo program for the computation
of a function, and then I, A. Church, tell you that your
function is URM computable”.

We will practise this a bit in this chapter.

This does NOT say we have to believe that Church
is right in his belief, but it is practically “safe” to
practise CT.

For example, in the entire book of Rogers (over 500
pages) [Rog67], every argument by CT that he con-
structs can be converted to a precise mathematical
one by a patient reader!

If I DON’T want you to rely on CT in a particular
problem I will say “prove it mathematically”.

CT Statement: Every informal algorithm (pseudo-
program) that we propose for the computation of a
function can be implemented (made mathematically
precise, in other words) on each of the known models
of computation —in particular on the URM.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

164 Church’s Thesis

� Here is the template of how to use CT:

1. We completely present —that is, no essential de-
tail is missing— an algorithm in pseudo-code.

IBTW, “pseudo-code” does not mean “sloppy-code”!J

IAND “pseudo-code” CAN be incorrect! Your pseudo
code must be seen or must be proved correct!J

2. We then say: By CT, there is a URM that imple-
ments our algorithm. Hence the function that our
pseudo code computes is in P .

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

6.2 An Enumeration of all one-argument functions of P 165

6.2 An Enumeration of all one-argument func-
tions of P

Recall:

6.2.1 Definition. The alphabet we use to construct the
URMs is the following.

Consider the listing order of its members below FIXED.

Γ = {X, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,←, :,+, .−, if ,goto, else, stop, ; }

where we added “;” to the alphabet as a SEPARATOR
to use when we write URMs horizontally, as STRINGS
over the alphabet Γ. Just as we did with loop pro-
grams! �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

166 Church’s Thesis

We repeat below the construction of the effective list
(computable listing) of all loop programs (and one-argument
primitive recursive functions) —almost as is— but this
time for URMs.

(A) It is immediately believable that we can write a
program that checks if a string over the alphabet
Γ for URMs

is a syntactically correct URM program or not.

BTW, the symbols X and 1 above on p.165 generate
all the variables,

X1, X11, X111, X1111, . . .

As in the case of Loop-Programs we do not ever write
variables down as what they really are —“X 1 . . . 1︸ ︷︷ ︸

k 1s

”

but we will continue using metasymbols like

x,y′′′, z′123, u
′′′′
5 , X, Y, Z,A,B,X

′′, Y ′′′23

etc., for variables!

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

6.2 An Enumeration of all one-argument functions of P 167

(B) We can algorithmically build the list, List1, of ALL
strings over Γ:

List by length; and in each length group lexicograph-
ically (alphabetically).

(C) Simultaneously to building List1 build List2 as fol-
lows:

For every string β generated in List1, copy it into
List2 iff β checks to be a URM (which we can test
by (A)).

(D) Simultaneously to building List2 build List3:

For every URM M (program) copied in List2

copy all the finitely many strings MX
Y (for all choices

of X and Y in M) alphabetically (think of the string
MX

Y as “M ;X;Y ”) into List3.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

168 Church’s Thesis

Thus ALL unary P-functions are listed by their aliases,
the MX

Y programs.

Let us call this list by its standard name in the literature
(“Roger’s Notation, [Rog67]”):

EFFECTIVE List of ALL one-argument P FUNC-
TIONS

φ0, φ1, φ2, . . . , φi, . . . (1)

where φi = MX
Y iffMX

Y is found in location i of List3.

BTW “EFFECTIVE List” means “algorithmically built
List”.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

6.3 A Universal function for unary P functions 169

6.3 A Universal function for unary P functions

We now have universal or enumerating function U (P)for
all the unary functions in P .

That is the function of TWO arguments

U (P) Def= λix.φi(x) (2)

So, for any i, x, U (P)(i, x) is the value (if any) of the
i-th “MX

Y ” found in the List3 of our earlier construc-
tion (see (1) above) run with input X = x.

What do I mean by “Universal” here? I mean two
things:

6.3.1 Definition. (Universal function for unary f ∈ P)

• For every unary f ∈ P there is an i ∈ N such that
λx.U (P)(i, x) = f . This is because f will show up in
List3 as f = φi at some location i.

Now look at (2): U (P)(i, x) = φi(x) = f(x).

• λx.U (P)(i, x) ∈ P . Again, this is because λx.U (P)(i, x) =
φi = MX

Y , for some URM M and X, Y in M . �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

170 Church’s Thesis

We immediately obtain the Universal or Enumeration
Theorem for all the unary functions in P .

6.3.2 Theorem. (Enumeration theorem) The Univer-
sal function of two arguments λix.U (P)(i, x) defined in
(2) above and in 6.3.1 is partial recursive.

Proof. To compute U (P)(i, x) for any i, x is to compute
φi(x). Here is an informal algorithm to compute φi(x):

1. Given i, x

2. Develop the list List3 of the preceding construction
(part (D) on p.167) until the i-th URM MX

Y has been
listed.

3. Take this MX
Y and compute with input x (inputed in

X).

IfM terminates, then Y clearly holds the value U (P)(i, x) =
φi(x) —since MX

Y = φi by Rogers’ definition.

Invoking CT we now declare that λix.U (P)(i, x) is more
than informally algorithmic:

It CAN be implemented on a URM, hence is in P . �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

6.3 A Universal function for unary P functions 171

� Hey, so we can write a compiler for the φi IN the URM
Language!

This is a good point to return to something we skipped
earlier. Extending equality between function calls
f(~x) and g(~y) even when the calls do NOT return a
value!

f(~x) = g(~y) iff f(~x) ↑ ∧g(~y) ↑ ∨(∃z)
(
f(~x) = z ∧ g(~y) = z

)
�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

172 Church’s Thesis

Another fundamental theorem in computability is the
Parametrisation or Iteration or also “S-m-n” theorem of
Kleene.

� � In fact, it and the universal function theorem along with
a handful of initial computable functions are known to
be sufficient to found computability axiomatically —but
we will not get into this topic in this course. � �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

6.3 A Universal function for unary P functions 173

I NEXT let us establish the fact that we can enumer-
ate algorithmically —or we can effectively list— also the
set of ALL partial recursive functions of TWO variables.

Just repeat the construction (A)–(D) on pp.166–167,
but modify (D):

Here you do instead:

I (D′) Simultaneously to building List2 build List′3:

For every URM M (program) copied in List2 copy all

the finitely many stringsMXY
Z (for all choices ofX, Y and

Z —keeping X, Y distinct— in M) alphabetically (think
of the string MXY

Z as “M ;X;Y ;Z”) into List′3 J.

The obtained effective list List′3 of MXY
Z is denoted

([Rog67]) by

φ
(2)
0 , φ

(2)
1 , φ

(2)
2 , φ

(2)
3 , . . . , φ

(2)
i , . . . (2)

where φ
(2)
i = MXY

Z iff MXY
Z is found in location i.

The superscript “(2)” of φ indicates that we are effec-

tively listing 2-argument P-functions, λxy.φ
(2)
i (x, y)

� What if in step (D′) we find that program M has

only one variable? �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

174 Church’s Thesis

6.3.3 Theorem. (Parametrisation theorem)

There is a 2-argument function S1
1 in R such

that

φ
(2)
i (x, y) = φS11(i,x)(y), for all i, x, y (1)

Proof. This says that given a program M that

computes a function φ
(2)
i as Muv

z with u receiving

the input value x and v receiving the input value

y —each via an “implicit” read statement— we

can, for any fixed value x, effectively † construct

a new program located in position S1
1(i, x) of the

algorithmic enumeration of all unaryP-functions

—(1) on p.168— that has the value x “hardwired”

and only “reads” the y-value; YET GIVES THE

SAME ANSWER in z.

I The “effectively construct” above is the re-

quirement that S1
1 is recursive: Indeed this re-

quirement says that we can OBTAIN the program

for the rhs of (1).

� Each value x for u is “hardwired” —as u← x— in

the program for φS11(i,x) rather than being inputted

via an implicit “read u”. �

†Algorithmically.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

6.3 A Universal function for unary P functions 175

The program Nv
z for φS11(i,x) —for a given i and

each x— is almost the same as Muv
z , namely, it is

Nv
z =

(replaces read u︷ ︸︸ ︷
1 : u← x; M

)v

z

(3)

where all instruction labels of M (even inside if-

statments) are shifted by adding 1 to them.

Trivially, for all i (that is, all Muv
z) and all x,

we have (2) of the theorem.

Remains to argue that we can compute S1
1(i, x),

for all i, x.

• Given i, x

• Develop the list (2) of the φ
(2)
i on p.173 (this is

“List′3” of (D′)) on p.173) until we can obtain

its i-th member, Muv
z

• Now, Build the URM Nv
z from Muv

z as in (3)

above.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

176 Church’s Thesis

• Now, Develop List3 —essentially the list of the

one-argument φj— built by (D), p.167 and go

down while you keep comparing, until you find

Nv
z .

• Output the location of Nv
z that you found —this

is S1
1(i, x).

You WILL find said location since List3
contains ALL unary φj (listed as URM pro-

grams MX
Y).

• So S1
1 is total.

By Church’s thesis the above informal process

can be done by URMs. Thus, S1
1 ∈ R. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

6.3 A Universal function for unary P functions 177

Oct. 25, 2021

� λx.S1
1(i, x) is strictly increasing. Indeed, S1

1(i, x) is the
location of (replaces read u︷ ︸︸ ︷

1 : u← x; M

)v

z

(†)

in the enumeration of the (unary) φj (p.168) while S1
1(i, x′)

is the location of (replaces read u︷ ︸︸ ︷
1 : u← x′; M

)v

z

(‡)

Now if x < x′ then x is earlier than x′ in the alphabetic
ordering of x and x′ viewed as strings of decimal digits.

But then —all other things being equal— program (†)
appears earlier than program (‡) in the lexicographic or-
dering of programs NX

Y .

Thus location S1
1(i, x) is before location S1

1(i, x′).

In short, S1
1(i, x) < S1

1(i, x′). �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

178 Church’s Thesis

6.4 Unsolvable “Problems”; The Halting Prob-
lem

The following definition is repeated “for the record”
adding alternative names for “recursive relation”.

6.4.1 Definition. (Decidable relations) “A relation Q(~xn)
is computable, or decidable or solvable” iff it is Re-
cursive;

That is, its characteristic function

cQ = λ~xn.

{
0 if Q(~xn)

1 otherwise

is in R.

The collection (set) of all computable relations we de-
note by R∗. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

6.4 Unsolvable “Problems”; The Halting Problem 179

� Thus, “a relationQ(~xn) is computable or decidable” means
that some URM computes cQ.

But that means that some URM behaves as follows:

On input ~xn, it halts and outputs 0 iff ~xn satisfies Q
(i.e., iff Q(~xn)),

it halts and outputs 1 iff ~xn does not satisfy Q (i.e.,
iff ¬Q(~xn)).

We say that a solvable relation has a decider, i.e.,
the URM that decides membership of any tuple ~xn
in the relation.

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

180 Church’s Thesis

6.4.2 Definition. (Problems)
A “Problem” is —by definition— a formula of the

type “~xn ∈ Q” or, equivalently, “Q(~xn)”.

Thus, by definition, a “problem” is a membership
question.

�

6.4.3 Definition. (Unsolvable Problems) A problem
“~xn ∈ Q” is called any of the following:

Undecidable

Recursively unsolvable

or just

Unsolvable

iff Q /∈ R∗—in words, iff Q is not a computable rela-
tion. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

6.4 Unsolvable “Problems”; The Halting Problem 181

Here is the most famous undecidable problem:

“φx(x) ↓ ” (1)

� I put quotes to be sure we separate the relation (a statement)
from the function call φx(x) (a number, or undefined). �

A different formulation uses the set

K
Def
= {x : φx(x) ↓}† (2)

that is, the set of all numbers x, such that the URM
at location x on input x has a (halting!) computation.

We shall call K the “halting set”, and (1) we shall
call the “halting problem”.

Clearly, by (2), (1) is equivalent to

x ∈ K

†All three [Rog67, Tou84, Tou12] use K for this set, but this notation is by no means
standard. It is unfortunate that this notation clashes with that for the first projection K of
a pairing function J . However the context will manage to fend for itself!

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

182 Church’s Thesis

6.4.4 Theorem. The halting problem is unsolvable.

Proof. We show, by contradiction, that K /∈ R∗.

Thus we start by assuming the opposite.

Let K ∈ R∗ (3)

(3) says that we can decide membership in K via a
URM, or, what is the same, we can decide truth or false-
hood of φx(x) ↓ for any x:

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

6.4 Unsolvable “Problems”; The Halting Problem 183

Consider then the infinite matrix below, each row of
which denotes a function in P as an array of outputs,

the outputs being numerical, or the special symbol “↑”
for any undefined entry φx(y).

� By 6.3.2 and the comments following it, EVERY one-
argument function of P is in some row (as an array of
outputs). �

φ0(0) φ0(1) φ0(2) . . . φ0(i) . . .

φ1(0) φ1(1) φ1(2) . . . φ1(i) . . .

φ2(0) φ2(1) φ2(2) . . . φ2(i) . . .
...

φi(0) φi(1) φi(2) . . . φi(i) . . .
...

We will use the assumed (3) (p.182) above AND the
main diagonal (red) of the above matrix to define a func-
tion that is a 1-argument function of P that is NOT a
row above.

Cantor’s famous “diagonalisation technique” dictates: Just de-
fine a function d as a row of “outputs” as

d = φ0(0), φ1(1), φ2(2), . . . , φx(x), . . .

such that φx(x) 6= φx(x), for all x.

� Thus d cannot fit row i for any i since d(i) would have
to be equal to what the matrix has on row i, position i:
Namely φi(i). Instead d(i) = φi(i), which is different! �

This will contradict “EVERY” above.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

184 Church’s Thesis

So define, mathematically and specifically, the func-
tion d of one argument by

d(x) =

{
42 if φx(x) ↑
↑ if φx(x) ↓

(4)

Here is why the function in (4) is partial recursive:

Given x, do:

• Use the decider for K (for “φx(x) ↓”, that is) —
assumed to exist by (3) (p.182)— to test which con-
dition is true in (4); top or bottom.

• If the top condition is true, then we return 42 and
stop.

• If the bottom condition holds, then transfer to an
infinite loop:

k : goto k

By CT, the 3-bullet program has a URM realisation,
so d is computable.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

6.4 Unsolvable “Problems”; The Halting Problem 185

Say now
d = φi (5)

Substitute φi for d in (4) to get

φi(x) =

{
42 if φx(x) ↑
↑ if φx(x) ↓

(6)

As (6) is correct for all x, it is correct for x = i.

So we get

φi(i) =

{
42 if φi(i) ↑
↑ if φi(i) ↓

Do you see the contradiction?

Cases.

• lhs = φi(i) = 42. Then we are in the top case. But
that implies φi(i) ↑ No good!!!

• Well maybe the other case works? lhs = φi(i) =↑.
We are in the bottom case. But this implies φi(i) ↓
No good!!!

We have a contradiction no matter which case we pick.

But we knew this already from the �-remark following
the Box on p.183.

So we reject (3) (p.182). Done! �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

186 Church’s Thesis

In terms of theoretical significance, the above is a fun-
damental unsolvable problem that enables the process of
finding more! How?

As an Example we illustrate the “program correctness
problem” (see below).

But how does “x ∈ K” help?

Through the following technique of reduction:

� Let P be a new problem which we want to prove undecidable.
We proceed by contradiction like this:

We say, suppose instead that ~y ∈ P can be solved by
a URM.

We then build a reduction that goes like this:

1. Let M be a URM that decides ~y ∈ P , for any ~y.

2. Then we show how to use M as a subroutine to
also solve x ∈ K, for any x.

3. Since we know that the latter is unsolvable we
have arrived at a contradiction that implies that
no such URM M exists!

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

6.4 Unsolvable “Problems”; The Halting Problem 187

The equivalence problem is

Given two programs M and N can we test to see
whether they compute the same function?

� Of course, “testing” for such a question cannot be done
by experiment: We cannot just run M and N for all
inputs to see if they get the same output, because, for one
thing, “all inputs” are infinitely many, and, for another,
there may be inputs that cause one or the other program
to run forever (infinite loop). �

By the way, the equivalence problem is the general
case of the “program correctness” problem which asks

Given a program P and a program specification
S, does the program fit the specification for all
inputs?

How so? Well, we can view a specification as just another
formalism to FINITELY express a function computation.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

188 Church’s Thesis

Let us show now that the equivalence problem cannot
be solved by any URM.

6.4.5 Theorem. (Equivalence problem) The equiva-
lence problem of URMs is the problem “given i and j; is
φi = φj?”

This problem is undecidable.

Proof. We will show that if we have a URM that solves
the equivalence problem, “yes”/“no”, then we have a
URM that solves the halting problem too! (A contra-
diction to our assumption.)

So assume (URM) E solves the equivalence problem.

Let us use E to answer the question “a ∈ K”—that
is, “φa(a) ↓”, for any a.

So, let a be given (inputted) (2)

Consider these two computable functions given by:

For all x:
Z(x) = 0

and

Z̃(x) =

{
0 if x = 0 ∧ φa(a) ↓
0 if x 6= 0

Both functions are intuitively computable:

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

6.4 Unsolvable “Problems”; The Halting Problem 189

For Z we already have actually constructed a URM
M that computes it.

(See (e-) Class/notes/text.)

For Z̃ and input x compute as follows:

• Print 0 and stop if x 6= 0.

• On the other hand, if x = 0 then, call U (P)(a, a),
which is the same as φa(a) (cf. 6.3.2).

If this ever halts just print 0 and halt; otherwise let
it loop forever.

By CT and the pseudo code above (two bullets), Z̃

has a URM program, say M̃ .

We can compute the locations i and j of M and M̃
respectively by going down the list of all Nw

w′ (List3,
p.167).

Thus Z = φi and Z̃ = φj.

Since we ASSUMED that E solves the equivalence
problem, now feed it i and j and let it crank.

By definition of a decider, E will terminate with an-
swer one of:

• 0. Then Z(x) = Z̃(x), for all x. But lhs is defined
at x = 0, thus so is rhs. We conclude φa(a) ↓.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

190 Church’s Thesis

• 1. Z(x) = Z̃(x), is NOT true for all x. The only

possibility for that is ¬
(
Z(0) = Z̃(0)

)
(for all other

x-values, lhs=rhs).

This can only be because rhs is undefined. We con-
clude φa(a) ↑.

We just solved the halting problem using E as a sub-
routine! IMPOSSIBLE. So E does not exist. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

Chapter 7

(un)Computability via
“Church’s Thesis” and the
S-m-n theorem; Part II

This is Part II of our Uncomputability notes.

We introduce “half-computable” relations Q(~x) here.

These play a central role in Computability.

The term “half-computable” is temporary here (re-
placed by “semi-computable” in the literature) describes
them well: For each of these relations there is a URM M
that will halt precisely for the inputs ~a that make the
relation true:

i.e., ~a ∈ Q or equivalently Q(~a) is true.

191

192 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

For the inputs that make the relation false —
~b /∈ Q— M loops forever.

That is, M verifies membership but does not yes/no-
decide it by halting and “printing” the appropriate 0
(yes) or 1 (no).

Can’t we tweak the verifier M into a decider M ′ for
such a Q?

� No, not in general! For example, the halting set K has a
verifier �

� Right? x ∈ K ≡ φx(x) ↓≡ U (P)(x, x) ↓.

So any program MX
Y for the partial recursive λx.U (P)(x, x)

is a verifier for x ∈ K. See also 7.1.2 below. �

But we KNOW that x ∈ K has NO decider!

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.1 Semi-decidable relations (or sets) 193

Since the “yes” of a verifier M is signaled by halting
but the “no” is signaled by looping forever,

the definition below does not require the verifier to print
0 for “yes”. Here “yes” equals “halting”.

7.1 Semi-decidable relations (or sets)

Oct. 27, 2021

7.1.1 Definition. (Semi-recursive sets)
I A relation Q(~xn) is semi-decidable or semi-recursive

—what we called suggestively “half-computable” earlier—

iff

I There is a URM, M , which on input ~xn has a
(halting!) computation iff ~xn ∈ Q.

The output of M is unimportant!

A more mathematically precise way to say the above is:

A relation Q(~xn) is semi-decidable or semi-recursive
iff there is an f ∈ P such that

Q(~xn) ≡ f(~xn) ↓ (1)

Clearly, an f ∈ P is some M~xn
y . Thus, M is a verifier

for Q.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

194 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

The set of all semi-decidable relations we will denote
by P∗.† �

The following figure shows the two modes of handling
a query, “~xn ∈ A”, by a URM.

A Decider

A Verifier

A URM for the

 problem
A URM for the

 problem

yes =print 0
and halt

no =print 1
and halt

yes =just halt

no=loop
for ever

input input

†This is not a standard symbol in the literature. Most of the time the set of all semi-
recursive relations has no symbolic name! We are using this symbol in analogy to R∗—the
latter being fairly “standard”.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.1 Semi-decidable relations (or sets) 195

Here is an important semi-decidable set.

7.1.2� Example. K is semi-decidable. To work within
the formal definition (7.1.1) we note that the function
λx.φx(x) is in P via the universal function theorem of
Part I: λx.φx(x) = λx.U (P)(x, x) and we know U (P) ∈ P .

Thus x ∈ K ≡ φx(x) ↓ settles it. By Definition 7.1.1
(statement labeled (1)) we are done. � �

7.1.3� Example. Any recursive relation A is also semi-
recursive.

That is,
R∗ ⊆ P∗

Indeed, intuitively, all we need to do to convert a de-
cider for ~xn ∈ A into a verifier is to “intercept” the
“print 1”-step and convert it into an “infinite loop”, for
example,

k : goto k

By CT we can certainly do the whole thing via a URM
implementation.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

196 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

One more way to do this: Totally mathematical this
time! (no CT needed!)

OK,

f(~xn) = if cA(~xn) = 0 then 0 else ∅(~xn)

That is, using the sw function that is in PR and hence
in P , as in

f(~xn) = if

cA(~xn)
↓
z = 0 then

0
↓
u else

∅(~xn)
↓
w

∅ is, of course, the empty function which by Grz-Ops can
have any number of arguments we please! For example,
we may take

∅ = λ~xn.(µy)g(y, ~xn)

where g = λy~xn.SZ(y) = λy~xn.1.

�
�

An important observation following from the above
examples deserves theorem status:

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.1 Semi-decidable relations (or sets) 197

7.1.4 Theorem. R∗ ⊂ P∗
Proof. The ⊆ part of “⊂” is Example 7.1.3 above.

The 6= part is due to K ∈ P∗ (7.1.2) and the fact that
the halting problem is unsolvable (K /∈ R∗).

So, there are sets in P∗ (e.g., K) that are not in R∗.
�

What about K, that is, the complement

K = N−K = {x : φx(x) ↑}

of K? Is it perhaps semi-recursive (verifiable)?

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

198 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

The following general result helps us answer the above
question negatively.

7.1.5 Theorem. A relation Q(~xn) is recursive iff both
Q(~xn) and ¬Q(~xn) are semi-recursive.

Proof. IF part. We want to prove that some URM, N ,
decides

~xn ∈ Q
We take two verifiers, M for “~xn ∈ Q” and M ′ for “~xn ∈
Q”,† and run them —on input ~xn— as “co-routines” (i.e.,
we crank them simultaneously).

If M halts, then we stop everything and print “0” (i.e.,
“yes”).

If M ′ halts, then we stop everything and print “1”
(i.e., “no”).

CT tells us that we can put the above —if we want
to— into a single URM, N .

ONLY IF part. If Q is in R∗, then so is Q, by
closure under ¬ (3.4.7), and thus each is semi-recursive
by Theorem 7.1.4. �

†We can do that, i.e., M and M ′ exist, since both Q and Q are semi-recursive.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.1 Semi-decidable relations (or sets) 199

7.1.6� Example. K /∈ P∗.

Now, this (K) is a horrendously unsolvable problem!
This problem is so hard it is not even semi-decidable!

Why? Well, if instead it were K ∈ P∗, then combining
this with Example 7.1.2 and Theorem 7.1.5 we would get
K ∈ R∗, which we know is not true. � �

7.1.7 Theorem. (Restricted Boolean closure of P∗)
P∗ is closed under the “positive” Boolean operations ∨,∧
but is not closed under ¬.

Proof. That closure under ¬ fails is the content of Ex-
ample 7.1.6.

Now let P (~x) and Q(~y) be two semi-recursive relations
and M and N are verifiers for the two respectively.

• Here is a verifier for P (~x) ∨Q(~y):

1. Input ~x to M and ~y to N .

2. Run M and N simultaneously (in parallel, as co-
routines).

3. If ANY OF THE TWO URMs halts, then stop
everything.

By CT there is a URM R∨ that does exactly 1+2+3
above. This URM with input (~x, ~y) will halt iff
P (~x)∨Q(~y) is true, thus is a verifier of this predicate
and therefore the predicate is semi-recursive.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

200 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

• Here is a verifier for P (~x) ∧Q(~y):

1. Input ~x to M and ~y to N .

2. Run M and N simultaneously (in parallel, as co-
routines).

3. If BOTH OF THE TWO URMs halts, then stop
everything.

By CT there is a URM R∧ that does exactly 1+2+3
above. This URM with input (~x, ~y) will halt iff
P (~x)∧Q(~y) is true, thus is a verifier of this predicate
and therefore the predicate is semi-recursive. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.2 Unsolvability via Reducibility 201

7.2 Unsolvability via Reducibility

We turn our attention now to a methodology towards
discovering new undecidable problems, and also new non
semi-recursive problems, beyond the ones we learnt about
so far, which are just,

1. x ∈ K,

2. φi = φj (equivalence problem)

3. and x ∈ K.

In fact, we will learn shortly that φi = φj is worse than
undecidable; just like K it too is not even semi-decidable.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

202 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

The tool we will use for such discoveries is the concept
of reducibility of one set to another:

7.2.1 Definition. (Strong reducibility) For any two
subsets of N, A and B, we write

A ≤m B†

or more simply

A ≤ B (1)

pronounced A is strongly reducible to B, meaning that
there is a (total) recursive function f such that

x ∈ A ≡ f(x) ∈ B (2)

We say that “the reduction is effected by f”.

The last sentence has the notation A ≤f B. �

� In words, A ≤m B says that we can algorithmically solve
the problem x ∈ A if we know how to solve z ∈ B. The
algorithm is:

1. Given x.

2. Given the known “subroutine” z ∈ B.
†The subscript m stands for “many one”, and refers to f . We do not require it to be 1-1,

that is; many (inputs) to one (output) will be fine.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.2 Unsolvability via Reducibility 203

3. Compute f(x).

4. Give the same answer for x ∈ A (true or false) as you
do for f(x) ∈ B.

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

204 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

When A ≤m B holds, then, intuitively,

“A is easier than B to either decide or verify”

since if we know how to decide or (only) verify mem-
bership in B then we can decide or (only) verify mem-
bership in A: “x ∈ A?”

All we have to do is compute f(x) and ask instead the
question “f(x) ∈ B” which we can decide or verify .

This observation has a very precise counterpart (The-
orem 7.2.3 below).

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.2 Unsolvability via Reducibility 205

7.2.2 Lemma. If Q(y, ~x) ∈ P∗ and λ~z.f(~z) ∈ R, then
Q(f(~z), ~x) ∈ P∗.

Proof. By Definition 7.1.1 there is a g ∈ P such that

Q(y, ~x) ≡ g(y, ~x) ↓ (1)

Now, for any ~z, f(~z) is some number which if we plug
into y in (1) we get an equivalence:

Q(f(~z), ~x) ≡ g(f(~z), ~x) ↓ (2)

But λ~z~x.g(f(~z), ~x) ∈ P by Grz-Ops. Thus, (2) and
Definition 7.1.1 yield Q(f(~z), ~x) ∈ P∗. �

7.2.3 Theorem. If A ≤g B in the sense of 7.2.1, then

(i) if B ∈ R∗, then also A ∈ R∗
(ii) if B ∈ P∗, then also A ∈ P∗

Proof.

(i) The assumption says that z ∈ B is in R∗.

So is g(x) ∈ B by Grz. Ops. (4.1.2).

But x ∈ A ≡ g(x) ∈ B, so x ∈ A is in R∗.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

206 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

(ii) Let z ∈ B be in P∗.
By 7.2.2, so is g(x) ∈ B. But this says x ∈ A. �

Taking the “contrapositive”, we have at once:

7.2.4 Corollary. If A ≤ B in the sense of 7.2.1,
then

(i) if A /∈ R∗, then also B /∈ R∗
(ii) if A /∈ P∗, then also B /∈ P∗

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.2 Unsolvability via Reducibility 207

Nov. 1, 2021

7.2.5� Example. This is important! We saw that func-
tions that are nontotal, such that xy (fails at x = y = 0)
and bx/yc (fails infinitely often, for y = 0 and all x, that
is) can be extended by total (for emphasis) primitive re-
cursive functions.

Recall that “g extends f” —in symbols f ⊆ g— means
that whenever f(a) ↓ then f(a) = g(a). Of course there
may be b where f(b) ↑ and yet g(b) ↓.

I cautioned at the time we discussed xy and bx/yc that
it is NOT true that this extension to a total computable
function can always happen!

Here is a counterexample: The partial recursive func-
tion λx.φx(x) + 1 —Why is it partial recursive?— CAN-
NOT be extended to a total recursive function g of one
argument x.

I Of course, MATHEMATICALLY (but NOT com-
putationally!) it can be extended in infinitely many
different and indeed total ways!

For example, h = λx.if φx(x)+1 ↑ then 0 else φx(x)+
1 is a total extension of λx.φx(x)+1. But neither it, NOR
ANY OTHER total extension is computable!J

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

208 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

Here it goes, à la Cantor: Say

λx.φx(x) + 1 ⊆ g ∈ R

Then, by the universal function theorem, for some i ∈
N, it is

g = φi (1)

What is g(i)?

Well, by (1) g(i) = φi(i). Hence φi(i) ↓. But then
—by λx.φx(x) + 1 ⊆ g— g(i) = φi(i) + 1.

We ended up (red and blue) with φi(i) = φi(i) + 1
which is impossible since both sides of “=” are defined
but different numbers! � �

� I asked you in Assignment #1 to show that λx.φx(x) too
does NOT have a total computable extension.

Hint. Say such an extension is h. Work with the
total computable λx.h(x) + 1 and try to get a contradic-
tion. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.2 Unsolvability via Reducibility 209

We return to the task of discovering undecidable and
unverifiable (not verifiable) problems.

We can use K and K as a “yardsticks” —or
reference “problems”— and discover new unde-
cidable and also non semi-decidable problems.

The idea of Corollary 7.2.4 is applicable to the so-
called “complete index sets”.

7.2.6 Definition. (Complete Index Sets) Let C ⊆ P
and A = {x : φx ∈ C}.

A is thus the set of ALL programs (known by their
addresses) x that compute any unary f ∈ C:

I Indeed, let λx.f(x) ∈ C. Thus f = φi for some i.
Then i ∈ A.

The above is not specific to a “privileged” i.

This is true of all φm that equal f .

That is why we call A a complete index (programs-)
set: For any f ∈ C, ALL its programs i ∗ are in A. �

∗That is, i such that f = φi.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

210 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

We embark on several examples, but first note the
FORM of S-m-n Theorem that we will be using going
forward:

7.2.7 Theorem. (S-m-n in practice) If ψ ∈ P has
two arguments, then there is a unary h ∈ R such that

ψ(x, y) = φh(x)(y) (1)

for all x, y.

Proof. Fix an i such that ψ(x, y) = φ
(2)
i (x, y), for all x, y.

By S-m-n (6.3.3), we have a recursive λix.S1
1(i, x) such

that
φ
(2)
i (x, y) = φS1

1(i,x)
(y)

for all i, x, y.

But i is fixed.

Thus λx.S1
1(i, x) is the “h” we want. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.2 Unsolvability via Reducibility 211

7.2.8 Example. The set A = {x : ran(φx) = ∅} is not
semi-recursive.

� Recall that “range” for λx.f(x), denoted by ran(f), is
defined by

{x : (∃y)f(y) = x}
�

We will try to show that

K ≤ A (1)

If we can do that much, then Corollary 7.2.4, part ii, will
do the rest since K /∈ P∗.

Well, define

ψ(x, y) =

{
0 if φx(x) ↓ Says x ∈ K
↑ if φx(x) ↑ Says x ∈ K

(2)

Here is how to compute ψ:

• Given x, y, ignore y.

• Call φx(x) —that is, U (P)(x, x),

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

212 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

• If the call ever returns, then print “0” and halt ev-
erything.

• If it never returns, then this agrees with the specified
in (2) behaviour for ψ(x, y) in this case.

By CT, ψ is in P , so, by the S-m-n Theorem, there is
a recursive h such that

ψ(x, y) = φh(x)(y), for all x, y

� You may NOT use S-m-n UNTIL after you have
proved that your “λxy.ψ(x, y)” is in P. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.2 Unsolvability via Reducibility 213

We can rewrite this as,

φh(x)(y) =

{
0 if φx(x) ↓
↑ if φx(x) ↑

(3)

or, rewriting (3) without arguments (as equality of func-
tions, not equality of function calls)

φh(x) =

{
λy.0 if φx(x) ↓
∅ if φx(x) ↑ ← says x ∈ K

(3′)

In (3′), ∅ stands for λy. ↑, the empty function.

Thus,

h(x) ∈ A iff ran(φh(x)) = ∅
bottom case in 3′︷︸︸︷

iff x ∈ K

The above says x ∈ K ≡ h(x) ∈ A, hence K ≤h A,
and thus A /∈ P∗ by Corollary 7.2.4, part ii. �

Recall
K

Def
= {x : φx(x) ↓}

K
Def
= {x : φx(x) ↑}

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

214 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

7.2.9 Example. The set B = {x : φx has finite domain}
is not semi-recursive.

This is really easy (once we have done the previous
example)! All we have to do is “talk about” our findings,
above, differently!

We use the same ψ as in the previous example, as well
as the same h as above, obtained by S-m-n.

Looking at (3′) above we see that the top case has
infinite domain, while the bottom one has finite domain
(indeed, empty). Thus,

h(x) ∈ B iff φh(x) has finite domain

bottom case in 3′︷︸︸︷
iff φx(x) ↑

The above says x ∈ K ≡ h(x) ∈ B, hence K ≤ B, hence
B /∈ P∗ by Corollary 7.2.4, part ii. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.2 Unsolvability via Reducibility 215

7.2.10 Example. Let us “mine” (3′) twice more to ob-
tain two more important undecidability results.

1. Show that G = {x : φx is a constant function} is un-
decidable.

We (re-)use (3′) of 7.2.8. Note that in (3′) the top
case defines a constant function, but the bottom case
defines a non-constant. Thus

h(x) ∈ G ≡ φh(x) = λy.0 ≡ top case in (3′) ≡ x ∈ K

Hence K ≤ G, therefore G /∈ R∗.

2. Show that I = {x : φx ∈ R} is undecidable. Again,
we retell what we can read from (3′) in words that
are relevant to the set I:

h(x) ∈ I ∅ /∈ R!≡ φh(x) = λy.0 ≡ x ∈ K

Thus K ≤ I, therefore I /∈ R∗. �

� In a future section we will sharpen the result 2 of the
previous example. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

216 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

7.2.11� Example. (The Equivalence Problem, again)
We now revisit the equivalence problem and show it is
worse than unsolvable (cf. 6.4.5):

The relation φx = φy is not semi-decidable.

By 7.2.2, if the 2-variable predicate above is in P∗ then
so is λx.φx = φy, i.e., taking a constant for y, that is, fix-
ing the program y.

Choose then for y a φ-index for the empty function.

In short,

If the equivalence problem is VERIFIABLE, then so is

φx = ∅

Eq={x : φx = ∅} = {x : ran(φx) = ∅} = A

which says the same thing as

ran(φx) = ∅

We saw that this is NOT SEMI-RECURSIVE in 7.2.8.

� �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.2 Unsolvability via Reducibility 217

7.2.12 Example. The set C = {x : ran(φx) is finite} is
not semi-decidable.

Here we cannot reuse (3′) above, because both cases
in the definition by cases —top and bottom— have func-
tions of finite range.

We want one case to have a function of finite range,
but the other to have infinite range.

Aha! This motivates us to choose a different “ψ”
(hence a different “h”), and retrace the steps we took
above.

OK, define

g(x, y) =

{
y if φx(x) ↓
↑ if φx(x) ↑

(ii)

Here is an algorithm for g:

• Given x, y.

• Call φx(x) —i.e., call U (P)(x, x).

• If this ever returns, then print “y” and halt every-
thing.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

218 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

• If it never returns from the call, this is the correct
behaviour for g(x, y) as well:

namely, we want g(x, y) ↑ if x ∈ K.

By CT, g is partial recursive, thus by S-m-n, for some
recursive unary k we have

g(x, y) = φk(x)(y), for all x, y

Thus, by (ii)

φk(x) =

{
λy.y if x ∈ K
∅ othw, i.e., x ∈ K

(iii)

Hence,

k(x) ∈ C iff φk(x) has finite range

bottom case in iii︷︸︸︷
iff x ∈ K

That is, K ≤k C and we are done. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.2 Unsolvability via Reducibility 219

7.2.13 Exercise. Show thatD = {x : ran(φx) is infinite}
is undecidable. �

7.2.14 Exercise. Show that F = {x : dom(φx) is infinite}
is undecidable. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

220 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

Nov. 3, 2021
Enough “negativity”!

Here is an important “positive result” that helps to
prove that certain relations ARE semi-decidable:

7.2.15 Theorem. (Projection theorem; Part I) A re-
lation Q(~xn) that is expressible as

Q(~xn) ≡ (∃y)S(y, ~xn) (1)

where S(y, ~xn) is recursive is semi-recursive.

� Q is obtained by “projecting” S along the y-co-ordinate,
hence the name of the theorem. �

Proof. Let S ∈ R∗, and Q be connected as in (1) of the
theorem.

Clearly (How so?),

(∃y)S(y, ~xn) ≡ (µy)S(y, ~xn) ↓ (2)

and we know that

(µy)S(y, ~xn)
Def
= (µy)cS(y, ~xn), for all ~xn (3)

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.2 Unsolvability via Reducibility 221

Hence
λ~xn.(µy)cS(y, ~xn) ∈ P

by closure of P under UNbounded search. Thus so is
λ~xn.(µy)S(y, ~xn) by (3).

Now (1) and (2) give

Q(~xn) ≡ (µy)S(y, ~xn) ↓
We are done by Def. 7.1.1 (1). �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

222 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

7.2.16 Example. The set A = {(x, y, z) : φx(y) = z} is
semi-recursive.

Here is a verifier for the above predicate:

Given input x, y, z. Comment. Note that φx(y) = z
is true iff two things happen: (1) φx(y) ↓ and (2) the
computed value is z.

1. Given x, y, z.

2. Call φx(y) = U (P)(x, y).

3. If the call returns, then

• If the output of φx(y) equals z, then halt every-
thing (the “yes” output).

• If the output of φx(y) does NOT equal z, then
get into an infinite loop (the “no” case).

4. If the φx(y) ↑, then keep looping (say “no”, by loop-
ing).

By CT the above informal verifier can be formalised as
a URM M . �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.3 Projection Theorem II 223

7.3 Projection Theorem II

This section provides a new powerful tool (that we will
use again in the chapter on complexity) AND proves the
converse of Projection Theorem Part I.

How can we trace a (computation of a) URM ?

Exactly in the same manner that we learnt to trace
a commercially available program such as C.

7.3.1 Computation-simulating functions

Given a URMM
~Xm

X1
where —without loss of generality—

we selected X1 as the output variable.

Let all its variables be

inputs︷ ︸︸ ︷
X1, . . . , Xm,

Non inputs︷ ︸︸ ︷
Xm+1, . . . , Xn (1)

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

224 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

For any input ~am, M ’s computation can be tabulated
in a (potentially infinite) table —p.225 below— where for
each y ≥ 0, row y contains the values of ALL the vari-
ables in (1) as well the value of the Instruction Pointer
IP —that points to the CURRENT instruction— at
step y.

A “step” is the act of executing ONE instruction of M
and reaching the next CURRENT instruction.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.3 Projection Theorem II 225

At step zero, (y = 0) the computation ponders the
FIRST instruction of M after the “I/O Agent” initialised
the input variables and has set all non-input variables to
zero.

At step 0 we have NO PREVIOUS INSTRUCTION.

The entries on the zeroth row are self-evident.

Table 7.1: M Simulation Table

y IP X1 X2 . . . Xm Xm+1 Xm+2 . . . Xn

0 1 a1 a2 . . . am 0 0 . . . 0
...

...
...

... . . .
...

...
... . . .

...
i L b1 b2 . . . bm bm+1 bm+2 . . . bn

i+ 1 L′ b′1 b′2 . . . b′m b′m+1 b′m+2 . . . b′n
...

...
...

... . . .
...

...
... . . .

...

The process for filling the table is algorithmic as fol-
lows:

Going from row i to row i+1 (Cf. 2.2.2) we have cases
according to where L points.

1. L points to Xk ← r. Then b′k = r while b′j = bj for
j 6= k. Also L′ = L+ 1.

2. L points to Xk ← Xk + 1. Then b′k = bk + 1 while
b′j = bj for j 6= k. Moreover L′ = L+ 1.

3. L points to Xk ← Xk
.− 1. Then b′k = bk

.− 1 while
b′j = bj for j 6= k. Moreover L′ = L+ 1.

4. L points to stop. Then b′j = bj for all j 6= n. More-
over L′ = L.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

226 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

5. L points to if Xk = 0 goto R else goto Q. Then
b′j = bj for all j 6= n. Moreover L′ = if bk =
0 then R else Q.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.3 Projection Theorem II 227

Note that at “time” y each Xj and the IP function
hold a value that depends on the initial ~am —and on the
“time”y.

I Thus we associate with each Xj and with the IP a
TOTAL function —λy~am.Xj(y,~am) and λy~am.IP (y,~am).

Since I can produce each such function-value, for the
Xj and IP —for example, by hand— in the mechanical
way indicated,

by CT, each such function Xj and IP is RECURSIVE.

The above is important and we record it as a theorem.

7.3.1 Theorem. The functions λy~am.Xj(~am, y) —for j =
1, 2, . . . n— and λy~am.IP (y,~am) return, for any input ~am
(into ~Xm) and step-count y, the value stored in the vari-
able Xj and the instruction pointer IP that points at
the current instruction, all this at step y.

All these functions are in R.

� Important!

7.3.2 Theorem. With reference to the URM M that we

“traced” above, we have that g = M
~Xm

X1
halts for input

~am iff there is some time-step value y where M makes
its stop instruction current.

That is

g(~am) ↓≡ (∃y)IP (y,~am) = k , where k is the label of stop

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

228 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.3 Projection Theorem II 229

7.3.3 Theorem. (Projection Theorem Part II) IF Q(~xm)
is semi-recursive, THEN there is a recursive P (y, ~xm)
such that

Q(~xm) ≡ (∃y)P (y, ~xm)

Proof. By Definition 7.1.1,

Q(~am) ≡ g(~am) ↓

where g ∈ P .

Let then g = M
~Xm

X1
.

By 7.3.2,

g(~am) ↓≡ (∃y)IP (y,~am) = k, where k labels stop in M

But IP (y,~am) = k is recursive so we may take it as
the “P (y, ~xm)” we want. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

230 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

A user-friendly
Introduction to
(un)Computability
and Unprovability
via “Church’s Thesis”
Part III

7.4 Recursively Enumerable Sets

In this section we explore the rationale behind the al-
ternative name “recursively enumerable” —r.e.— or “com-
putably enumerable” —c.e.— that is used in the literature
for the semi-recursive or semi-computable sets/predicates.

To avoid cumbersome codings (of n-tuples, by single
numbers) we restrict attention to the one variable case
in this section.

231

232 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

That is, our predicates are subsets of N.

First we define:

7.4.1 Definition. A set A ⊆ N is called computably
enumerable (c.e.) or recursively enumerable (r.e.) pre-
cisely if one of the following cases holds:

• A = ∅

• A = ran(f), where f ∈ R.

�

� Thus, the c.e. or r.e. relations are exactly those we can
algorithmically enumerate as the set of outputs
of a (total) recursive function:

A = {f(0), f(1), f(2), . . . , f(x), . . .}
Hence the use of the term “c.e.” replaces the non techni-
cal term “algorithmically” (in “algorithmically” enumer-
able) by the technical term “computably”.

Note that we had to hedge and ask that A 6= ∅ for any
enumeration to take place, because no recursive func-
tion (remember: these are total) can have an empty
range.

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.4 Recursively Enumerable Sets 233

Next we prove:

7.4.2 Theorem. (“c.e.” or “r.e.” vs. semi-recursive)
Any non empty semi-recursive relation A (A ⊆ N) is the
range of some (emphasis: total) recursive function of
one variable.

Conversely, every set A such that A = ran(f) —where
λx.f(x) is recursive— is semi-recursive (and, trivially,
nonempty).

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

234 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

Before we prove the theorem, here is an example:

7.4.3 Example. The set {0} is c.e. Indeed, f = λx.0,
our familiar function Z, effects the enumeration with rep-
etitions (lots of them!)

x = 0 1 2 3 4 . . .
f(x)= 0 0 0 0 0 . . .

�

Proof. of Theorem 7.4.2.

(I) We prove the first sentence of the theorem.
So, let A 6= ∅ be semi-recursive.

By the projection theorem (see 7.2.15 and 7.3.3)
there is a recursive relation Q(y, x) such that

x ∈ A ≡ (∃y)Q(y, x), for all x (1)

Thus, the totality of the x in A are the 2nd coor-
dinates of ALL pairs (y, x) that satisfy Q(y, x).

So, to enumerate all x ∈ A just enumerate all pairs
(y, x), and OUTPUT x just in case (y, x) ∈ Q.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.4 Recursively Enumerable Sets 235

We enumerate all POSSIBLE PAIRS y, x by enu-
merating z = 〈y, x〉 = 2y+13x+1, that is,

(y = (z)0, x = (z)1)

for each z = 0, 1, 2, 3,

Recall that A 6= ∅. So fix an a ∈ A. f below does
the enumeration!

f(z) =

{
(z)1 if Q((z)0, (z)1)

a othw

The above is a definition by recursive cases hence
f is a recursive function, and the values x = (z)1
that it outputs for each z = 0, 1, 2, 3, . . . enumerate
A.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

236 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

(II) Proof of the second sentence of the theorem.

So, let A = ran(f) —where f is recursive.

Thus,
x ∈ A ≡ (∃y)f(y) = x (1)

By Grz-Ops, plus the facts that z = x is in R∗ and
the assumption f ∈ R,

the relation f(y) = x is recursive.

By (1) we are done by the Projection Theorem.

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.4 Recursively Enumerable Sets 237

7.4.4 Corollary. An A ⊆ N is semi-recursive iff it is
r.e. (c.e.)

Proof. For nonempty A this is Theorem 7.4.2. For empty
A we note that this is r.e. by Definition 7.4.1 but is also
semi-recursive by ∅ ∈ PR∗ ⊆ R∗ ⊆ P∗. �

� Corollary 7.4.4 allows us to prove some non-semi-recursiveness
results by good old-fashioned Cantor diagonalisation.

See below. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

238 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

Nov. 8, 2021

7.4.5 Theorem. The complete index set A = {x : φx ∈
R} is not semi-recursive.

� This sharpens the earlier undecidability result for A where
we “only” proved A /∈ R∗. �

Proof. Since c.e. = semi-recursive, we will prove instead
that A is not c.e.

If not, note first that A 6= ∅ —e.g., S ∈ R and thus
all φ-indices of S are in A.

Thus, theorem 7.4.2 applies and there is an f ∈ R
that enumerates A:

A = {f(0), f(1), f(2), f(3), . . .}

The above says:

ALL programs for unary R-functions are f(i)’s.

Define now

d = λx.1 + φf(x)(x) (1)

Seeing that φf(x)(x) = U (P)(f(x), x) —you remember
U (P)?— we obtain d ∈ P .

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.4 Recursively Enumerable Sets 239

But φf(x) is total since all the f(x) are φ-indices of
total functions by the underlined blue comment above.

By the same comment,

d = φf(i), for some i (2)

Let us compute d(i): d(i) = 1 + φf(i)(i) by (1).

Also, d(i) = φf(i)(i) by (2),

thus
1 + φf(i)(i) = φf(i)(i)

which is a contradiction since both sides of “=” are
defined. �

� One can take as d different functions, for example, either
of d = λx.42 + φf(x)(x) or d = λx.1 .− φf(x)(x) works.
And infinitely many other choices do! �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

240 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

7.5 Some closure properties of decidable and semi-
decidable relations

We already know that

7.5.1 Theorem. R∗ is closed under all Boolean opera-
tions, ¬,∧,∨,→,≡, as well as under (∃y)<z and (∀y)<z.

How about closure properties of P∗?

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.5 Some closure properties of decidable and semi-decidable relations 241

7.5.2 Theorem. P∗ is closed under ∧ and ∨. It is also
closed under (∃y), or, as we say, “under projection”.

Moreover it is closed under (∃y)<z and (∀y)<z.
It is not closed under negation (complement), nor un-

der (∀y).

Proof. (1. and 2. and 6. we have proved already in 7.1.7).

1. Let Q(~xn) be verified by a URM M , and S(~ym) be
verified by a URM N .

Here is how to semi-decide Q(~xn) ∨ S(~ym):

Given input ~xn, ~ym, we call machine M with input
~xn, and machine N with input ~ym and let them crank
simultaneously (as “co-routines”).

If either one halts, then halt everything! This is
the case of “yes” (input verified).

2. For ∧ it is almost the same, but our halting criterion
is different:

Here is how to semi-decide Q(~xn) ∧ S(~ym):

Given input ~xn, ~ym, we call machine M with input
~xn, and machine N with input ~ym and let them crank
simultaneously (“co-routines”).

If both halt, then halt everything!

By CT, each of the processes in 1. and 2. can be
implemented by some URM.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

242 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

3. The (∃y) is very interesting as it relies on the
Projection Theorem:

LetQ(y, ~xn) be semi-decidable. Then, by Projection
Theorem, a decidable P (z, y, ~xn) exists such that

Q(y, ~xn) ≡ (∃z)P (z, y, ~xn) (1)

It follows that

(∃y)Q(y, ~xn) ≡ (∃y)(∃z)P (z, y, ~xn) (2)

This does not settle the story, as I cannot readily
conclude that (∃y)(∃z)P (z, y, ~xn) is semi-decidable
Ibecause the Projection Theorem requires a single
(∃y) in front of a decidable predicate!

Well, instead of saying that there are two values
z and y that verify (along with ~xn) the predicate
P (z, y, ~xn), I can say there is a PAIR of values (z, y).

In fact I can CODE the pair as w = 〈z, y〉 and say
there is ONE value, w:

(∃w)P (

z︷︸︸︷
(w)0,

y︷︸︸︷
(w)1, ~xn)

and thus I have —by (2) and the above—

(∃y)Q(y, ~xn) ≡ (∃w)P ((w)0, (w)1, ~xn) (3)

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.5 Some closure properties of decidable and semi-decidable relations 243

But since P ((w)0, (w)1, ~xn) is recursive by the de-
cidability of P and Grz-Ops, we end up in (3) quan-
tifying the decidable P ((w)0, (w)1, ~xn) with just one
(∃w). The Projection Theorem now applies!

4. For (∃y)<zQ(y, ~x), where Q(y, ~x) is semi-recursive,
we first note that

(∃y)<zQ(y, ~x) ≡ (∃y)
(
y < z ∧Q(y, ~x)

)
(∗)

By PR∗ ⊆ R∗ ⊆ P∗, y < z is semi-recursive. By
closure properties established SO FAR in this proof,
the rhs of ≡ in (∗) is semi-recursive, thus so is the
lhs.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

244 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

5. For (∀y)<zQ(y, ~x), where Q(y, ~x) is semi-recursive,
we first note that (by Strong Projection) a decid-
able P exists such that

Q(y, ~x) ≡ (∃w)P (w, y, ~x)

By the above equivalence, we need to prove that

(∀y)<z(∃w)P (w, y, ~x) is semi-recursive (∗∗)

(∗∗) says that

for each y = 0, 1, 2, . . . , z−1 there is a w-value wy —
in general dependent on y— so that P (wy, y, ~x) holds

Since all those wy are finitely many (z many!) there
is a value u bigger than all of them (for example,
take u = max(w0, . . . , wz−1) + 1). Thus (∗∗) says
(i.e., is equivalent to)

(∃u)(∀y)<z(∃w)<uP (w, y, ~x)

The blue part of the above is decidable (by closure
properties of R∗, since P ∈ R∗ —you may peek at
7.5.1). We are done by strong projection.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.5 Some closure properties of decidable and semi-decidable relations 245

6. Why is P∗ not closed under negation (complement)?

Because we know that K ∈ P∗, but also know that
K /∈ P∗.

x ∈ K ≡ ¬(x ∈ K)

7. Why is P∗ not closed under (∀y)?

Well,
x ∈ K ≡ (∃y)Q(y, x) (1)

for some recursive Q (Projection Theorem) and by
the known fact (quoted again above) that K ∈ P∗.

(1) is equivalent to

x ∈ K ≡ ¬(∃y)Q(y, x)

which in turn is equivalent to

x ∈ K ≡ (∀y)¬Q(y, x) (2)

Now, by closure properties ofR∗ See 7.5.1), ¬Q(y, x)
is recursive, hence also is in P∗ since R∗ ⊆ P∗.

Therefore, if P∗ were closed under (∀y), then the above
(∀y)¬Q(y, x) would be semi-recursive.

But that is x ∈ K ! �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

246 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

7.6 Some tricky reductions

This section highlights a more sophisticated reduction
scheme that improves our ability to effect reductions of
the type K ≤ A.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.6 Some tricky reductions 247

7.6.1 Example. Prove that A = {x : φx is a constant}
is not semi-recursive. This is not amenable to the tech-
nique of saying “OK, if A is semi-recursive, then it is r.e.
Let me show that it is not so by diagonalisation”. This
worked for B = {x : φx is total} but no obvious diago-
nalisation comes to mind for A.

Nor can we simplistically say, OK, start by defining

g(x, y) =

{
0 if x ∈ K (same as φx(x) ↑)
↑ othw

The problem is that if we plan next to say “by CT g is partial
recursive hence by S-m-n, etc.”, we shouldn’t!

The underlined part is wrong: g /∈ P , provably! (Why,
INTUITIVELY, it should not be computable is obvious;
right?)

I For if it is computable, then so is λx.g(x, x) by Grz-
Ops.

But

g(x, x) ↓ iff we have the top case, iff x ∈ K

In short,
x ∈ K ≡ g(x, x) ↓

which proves thatK ∈ P∗ using the verifier for “g(x, x) ↓”.
Contradiction. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

248 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

7.6.2 Example. (7.6.1 continued) Now, “Plan B” is
to “approximate” the top condition φx(x) ↑ (same as
x ∈ K).

The idea is that, “practically”, if the computation
φx(x) after a “huge” number of steps y has still not
hit stop, this situation approximates —let me say once
more, “practically”— the situation φx(x) ↑. This fuzzy
thinking suggests that we try next

f(x, y) =

{
0 if φx(x) did not return in ≤ y steps

↑ othw

If the top condition is true for a given x it means
that at step y the URM that we picked to compute φx(x)
has not hit stop yet.

The “othw” says, of course, that the computation of
the call φx(x) —or U (P)(x, x)— did return in ≤ y steps.

Next task is to invoke an S-m-n theorem application,
so we must show that f defined above is computable.
Well here is an informal algorithm:

(0) proc f(x, y)
(1) Call φx(x) ; keep count of computation steps
(2) Return 0 if φx(x) did not return in ≤ y steps
(3) “Loop” if φx(x) returned in ≤ y steps

Of course, the “command” Loop means

“transfer to the subprogram” k : goto k.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.6 Some tricky reductions 249

By CT, the pseudo algorithm (0)–(3) is implementable
as a URM. That is, f ∈ P.

By S-m-n applied to f there is a recursive k such that

f(x, y) = φk(x)(y) =

0 if φx(x) did not return

in ≤ y steps

↑ othw

(1)

Analysis of (1) in terms of the “key” conditions
φx(x) ↑ and φx(x) ↓:

(A) Case where φx(x) ↑.
Then, φx(x) did not halt in y steps, for any y.

Thus, by (1), we have φk(x)(y) = 0, for all y, that
is,

φx(x) ↑ =⇒ φk(x) = λy.0 (2)

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

250 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

(B) Case where φx(x) ↓. Let m = smallest y such that
the call φx(x) ended in m steps. Therefore,

• for step counts y = 0, 1, 2, . . . ,m−1 the compu-
tation of φx(x) has not yet hit stop, so the top
case of definition (1) holds. We get

for y =0, 1, . . . , m− 1
φk(x)(y)=0, 0, . . . , 0

• for step counts y = m,m + 1,m + 2, . . . the
computation of U (P)(x, x) has already halted (it
hit stop), so the bottom case of definition (1)
holds. We get

for y =m, m+ 1, m+ 2, . . .

φk(x)(y)=↑, ↑, ↑, . . .

In short:

φx(x) ↓ =⇒ φk(x) =

length m︷ ︸︸ ︷
(0, 0, . . . , 0) (3)

In

φk(x) =

length m︷ ︸︸ ︷
(0, 0, . . . , 0)

we depict the function φk(x) as an array of its
m output values.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.6 Some tricky reductions 251

� Thus, in Plain English, when φx(x) ↓, the function
φk(x) is NOT a constant! Not even total! �

Our analysis yielded:

φk(x) =

{
λy.0 if φx(x) ↑
not a constant function if φx(x) ↓

(4)

We conclude now as follows for A = {x : φx is a constant}:

k(x) ∈ A iff φk(x) is a constant iff the top case of (4) applies

iff φx(x) ↑

That is, x ∈ K ≡ k(x) ∈ A, hence K ≤ A. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

252 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

7.6.3 Example. Prove (again) that B = {x : φx ∈
R} = {x : φx is total} is not semi-recursive.

We piggy back on the previous example and the same
f through which we found a k ∈ R such that

φk(x) =

λy.0 if φx(x) ↑

length m︷ ︸︸ ︷
(0, 0, . . . , 0) if φx(x) ↓

(5)

The above is (4) of the previous example, but we will use
different English words to describe the kind of functions
we get in each of the two cases, which we displayed ex-
plicitly in (5).

Note that

length m︷ ︸︸ ︷
(0, 0, . . . , 0) is a non-recursive (nontotal)

function listed as a finite array of outputs. On the other
hand, the function in the top case is recursive. Thus we
have

φk(x) =

{
λy.0 if φx(x) ↑
nonrecursive function if φx(x) ↓

(6)

and therefore

k(x) ∈ B iff φk(x) ∈ R iff the top case of (6) applies iff φx(x) ↑

That is, x ∈ K ≡ k(x) ∈ B, hence K ≤ B. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

7.6 Some tricky reductions 253

7.6.4 Example. We will prove that D = {x : ran(φx) is
infinite} is not semi-recursive.

We (heavily) piggy back on Example 7.6.2 above.

We want to find j ∈ R such that

φj(x) =

{
inf. range if φx(x) ↑
finite range if φx(x) ↓

(∗)

OK, define ψ (almost) like f of Example 7.6.2 by

ψ(x, y) =

{
y if the call φx(x) did not return in ≤ y steps

↑ othw

Other than the trivial difference (function name) the
important difference is that we force infinite range in the
top case by outputting the input y.

The argument that ψ ∈ P goes as the one for f in Ex-
ample 7.6.2. The only difference is that in the algorithm
(0)–(3) we change “Return 0” to “Return y”.

The question ψ ∈ P having been settled, by S-m-n
there is a j ∈ R such that

φj(x)(y) =

y if the call φx(x) did not return

in ≤ y steps

↑ othw

(†)

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

254 (un)Computability via “Church’s Thesis” and the S-m-n theorem; Part II

Analysis of (†) in terms of the “key” conditions
φx(x) ↑ and φx(x) ↓:

(I) Case where φx(x) ↑.
Then, for all input values y, φx(x) is still not at
stop after y steps. Thus by (†), we have φj(x)(y) =
y, for all y, that is,

φx(x) ↑ =⇒ φj(x) = λy.y (1)

(II) Case where φx(x) ↓. Let m = smallest y such
that the call φx(x) returned in m steps.

As before we find that for y = 0, 1, . . . ,m− 1 we
have φj(x)(y) = y, that is,

for y =0, 1, . . . , m− 1
φj(x)(y)=0, 1, . . . , m− 1

and as before,

for y =m, m+ 1, m+ 2, . . .

φj(x)(y)=↑, ↑, ↑, . . .

that is,

φx(x) ↓ =⇒ φj(x) = (0, 1, . . . ,m−1) —finite range
(2)

(1) and (2) say that we got (∗) —p.253— above.
Thus

j(x) ∈ D iff ran(φj(x)) infinite iff top case holds, iff φx(x) ↑

Thus K ≤ D via j. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

Chapter 8

The Ackermann Function

Nov. 10, 2021

Overview

The “Ackermann function” was proposed, of course, by
Ackermann. The version here is a simplification by Robert
Ritchie.

It provides us with an example of a recursive function
that is not in PR. Unlike the example in Chapter 5,
which provided an alternative such function by diago-
nalisation, the proof that the Ackermann function is not
primitive recursive is by a majorisation argument. Sim-
ply, it is too big to be primitive recursive!

But this function is more than just intuitively com-
putable! It is computable —no hedging— as we will
show by proving it to be a member of R (in the next
chapter) —mathematically, without help from CT.

255

256 The Ackermann Function

8.1 A very fast growing function: Definition and
properties

8.1.1 Definition. The Ackermann function, λnx.An(x),
is given, for all n ≥ 0, x ≥ 0 by the equations

A0(x) = x+ 2

An+1(x) = Ax
n(2)

where hx is function iteration. �

For any λy.h(y), the function λxy.hx(y) —the “itera-
tion of h”— is given by the primitive recursion

h0(y) = y

hx+1(y) = h
(
hx(y)

)
It is obvious then that if h ∈ PR then so is λxy.hx(y).

8.1.2 Remark. An alternative way to define the Acker-
mann function, extracted directly from Definition 8.1.1,
is as follows:

A0(x) = x+ 2

An+1(0) = 2

An+1(x+ 1) = An(An+1(x)) �

8.1.3 Lemma. For each n ≥ 0, λx.An(x) ∈ PR.

Proof. Induction on n: For the basis, clearly A0 = λx.x+
2 ∈ PR. Assume now the case for (arbitrary, fixed) n
—i.e., An ∈ PR— and go to that for n + 1. Immediate
from Definition 8.1.2, last two equations. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

8.1 A very fast growing function: Definition and properties 257

It turns out that the function blows up in size far too
fast with respect to the argument n. We now quantify
this remark.

The following unassuming lemma is the key to proving
the growth properties of the Ackermann function. It is
also the least straightforward to prove, as it requires a
double induction —at once on n and x— as dictated by
the fact that the “recursion” of Definition 8.1.2 does not
leave any argument fixed.

� The above shows in particular that, for all n and all x,
An(x) ↓. That is, λnx.An(x) is total. �

8.1.4 Lemma. For each n ≥ 0 and x ≥ 0, An(x) >
x+ 1.

Proof. We start an induction on n:

n-Basis. n = 0: A0(x) = x+ 2 > x+ 1; true.

n-I.H.† For all x and a fixed (but unspecified) n, as-
sume An(x) > x+ 1.

n-I.S.‡ For all x and the above fixed (but unspecified)
n, we must prove An+1(x) > x+ 1.

We do the n-I.S. by induction on x:

x-Basis. x = 0: An+1(0) = 2 > 1; true.

x-I.H. For the above fixed n, we now fix an x
(but leave it unspecified) for which we assume An+1(x) >
x+ 1.

x-I.S. For the above fixed (but unspecified) n and

†To be precise, what we are proving is “(∀n)(∀x)An(x) > x+ 1”. Thus, as we start on an
induction on n, its I.H. is “(∀x)An(x) > x+ 1” for a fixed unspecified n.

‡To be precise, the step is to prove —from the basis and I.H.— “(∀x)An+1(x) > x + 1”
for the n that we fixed in the I.H. It turns out that this is best handled by induction on x.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

258 The Ackermann Function

x, prove An+1(x+ 1) > x+ 2:

An+1(x+ 1) = An(An+1(x)) by Def. 8.1.2

> An+1(x) + 1 by n-I.H.

> x+ 2 by x-I.H. �

8.1.5 Lemma. λx.An(x)↗.

� “λx.f(x)↗” means that the (total) function f is strictly
increasing, that is, x < y implies f(x) < f(y), for any x
and y. Clearly, to establish the property one just needs
to check for the arbitrary x that f(x) < f(x+ 1). �

Proof. We handle two cases separately.

A0: λx.x+ 2↗; immediate.

An+1: An+1(x+1) = An(An+1(x)) > An+1(x)+1 —the
“>” by Lemma 8.1.4. �

8.1.6 Lemma. λn.An(x+ 1)↗.

Proof. An+1(x + 1) = An(An+1(x)) > An(x + 1) —the
“>” by Lemmata 8.1.4 (left argument > right argument)
and 8.1.5. �

� The “x+1” in Lemma 8.1.6 is important since An(0) = 2
for all n. Thus λn.An(0) is increasing but not strictly
(constant). �

8.1.7 Lemma. λy.Ay
n(x)↗.

Proof. Ay+1
n (x) = An(A

y
n(x)) > Ay

n(x) —the “>” by
Lemma 8.1.4. �

8.1.8 Lemma. λx.Ay
n(x)↗.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

8.1 A very fast growing function: Definition and properties 259

Proof. Induction on y: For y = 0 we want that λx.A0
n(x)↗,

that is, λx.x↗, which is true. We next take as I.H. that

Ay
n(x+ 1) > Ay

n(x) (1)

We want

Ay+1
n (x+ 1) > Ay+1

n (x) (2)

But (2) follows from (1) and Lemma 8.1.5, by applying
An to both sides of “>”. �

8.1.9 Lemma. For all n, x, y, Ay
n+1(x) ≥ Ay

n(x).

Proof. Induction on y: For y = 0 we want thatA0
n+1(x) ≥

A0
n(x), that is, x ≥ x, which is true. We now take as I.H.

that

Ay
n+1(x) ≥ Ay

n(x)

We want

Ay+1
n+1(x) ≥ Ay+1

n (x)

This is true because

Ay+1
n+1(x) = An+1

(
Ay
n+1(x)

)
by Lemma 8.1.6

≥An

(
Ay
n+1(x)

)
Lemma 8.1.5 and I.H.

≥Ay+1
n (x) �

8.1.10 Definition. Given a predicate P (~x), we say that
P (~x) is true almost everywhere —in symbols “P (~x) a.e.”—
iff the set of (vector) inputs that make the predicate false
is finite. That is, the set {~x : ¬P (~x)} is finite.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

260 The Ackermann Function

A statement such as “λxy.Q(x, y, z, w) a.e.” can also
be stated, less formally, as “Q(x, y, z, w) a.e. with respect
to x and y”. �

8.1.11 Lemma. An+1(x) > x+ l a.e. with respect to x.

� Thus, in particular, A1(x) > x+ 10350000 a.e. �

Proof. In view of Lemma 8.1.6 and the note following it,
it suffices to prove

A1(x) > x+ l a.e. with respect to x

Well, since

A1(x) = Ax
0(2) =

x 2’s︷ ︸︸ ︷
(· · · (((y + 2) + 2) + 2) + · · ·+ 2) ‖evaluated at y = 2 = 2 + 2x

we ask: Is 2 + 2x > x+ l a.e. with respect to x? It is
so for all x > l − 2 (only x = 0, 1, . . . , l − 2 fail). �

8.1.12 Lemma. An+1(x) > Al
n(x) a.e. with respect to

x.

Proof. If one (or both) of l and n is 0, then the result is
trivial. For example,

Al
0(x) =

l 2’s︷ ︸︸ ︷
(· · · (((x+ 2) + 2) + 2) + · · ·+ 2) = x+ 2l

We are done by Lemma 8.1.11.

Let us then assume that l ≥ 1 and n ≥ 1. We note
that (straightforwardly, via Definition 8.1.1)

Al
n(x) = An(A

l−1
n (x))

= A
Al−1
n (x)

n−1 (2) = A
A
Al−2
n (x)

n−1 (2)
n−1 (2) = A

A
A
Al−3
n (x)

n−1 (2)
n−1 (2)

n−1 (2)

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

8.1 A very fast growing function: Definition and properties 261

The straightforward observation that we have a “ladder”
of k An−1’s precisely when the topmost exponent is l− k
can be ratified by induction on k (left to the reader).
Thus we state

Al
n(x) =

k An−1

{
A·
··
A
Al−k
n (x)

n−1 (2)
. . .

n−1 (2)

In particular, taking k = l,

Al
n(x) =

l An−1

{
A·
··
A
Al−l
n (x)

n−1 (2)
. . .

n−1 (2)

=
l An−1

{
A·
··
Ax
n−1(2)

. . .
n−1 (2)

(*)

Let us now take x > l.

Thus, by (∗),

An+1(x) = Ax
n(2) =

x An−1

{
A·
··
A2
n−1(2)

. . .
n−1 (2) (∗∗)

By comparing (∗) and (∗∗) we see that the first “ladder”
is topped (after l An−1 “steps”) by x and the second is
topped by

x−l An−1

{
A·
··
A2
n−1(2)

. . .
n−1 (2)

after l steps.
Thus —in view of the fact that Ay

n(x) increases with
respect to each of the arguments n, x, y— we conclude
by asking . . .

“Is
x−l An−1

{
A·
··
A2
n−1(2)

. . .
n−1 (2) > x a.e. with respect to x?”

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

262 The Ackermann Function

. . . and answering, “Yes”, because by (∗∗) this is the same
question as “is An+1(x− l) > x a.e. with respect to x?”,
which we answered affirmatively in 8.1.11. �

8.1.13 Lemma. For all n, x, y, An+1(x+ y) > Ax
n(y).

Proof.

An+1(x+ y) = Ax+y
n (2)

= Ax
n

(
Ay
n(2)

)
= Ax

n

(
An+1(y)

)
> Ax

n(y) by Lemmata 8.1.4 and 8.1.8 �

8.2 Majorisation of PR functions

Nov. 15, 2021
We say that a function f majorizes another function,

g, iff g(~x) ≤ f(~x) for all ~x. The following theorem states
precisely in what sense “the Ackermann function ma-
jorizes all the functions of PR”.

8.2.1 Theorem. For every function λ~x.f(~x) ∈ PR there
are numbers n and k, such that for all ~x we have f(~x) ≤
Ak
n(max(~x)).

Proof. The proof is by induction with respect to PR.
Throughout I use the abbreviation |~x| for max(~x) as this
is notationally friendlier.

For the basis, f is one of:

• Basis.

Basis 1. λx.0. Then A0(x) works (n = 0, k = 1).

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

8.2 Majorisation of PR functions 263

Basis 2. λx.x+ 1. Again A0(x) works (n = 0, k = 1).

Basis 3. λ~x.xi. Once more A0(x) works (n = 0, k = 1):
xi ≤ |~x| < A0(|~x|).

• Propagation with composition. Assume as I.H. that

f(~xm) ≤ Ak
n(|~xm|) (1)

and

for i = 1, . . . ,m, gi(~y) ≤ Aki
ni

(|~y|) (2)

Then

f(g1(~y), . . . , gm(~y)) ≤ Ak
n(|g1(~y), . . . , gm(~y)|), by (1)

≤ Ak
n(|Ak1

n1
(|~y|), . . . , Akm

nm
(|~y|)|), by 8.1.8 and (2)

≤ Ak
n

(
Amax ki

maxni
(|~y|)

)
, by 8.1.8 and 8.1.9

≤ Ak+max ki
max(n,ni)

(|~y|), by 8.1.9

• Propagation with primitive recursion. Assume as I.H.
that

h(~y) ≤ Ak
n(|~y|) (3)

and

g(x, ~y, z) ≤ Ar
m(|x, ~y, z|) (4)

Let f be such that

f(0, ~y) = h(~y)

f(x+ 1, ~y) = g(x, ~y, f(x, ~y))

I claim that

f(x, ~y) ≤ Arx
m

(
Ak
n(|x, ~y|)

)
(5)

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

264 The Ackermann Function

I prove (5) by induction on x:

For x = 0, I want f(0, ~y) = h(~y) ≤ Ak
n(|0, ~y|). This is

true by (3) since |0, ~y| = |~y|.
As an I.H. assume (5) for fixed x.

The case for x+ 1:

f(x+ 1, ~y) = g(x, ~y, f(x, ~y))

≤ Ar
m(|x, ~y, f(x, ~y)|), by (4)

≤ Ar
m

(∣∣∣x, ~y, Arx
m

(
Ak
n(|x, ~y|)

)∣∣∣)
by the I.H. (5), and 8.1.8

= Ar
m

(
Arx
m

(
Ak
n(|x, ~y|)

))
by 8.1.8 and Arx

m

(
Ak
n(|x, ~y|)

)
≥ |x, ~y|

= Ar(x+1)
m

(
Ak
n(|x, ~y|)

)
≤ Ar(x+1)

m

(
Ak
n(|x+ 1, ~y|)

)
by 8.1.8

With (5) proved, let me set l = max(m,n). By Lemma 8.1.9
I now get

f(x, ~y) ≤ Arx+k
l (|x, ~y|) <

Lemma 8.1.13
Al+1(|x, ~y|+ rx+ k)

(6)
Now, |x, ~y| + rx + k ≤ (r + 1)|x, ~y| + k thus, (6) and
8.1.5 yield

f(x, ~y) < Al+1((r + 1)|x, ~y|+ k) (7)

To simplify (7) note that there is a number q such that

(r + 1)x+ k ≤ Aq
1(x) (8)

for all x. Indeed, this is so since (easy induction on y)
Ay

1(x) = 2yx+ 2y + 2y−1 + · · ·+ 2. Thus, to satisfy (8),

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

8.2 Majorisation of PR functions 265

just take y = q large enough to satisfy r + 1 ≤ 2q and
k ≤ 2q + 2q−1 + · · ·+ 2.

By (8), the inequality (7) yields, via 8.1.5,

f(x, ~y) < Al+1(A
q
1(|x, ~y|)) ≤ A1+q

l+1 (|x, ~y|)

(by Lemma 8.1.9) which is all we want. �

8.2.2� Remark. Reading the proof carefully we note that
the subscript argument of the majorant† is precisely the
maximum depth of nesting of primitive recursion that
occurs in a derivation of f .

Pause. In which derivation? There are infinitely
many.J

Indeed, the initial functions have a majorant with sub-
script 0; composition has a majorant with subscript no
more than the maximum subscript of the component
parts —no increase; primitive recursion has a majorant
with a subscript that is bigger than the maximum sub-
script of the h- and g-majorants by precisely 1. � �

8.2.3 Corollary. λnx.An(x) /∈ PR.

Proof. By contradiction: If λnx.An(x) ∈ PR then also
λx.Ax(x) ∈ PR (identification of variables —the so-
called diagonalisation of An(x)). By the theorem above,
for some n, k, Ax(x) ≤ Ak

n(x), for all x, hence, by 8.1.12

Ax(x) < An+1(x), a.e. with respect to x (1)

On the other hand, An+1(x) < Ax(x) a.e. with respect
to x —indeed for all x > n+ 1 by 8.1.6— which contra-
dicts (1). �

†The function that does the majorising.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

266 The Ackermann Function

� See the next mini-chapter for a mathematical proof that
λnx.An(x) ∈ R. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

Chapter 9

The Recursion Theorem
and Applications

Here we present the (2nd) recursion theorem of Kleene —
originally discovered by Gödel in a slightly different form
towards his Incompleteness theorem ([Göd31])— and a
few applications.

An easy extension (Exercise!!!) of the techniques lead-
ing to the effective enumerations (in Section 6.3) of unary

φ0, φ1, φ2, . . .

and binary partial computable functions

φ
(2)
0 , φ

(2)
1 , φ

(2)
2 , . . .

leads to the effective enumeration of the n-ary partial
computable functions, for any n:

φ
(n)
0 , φ

(n)
1 , φ

(n)
2 , . . .

Correspondingly one proves the following version of the
Smn theorem using the analogous proof as in 6.3.3 (EX-
ERCISE!!!)

267

268 The Recursion Theorem and Applications

9.0.1 Theorem. There is a 2-argument function Sn1 in
R such that

φ
(n+1)
i (z, ~xn) = φ

(n)
Sn
1 (i,z)

(~xn), for all i, z, ~xn (1)

9.0.2 Theorem. (Kleene’s 2nd recursion theorem)

If λz~x.f(z, ~xn) ∈ P, then for some e ∈ N,

φ(n)e (~xn) = f(e, ~xn) for all ~xn

Proof. By Grzegorczyk substitution

λz~xn.f(Sn1 (z, z), ~xn) ∈ P

Thus, for some i, and all z, ~xn,

φ
(n+1)
i (z, ~xn) = f(Sn1 (z, z), ~xn)

In particular, all ~xn,

φ
(n)
Sn
1 (i,i)

(~xn)
9.0.1
= φ

(n+1)
i (i, ~xn) = f(S1

1(i, i), ~xn)

Take e = Sn1 (i, i). �

9.1 Two Applications of the Recursion Theorem

9.1.1 Theorem. (Rice) A complete index set A = {x :
φx ∈ C} is recursive iff it is trivial.

� Rice uses the term “trivial” here to mean “A = ∅ or
A = N”.

Thus, “algorithmically” we can only “decide” trivial
properties of “programs”. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

9.1 Two Applications of the Recursion Theorem 269

Proof. (The idea of this proof is attributed in [Rog67] to
G.C. Wolpin.)

if-part. Immediate, since c∅ = λx.1 and cN = λx.0.

only if-part. By contradiction, suppose that A = {x :
φx ∈ C} is nontrivial, yet A ∈ R∗. So, let a ∈ A and
b /∈ A. Define f by

f(x) =

{
b if x ∈ A
a if x /∈ A

The assumption that A is recursive makes f recursive
(def. by recursive cases).

Clearly,
x ∈ A iff f(x) /∈ A, for all x (1)

By the recursion theorem, there is an e such that φf(e) =
φe (apply 9.0.2 to λxy.φf(x)(y) = λxy.U (P)(f(x), y) ∈
P).

Thus, e ∈ A iff φe ∈ C iff φf(e) ∈ C iff f(e) ∈ A,
contradicting (1). �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

270 The Recursion Theorem and Applications

All complete index sets that we proved unsolvable,
Rice’s theorem establishes to be so at once.

For example A = {x : φx is a constant}:

∅
Z is a const

6= A
S is not!

6= N

New notation (Rogers)

Wx means dom(φx)

Note that

y ∈ Wx ≡ φx(y) ↓
Thus Wx sets are semi-recursive.

9.1.2 Example. By Rice’s theorem both 2 ∈ Wx and
Wx = ∅ are unsolvable.

For the first note that {x : 2 ∈ dom(φx)} is nontrivial:
Indeed, note that

f(x) =

{
0 if x 6= 2

↑ otw

is in P , thus B = {x : 2 ∈ dom(φx)} 6= N. On the other
hand, 2 ∈ dom(Z), so B 6= ∅.

As for C = {x : dom(φx) = ∅}, the empty function
(infinitely many) contributes programs to C, while no
program of Z is in C. Thus C is nontrivial. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

9.1 Two Applications of the Recursion Theorem 271

Nov. 17, 2021
The second application of the recursion theorem is

about self-referential (recursive) definitions of functions

F such as the one below —thinking of F
Def
= λnx.An(x).

9.1.3 Example. Here is an easy proof that the Acker-
mann function is recursive: λnx.An(x) ∈ R.

An(x) is given by

An(x) =

x+ 2 if n = 0

2 else if x = 0

An
.−1
(
An(x

.− 1)
)

otherwise

(1)

How can the recursion theorem help in the proof of re-
cursiveness?

OK. So we want An(x) = φ
(2)
e (n, x), for some e (to be

determined!) and all n, x.

If we succeed, then we will have φ
(2)
e satisfying (1),

namely, we will have (2) below:

φ(2)e (n, x) =

x+ 2 if n = 0

2 else if x = 0

φ
(2)
e

(
n .− 1, φ

(2)
e (n, x .− 1)

)
otherwise

(2)
Hmmm. This does not look any easier! How on earth do
you find such an e?

But wait!

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

272 The Recursion Theorem and Applications

Work with the following, and then use the recursion theorem
to force z = e for some e ∈ N:

F (z, n, x) =

x+ 2 if n = 0

2 else if x = 0

φ
(2)
z

(
n .− 1, φ

(2)
z (n, x .− 1)

)
otherwise

(3)
Now, by the universal function theorem (or directly by
CT),

λznx.φ(2)z (n, x)

is in P and

so is λznx.F (z, n, x) since (3) is definition by (prim.)
recursive cases.

By 9.0.2, there is an e such that F (e, n, x) = φ
(2)
e (n, x)

for all n, x. But then φ
(2)
e satisfies (2) and as φ

(2)
e =

λnx.An(x), we proved the recursiveness of the Acker-
mann function!

WAIT! 1 Why is the Ackermann function total?

WAIT! 2 Why is φ
(2)
e = λnx.An(x)??

Why can’t (1) have TWO (or more) solutions of (1)
—that is, can’t the recurrence relation defin-
ing Ackermann define TWO different func-
tions or even more? If so, then the computable
solution we found is NOT guaranteed to be
the same as the Ackermann function!

That (1) indeed does have a unique, in fact total, so-
lution is an easy (double) induction exercise that shows

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

9.1 Two Applications of the Recursion Theorem 273

F ′(n, x) = An(x) for all n, x if F ′ satisfies

F ′(n, x) =

x+ 2 if n = 0

2 else if x = 0

F ′
(
n .− 1, F ′(n, x .− 1)

)
otherwise

(1′)
EXERCISE!!! �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

274 The Recursion Theorem and Applications

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

Chapter 10

Complexity of PR
Functions

Overview

The literature refers to the complexity theory of the par-
tial recursive functions as “high level complexity” due
to the mostly theoretical and far removed from practice
essence of it. The present chapter is about more down to
earth functions. We will be looking into the complexity
of PR functions using a hierarchy approach.

In the first instance, we build our hierarchies according
to the definitional or static complexity of function deriva-
tions, or (loop) programs. As we develop the theme the
reader will note that the choice of measure of static com-
plexity or complexity of the definition is not always the
same (some times it is nesting level of primitive recur-
sion, other times it is size of function output that is de-
termined at definition time). In the end of all this we
will have various hierarchies —called sub-recursive hier-
archies in the literature— to compare, and a powerful
tool, the Ritchie-Cobham property (theorem) that al-

275

276 Complexity of PR Functions

lows all these static hierarchies to be viewed as complex-
ity classes named by time-bounding functions (of URM
or Loop-program computations).

So, how much down to earth are the PR functions?
Much more than the partial recursive and recursive func-
tions; however, absolutely speaking, functions of interest
to the practitioner are found only in the first couple of
levels of the various hierarchies. For example, level two
of the loop program hierarchy already contains the func-
tion we mentioned before,

2·
··

2x
}

10350000 2s

which has impossibly large output even for x = 0. To-
tally impractical! The following function, where the “lad-
der” height is a function of the input x (ladder of 2s
height is equal to the argument x)

2·
··

2x
}
x 2’s

cannot be computed if we only allow loop nesting depth
(or level) two (that is, one loop inside the other) in one
or more places in an (attempted) program; it requires
nesting level three and is even more astronomical than
the previous “ladder” function.

Impressive as this discussion may be, the dull truth
is that, in practice, we compute finite functions because
we only have finite (computing) resources such as CPU
time and/or memory space.

Still we do not compute by brute force table look-up.
Rather, we pretend that our programs will run for any

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.1 The URM-simulating functions again, and the Kleene predicate 277

input,† thus we write general algorithms (programs) with
that in mind. It is then clear that theories like the com-
plexity of primitive recursive functions can enrich our
programming practice.

For example we learn that if we program with loop pro-
grams that never nest loops more than two levels, then
all the functions λ~x.f(~x) that we can so compute have
outputs that are majorised (or bounded; see Section 8.2)
by

2·
··

2max(~x)}
c 2s

where c depends on f .

10.1 The URM-simulating functions again, and
the Kleene predicate

We return to the discussion of Subsection 7.3.1 to sharpen
Theorem 7.3.1. We will prove here

10.1.1 Theorem. The functions λy~am.Xj(y,~am) —for
j = 1, 2, . . . n— and λy~am.IP (y,~am) return, for any in-
put ~am (into ~Xm) and step-count y, the value stored
in the variable Xj and the instruction pointer IP that
points at the current instruction respectively, and all
this at step y.

All these functions are in PR.

Proof. The proof is by translating the simulation table
of p.225 into a simultaneous recursion for the functions
λy~am.Xj(y,~am) —j = 1, . . . , n— and λy~am.IP (y,~am).

†They will not, due to computing time and memory finiteness.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

278 Complexity of PR Functions

The initialisation of the recursion is trivial:

Xj(0,~am) = aj, for j = 1, . . . ,m,

Xj(0,~am) = 0, for j = m+ 1, . . . , n, and

IP (0,~am) = 1

Refer to the simulation table and the discussion follow-
ing it (on p.225) for the iteration steps below:

For k = 1, . . . , n,

Xk(y + 1,~am) = r if IP (y,~am) = L

and L : Xk ← r is in M

Xk(y + 1,~am) = Xk(y,~am) + 1 if IP (y,~am) = L

and L : Xk ← Xk + 1 is in M

Xk(y + 1,~am) = Xk(y,~am) .− 1 if IP (y,~am) = L

and L : Xk ← Xk
.− 1 is in M

Xk(y + 1,~am) = Xk(y,~am) otw

For IP the recurrence is

IP (y + 1,~am) = IP (y,~am) if IP (y,~am) = L and

L : stop is in M

IP (y + 1,~am) = L′ if IP (y,~am) = L and M includes

L : if Xk = 0 goto L′ else goto L′′

and Xk(y,~am) = 0

IP (y + 1,~am) = L′′ if IP (y,~am) = L and M contains

L : if Xk = 0 goto L′ else goto L′′

and Xk(y,~am) 6= 0

IP (y + 1,~am) = IP (y,~am) + 1 otw

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.1 The URM-simulating functions again, and the Kleene predicate 279

Note that “if IP (y,~am) = L and M contains” even though
it sounds “wordy” and “vague” it becomes precise once
a specific URM is given (here we are working with the
arbitrary URM M without precise knowledge of its exact
instructions).

Also note that the recursive calls happen within triv-
ially “easy” functions such as λz.z, λz.z + 1 or λz.z .− 1
or trivial predicates like λz.z = y and λz.z 6= y (y a
constant).

All are primitive recursive. The theorem follows. �

10.1.2 Example. This takes away the mystery, if any,
from the above word-loaded proof.

Let M be the program below

1 : X1 ← X1 + 1
2 : X2 ← X2

.− 1
3 : if X2 = 0 goto 4 else goto 1
4 : stop

Let us assume that X2 is the input variable and X1 is
the output variable. The simulating equations take the
concrete form below, where a denotes the input value:

X1(0, a) = 0

X2(0, a) = a

For y ≥ 0 we have

X1(y + 1, a) =

{
X1(y, a) + 1 if IP (y, a) = 1

X1(y, a) otherwise

X2(y + 1, a) =

{
X2(y, a) .− 1 if IP (y, a) = 2

X2(y, a) otherwise

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

280 Complexity of PR Functions

IP (y+1, a) =

4 if IP (y, a) = 3 ∧X2(y, a) = 0

1 if IP (y, a) = 3 ∧X2(y, a) 6= 0

4 if IP (y, a) = 4

IP (y, a) + 1 otherwise

�

10.1.3 Definition. (The Kleene Predicate)

The Kleene “T -predicate” is denoted by T (z, x, y) and
is —by definition— true iff the URM of one argument
(looks like MX

U) found at location z when given input x
(into X) has a halting computation of y steps (or less)
—that is, for said input, M reaches stop in ≤ y steps.

By a minor abuse of language we abbreviate the ex-
pression “the URM of one argument (looks like MX

U)
found at location z” by “the URM z”.

�

10.1.4 Proposition. T (z, x, y) ∈ PR∗.

Proof. Let MX
U be at location z. So, MX

U = φz and thus
φz(x) = U (P)(z, x), for all z, x.

Let NZX
W compute U (P), that is, NZX

W = U (P).

Thus, if the function IP is associated with NZX
W , then

we have

1. IP is primitive recursive, and so is its graph IP (y, z, x) =
w.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.1 The URM-simulating functions again, and the Kleene predicate 281

2. We note that

T (z, x, y) ≡ NZX
W stops in ≤ y steps

≡ IP (y, z, x) = q where q : stop is in N

We are done by 2. above. �

10.1.5 Theorem. (Kleene’s Normal Form Theorem)
Let T be the Kleene predicate of 10.1.3. Then

(I)
φz(x) ↓≡ (∃y)T (z, x, y) (1)

for all z, x.

(II) There is a primitive recursive function λyzx.out(y, z, x)
such that, for all z, x,

φz(x) = out
(

(µy)T (z, x, y), z, x
)

(2)

Proof.

(I) The lhs of (1) says that the URM z with input x
has a halting computation. The rhs says precisely
the same.

(II) The lhs of (2), if defined is what is found in the
output variable W of NZX

W of the preceding dis-
cussion.

If we rename the simulating function for the vari-
able W —from “λyzx.W (y, z, x)”— to

“λyzx.out(y, z, x)”

and seeing that if φz(x) ↓ then N halts as soon as
it hits step number (µy)T (z, x, y), we see that (2)
follows at once. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

282 Complexity of PR Functions

Nov. 22, 2021

10.2 The Axt, loop-program and Grzegorczyk
hierarchies

10.2.1� Remark. In the proof that PR is majorised by
the Ackermann function (8.2.1)we did induction on PR
rather than on length of derivations.

Analogously, PR can be inductively defined as the
smallest class containing the initial functions Z, S and
λ~x.xi that is closed under composition and also the op-
eration on functions prim(h, g). That is,

An f is primitive recursive iff it is one of

1. Z, S, Un
i , for all n ≥ i ≥ 1.

2. f = prim(h, g) where h, g are primitive recursive

3. f = λ~y.h(g1(~y), . . . gn(~y)) where h and the gj are all
primitive recursive.

This is the preferred (more elegant) alternative to giv-
ing PR as just the container of what derivations produce.

Indeed, the inclusion of the initial functions says that
the derivations of length 1 produce primitive recursive
functions. Then, for example, closure under prim(h, g)
translates into “if we know that h, g are in PR then so is
prim(h, g), or —in the jargon of derivations— if we have
derived h and g via derivations . . . h and . . . g , then the

derivation . . . h, . . . , g, prim(h, g) derives prim(h, g)”.
Compare with 2. above.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.2 The Axt, loop-program and Grzegorczyk hierarchies 283

You note the elegance and the economy on verbiage!

Notation. The symbol Cl(I,O) is short for any such
inductive definition from initial objects I and opera-
tions O.

E.g., one would write

PR = Cl
(
{Z, S, Un

i , for 1 ≤ i ≤ n},

{composition,prim}
)

Cl(I,O) is read “the closure of the set I under the
operations in O”.

� �

10.2.2 Definition. ([Axt65, Hei61]) We build a hier-
archy K = (Kn)n≥0 by induction on the level n, and
at each level Kn is also defined inductively as a “Cl(. . .)”:

We set K0 = Cl({λx.x+1, λx.x},O) where O contains
only Grzegorczyk substitution.

Having defined Kn, we define Kn+1: First, let

Rn+1
Def
= {f : f = prim(h, g) ∧ {h, g} ⊆ Kn}

Then set
Kn+1

Def
= Cl(Kn ∪Rn+1,O) (1)

If f ∈ Kn then we say its level is ≤ n. If f ∈ Kn+1−Kn

then we say its level is = n+ 1. �

� The definition clearly assumes that it is primitive recur-
sion that adds to the (definitional) complexity, namely,
the nesting levels of it: Kn already has functions f ′ =
prim(h′, g′) with h′, g′ in Kn−1. Going to Kn+1 we are
adding another primitive recursion on top of f ′ = prim(h′, g′). �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

284 Complexity of PR Functions

10.2.3 Proposition.

1. For n ≥ 0, Kn ⊆ Kn+1.

2. PR =
⋃
n≥0Kn

Proof. Easy exercise. Item 1 is a direct consequence of
(1) on the previous page.

For item 2, ⊆ direction, do induction over PR since
it is inductively defined. �

10.2.4 Lemma. An ∈ Kn, for n ≥ 0, where λnx.An(x)
is the Ackermann function.

� Of course, “An” means “λx.An(x)”, for each n. �

Proof. Induction on n. For n = 0 we have A0 = λx.x+2
which is obtained from λx.x + 1 by Grzegorczyk oper-
ations. Thus A0 ∈ K0. Fix now n and assume (I.H.)
An ∈ Kn.

For Kn+1:

An+1(0) = 2
An+1(x+ 1)= An(An+1(x))

By the I.H. and the definition of Kn+1 the above primi-
tive recursion places An+1 ∈ Kn+1. �

10.2.5 Lemma. (Majorising lemma for K) For n ≥
0, λ~x.f(~x) ∈ Kn implies that for some m depending on
f we have f(~x) ≤ Am

n (|~x|), for all ~x.

� As this is related to Theorem 8.2.1 we use “|~x|” for
“max(~x)”. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.2 The Axt, loop-program and Grzegorczyk hierarchies 285

Proof. This is a trivial corollary of the proof of 8.2.1:
Grzegorczyk substitution does not raise the index n of
the (bounding) Ackerman function, but one primitive
recursion raises it by one.

So fix n. If f = prim(h, g) is in Kn+1 because it is
in Rn+1 of Definition 10.2.2, then the I.H. and the proof
of 8.2.1 say that f is majorised by Am

n+1 (some m) since
(I.H.) h and g are majorised by Ak

n and Ar
n for some

k and r. If f got into Kn+1 after a finite number of
substitutions after we first obtained prim(h, g) —i.e., f
is in Cl(Kn∪Rn+1,O)— then the bounding function Am

n+1

above will at most change to Am′
n+1 from Am

n+1. �

10.2.6 Theorem. The hierarchy K = (Kn)n≥0 is proper
or nontrivial, that is, Kn (Kn+1, for all n.

Proof. Suffices to find for each n some f in Kn+1 −Kn.
Well, An+1 ∈ Kn+1 − Kn, the positive part by 10.2.4:
An+1 ∈ Kn+1; and the negative part by 10.2.5: if An+1 ∈
Kn then An+1(x) ≤ Am

n (x) for some m and all x. This is
not so (8.1.12.) �

If we replace primitive recursion by simultaneous (prim-
itive) recursion then we obtain an easier to work with
hierarchy.

10.2.7 Definition. We build a hierarchyKsim = (Ksim
n)n≥0

by induction on the level n, while at each level Ksim
n is

defined as a closure.
We set Ksim

0 = Cl({λx.x+ 1, λx.x},O) = K0 where O
contains only Grzegorczyk substitution.

Having defined Ksim
n , we define Ksim

n+1: First, let

Rsim
n+1

Def
= {fj : j ≤ r∧~fr = simprim(~hr, ~gr)∧{~hr, ~gr} ⊆ Ksim

n }

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

286 Complexity of PR Functions

Then set

Ksim
n+1

Def
= Cl(Ksim

n ∪Rsim
n+1,O) (†)

If f ∈ Ksim
n then we say its level is ≤ n. If f ∈ Ksim

n+1 −
Ksim
n then we say its level is = n+ 1. �

10.2.8 Lemma. For all n ≥ 0, Kn ⊆ Ksim
n .

Proof. This is trivial since all other things being equal,
primitive recursion is a special case of simultaneous re-
cursion. �

10.2.9 Lemma. (Majorising lemma for Ksim) For n ≥
0, λ~x.f(~x) ∈ Ksim

n implies that for some m depending on
f we have f(~x) ≤ Am

n (|~x|), for all ~x.

Proof. Exercise. �

10.2.10 Proposition.

1. For n ≥ 0, Ksim
n ⊆ Ksim

n+1.

2. PR =
⋃
n≥0K

sim
n

Proof. 1. is immediate from †) above. For 2. the ⊇ is
trivial while the ⊆ follows from 10.2.3(2) and 10.2.8. Ex-
ercise. �

10.2.11 Theorem. The hierarchy Ksim = (Ksim
n)n≥0 is

proper, that is, Ksim
n (Kn

n+1, for all n.

Proof. By 10.2.8, An+1 ∈ Ksim
n+1. By 10.2.9 An+1 /∈ Ksim

n .

�
At this point we pause to offer some examples of famil-

iar functions and place them in the hierarchies we have

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.2 The Axt, loop-program and Grzegorczyk hierarchies 287

so far, and to develop some tools that will help us do cod-
ing (needed to go from simultaneous to single primitive
recursion).

10.2.12 Proposition. (Examples and Tools) The fol-
lowing table lists some simple PR functions and their
placement in the K hierarchy.

Function Upper bound of level

1) λxy.x+ y 1

2) λxy.x .− 1 1

3) λxy.x(1 .− y) (Restricted if-then-else) 1

4) λxy.x× y 2

5) λx.2x 2

6) λxy.x .− y 2

7) λxy.|x− y| 2

8) λxy.max(x, y) 2

9) λx.

⌊
x(x+ 1)

2

⌋
2

Proof. [Sch69] attributes the table to [Hei61]. We do
9) and leave all else to the reader (Exercise). Since⌊
x(x+ 1)

2

⌋
=
∑

j≤x j we note

∑
j≤0 j = 0∑
j≤x+1 j= x+ 1 +

∑
j≤x j

But λx.x+1 ∈ K0 and the + -function is of level at most
1.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

288 Complexity of PR Functions

10.2.13 Definition. If C is any subclass of PR we de-
note by C∗ the class of the corresponding predicates :

C∗
Def
= {f(~x) = 0 : f ∈ C}

�

We have the following easy lemmata:

10.2.14 Lemma. Kn,∗ and Ksim
n,∗ are closed under Boolean

operations (all n ≥ 1).

Proof. Exercise. �

10.2.15 Lemma. Kn and Ksim
n are closed under defini-

tion by cases (all n ≥ 1).

Proof. Because our familiar sw is in K1. Exercise. �

10.2.16� Example. The reader is encouraged to revisit
Example 4.2.3. From the work there follows that λx.rem(x, 2) ∈
Ksim

1 . On the other hand, [Rit65, TW68] have shown
that rem /∈ K1 establishing K1 (Ksim

1 . � �

We just saw that Kj, j = 0, 1, contain trivial func-
tions and the corresponding predicates (10.2.13) are triv-
ial too.

We will see soon that the Grzegorczyk “small classes”
E0, E1 have enormously rich structure. Even their cor-
responding relation (predicate) sets are impressive: One
can easily place a version of the Kleene T -predicate in
E2∗ and with some more work (coding URMs and their
computations as in the text [Tou12] will be needed) even
in E0∗ . We will postpone this matter until after we intro-
duce the loop programmable functions hierarchy which is

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.2 The Axt, loop-program and Grzegorczyk hierarchies 289

essentially Ksim from a “programming” perspective, but
we only have tools in these notes to prove T ∈ E2∗ .

10.2.17 Definition. (A hierarchy of Loop programs)
L0 is the set of all loop programs that contain no loop-end
instruction.

Having defined Ln, we define Ln+1 as a closure:

Cl
(
Ln ∪ {Loop X; P ; end

∣∣∣P ∈ Ln},O)†

where O contains only the operation for program con-
catenation (cf. 5.1.1), namely, (P,Q) 7→ P ;Q. �

10.2.18� Remark. It is clear that Ln (Ln+1 since Ln+1

contains, but Ln does not, programs with nesting level of
Loop-end instruction equal to n+1, that is, L0 programs
have zero nesting (of Loop-end instruction), and if P
has at least one occurrence of nesting level n, but none
higher, then Loop X; P ; end contains a loop of nesting
level n+ 1; the outermost.

Comparing with Definition 5.1.1 it is immediate that
L =

⋃
n≥0 Ln. � �

We can now separate the functions in L = PR into a
hierarchy of functions.

10.2.19 Definition. For n ≥ 0,

Ln
Def
= {P ~X

Y : P ∈ Ln, where Y and the Xi are all in P}
�

10.2.20 Theorem. (Ksim vs. L) Ksim
n = Ln, n ≥ 0.

†We deviated from our norm and used here the notation {x | . . .} rather than {x : . . .} in
the interest of more visual clarity.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

290 Complexity of PR Functions

Proof. An adaptation of 5.3.1 and 5.4.2, from the PR
vs. L case to the Ksim

n vs. Ln case. Exercise. �
With 10.2.20 settled we directly get the hierarchy corol-

lary.

10.2.21 Corollary. L = (Ln)n≥0 is a proper hierarchy,
that is,

1. Ln (Ln+1 (all n)

2.
⋃
n≥0Ln = L.

10.2.1 The Grzegorczyk hierarchy

This static hierarchy does not let primitive recursion to
force functions into the next level. It does this by re-
stricting acceptable primitive recursions to be those that
produce functions that are majorised by functions ear-
lier derived. Hence the concept of bounded or more fre-
quently called limited recursion.

10.2.22 Definition. [Grz53] Given functions h, g, b, we
say that f is defined by limited recursion or bounded
recursion from them provided the two equations and one
inequality below are satisfied for all y, ~x.

f(0, ~x) = h(~x)

f(y + 1, ~x)= g(y, ~x, f(y, ~x))

f(y, ~x) ≤ b(y, ~x) �

We can now define the classes En of the Grzegorczyk
hierarchy.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.2 The Axt, loop-program and Grzegorczyk hierarchies 291

10.2.23 Definition. (The Grzegorczyk Hierarchy)
We select a sequence of bounding functions, (gn)n≥0 (us-
ing the same letter as in [Grz53]) by

g0 = λx.x+ 1

g1 = λxy.x+ y

g2 = λxy.xy

and, for n ≥ 2,

gn+1 = λxy.An

(
max(x, y)

)
where λny.An(x) is the Ackermann function version we
used in Chapter 8.

The hierarchy (En)n≥0 is defined as follows: En is the
closure of

{λx.x+ 1, λx.x, gn}
under (Grzegorczyk) substitution and bounded primitive
recursion. �

10.2.24� Remark. (1) Note that closure of En under lim-
ited (primitive) recursion means that if f is produced
from h, g as f = prim(h, g) and is majorised by b,
then it is in En, if all h, g, b are.

(2) The version of the Ackermann function (and the few
“initial” small bounding functions) are as follows still
using “g” here, which this time stands for the original
bounding functions, as in [Grz53]):

g0(x, y) = y + 1, g1(x, y) = x + y, g2(x, y) = (x +
1)(y + 1) and, for n ≥ 0,

gn+1(0, y) = gn(y + 1, y + 1)

gn+1(x+ 1, y) = gn+1(x, gn+1(x, y))

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

292 Complexity of PR Functions

[Tou84] contains a direct proof from first principles
that gn+1 and An have the same order of magnitude.
Here we will verify this indirectly by virtue of the
comparison of the En+1 with the Ksim

n = Ln, for n ≥
0. The original En+1 and the ones based on An are
the same.

(3) There has been a lot of interest in E0 and its predi-
cate counterpart, E0∗ due to its unexpected wealth of
nontrivial (albeit “small”) functions. � �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.2 The Axt, loop-program and Grzegorczyk hierarchies 293

Nov. 24, 2021

The following theorem facilitates the study of the low
Grzegorczyk classes. All the listed results are from [Grz53].

10.2.25 Theorem. Let us call M any class of primi-
tive recursive functions that contains λx.x and is closed
under substitution and limited recursion. The smallest
such class (closure) we will denote, following [War71],
by E−1.

(a) M contains λx.x .− 1, λxy.x .− y, λxy.x(1 .− y).

(b) M∗ is closed under Boolean operations and bounded
quantification (bounds < z and ≤ z).

(c) λxy.x ≤ y, λxy.x < y, λxy.x = y, λxy.x 6= y are in
M∗.

(d) M is closed under (
◦
µy)<x and (

◦
µy)≤x, where unsuc-

cessful search is designated by returning 0.

(e) M is closed under definition by cases, provided the
defined function λ~xn.f(~xn) is majorised for all ~x by
some constant, or by xi (for some 1 ≤ i ≤ n).

Proof.

(a) • λx.x .− 1:

0 .− 1 = 0

(x+ 1) .− 1 = x

x .− 1 ≤ x

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

294 Complexity of PR Functions

• λxy.x .− y:

x .− 0 = x

x .− (y + 1) = (x .− y) .− 1

x .− y ≤ x

• λxy.x(1 .− y):

x(1 .− 0) = x

x(1 .− (y+)) = 0

x(1 .− y) ≤ x

(b) • (¬): Say P (~x) ∈ M∗. Then (10.2.13), for some
p ∈ M, P (~x) ≡ p(~x) = 0. Then ¬P (~x) ≡ (1 .−
p(~x)) = 0. But λ~x.1 .− p(~x) ∈ M (use the
substitution x ← 1 in λxy.x(1 .− y) to obtain
λy.1 .− y).

• (∨): Say P (~x) and Q(~y) in M∗. Let p be as
above, and similarly let q be so for Q. Then

P (~x)∨Q(~y)⇔ p(~x)·q(~y) = 0⇔ p(~x)·(1 .− (1 .− q(~y))) = 0

The last equivalence is the operative one, since
the “full”multiplication is not postulated as a
member of M, while the function in the third
bullet of (a) is in M.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.2 The Axt, loop-program and Grzegorczyk hierarchies 295

• ((∃y)<z and (∃y)≤z): Let R(y, ~x) be inM∗, that
is, for some r ∈ M, it is, R(y, ~x) ≡ r(y, ~x) = 0.
We are looking for a g ∈M such that

(∃y)<zR(y, ~x) ≡ g(z, ~x) = 0

Note that (∃y)<z+1R(y, ~x) ≡ R(z, ~x)∨(∃y)<zR(y, ~x),
which leads to the limited recursion

g(0, ~x) = 1 Comment. (∃y)<0R(y, ~x) is false

g(z + 1, ~x) = r(z, ~x) · (1 .− (1 .− g(z, ~x))

g(z, ~x) ≤ 1

Also note that (∃y)≤zR(y, ~x) ≡ R(z, ~x)∨(∃y)<zR(y, ~x).

• ((∀y)<z and (∀y)≤z): Previous bullet and closure
under ¬.

� Since all of ≡,→,∧ are defined in terms of ¬,∨
we have closure ofM∗ under all Boolean opera-
tors (connectives). �

(c) • (λxy.x ≤ y:) x ≤ y ≡ x .− y = 0.

• (λxy.x < y:) x < y ≡ ¬(y ≤ x).

Thus we have at once,

x = y ≡ x ≤ y ∧ y ≤ x, hence is inM∗ and so is
x 6= y ≡ ¬x = y by closure under negation.

(d) ((
◦
µy)<x and (

◦
µy)≤x): Let us set g = λz~y.(

◦
µx)<zf(x, ~y),

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

296 Complexity of PR Functions

where f ∈M. Then

g(0, ~y) = 0

g(z + 1, ~y) = if

∈M∗︷ ︸︸ ︷
¬(∃x)<zf(x, ~y) = 0 ∧ f(z, ~y) = 0

then z else g(z, ~y)

g(z, ~y) ≤ z

(1)

We have to show how to rewrite the above limited
recursion without using “full” if-then-else, which is
not postulated to be in M (in fact, it is not in the
special cases E−1 and E0 of M).

Noting that g(z, ~y) ≤ z, the iterator function H of
the primitive recursion part of (1) is given by

H(z, u, ~y, w)
Def
= if u = 0 then z[
else if w ≤ z then w else 0

]

The variable u receives the M∗-predicate

¬(∃x)<zf(x, ~y) = 0 ∧ f(z, ~y) = 0

in the form of a function call F (z, ~y) where F ∈M
is chosen to satisfy

¬(∃x)<zf(x, ~y) = 0 ∧ f(z, ~y) = 0 ≡ F (z, ~y) = 0

The variable w receives the “recursive call” in (1),
which returns a value ≤ z always, so the “else 0”
never applies! We now rewrite the definition of H

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.2 The Axt, loop-program and Grzegorczyk hierarchies 297

as a limited recursion:

H(z, 0, ~x, w) = z

H(z, u+ 1, ~x, w) =
(

1 .− (w .− z)
)
w

H(z, u, ~x, w) ≤ z

Thus H ∈M. We are done.

Regarding the ≤ z bound note that

(
◦
µx)≤zf(x, ~y) = if ¬(∃x)<zf(x, ~y) = 0 ∧ f(z, ~y) = 0

then z else (
◦
µx)<zf(x, ~y)

where we handle the if-then-else as above.

(e) Let

f(~x) =

f1(~x) if R1(~x)
...

...

fr(~x) if Rr(~x)

First,

y = f(~x) ≡ y = f1(~x)∧R1(~x)∨y = f2(~x)∧R2(~x)∨· · ·∨y = fr(~x)∧Rr(~x)

Thus y = f(~x) ∈M∗ by (b).

But f(~x) = (
◦
µy) ≤ xi(y = f(~x)).

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

298 Complexity of PR Functions

There are several corollaries:

10.2.26 Corollary. For n ≥ 0, En is closed under (
◦
µy)<z

and (
◦
µy)≤z, as well as under definition by cases. The

latter is unrestricted for n ≥ 1 but for n = 0 requires
a restriction similar to that in (e) above: The resulting
function must be bounded by xi + k for some xi among
its arguments, and some k.

Proof. Trivially,∗ M⊆ En, for n ≥ −1. �

∗Look at the initial functions.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.2 The Axt, loop-program and Grzegorczyk hierarchies 299

Nov. 29, 2021

10.2.27 Corollary. The graphs z = x + y and z = xy
are in E0∗ .

Proof. Note that [War71] proves a general result that
puts these graphs in E−1∗ .

Now z = x+ y ≡ z = 0 ∨ z > 0 ∧ z .− x = y. Also

z = xy ≡ (x = 0∨y = 0)∧z = 0∨z > 0∧x|z∧y = bz/xc

Why are x|z in E0∗ and λzx. bz/xc ∈ E0? Exercise!
(if you give up see bullet 2 among posted notes at URL
http://www.cs.yorku.ca/~gt/courses/EECS5111F21/

c5111.html.) �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

http://www.cs.yorku.ca/~gt/courses/EECS5111F21/c5111.html
http://www.cs.yorku.ca/~gt/courses/EECS5111F21/c5111.html

300 Complexity of PR Functions

10.2.28 Corollary. For n ≥ 2, if f ∈ En+1 then, for
some m depending on f , f(~x) ≤ Am

n (|~x|) for all ~x.

Proof. Easy Exercise! Only substitution requires a min-
imum trace of work,† namely to look back at the proof
of the majorisation of primitive recursive functions by
Ackermann’s function. �

†In 8.2.1 we saw that if h = λ~y.g(f1(~y), . . . , fm(~y)) and g, fj are majorised by Ak
n for fixed

n and various k depending on the majorised function among g, fj , then h is majorised by Al
n

for some l, same n. See aslso Remark 8.2.2.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.2 The Axt, loop-program and Grzegorczyk hierarchies 301

10.2.29 Corollary. En ⊆ En+1, n ≥ 0.

Proof. For n ≥ 3, note that majorisation of functions in
En by Am

n−1 (10.2.28) imply also majorisation by Ak
n thus

all limited recursions that happen in En

work in En+1 too.

Wait! But how about the initial function An−1 of
En? Why is it also in En+1?

Hint. Note that A0 ∈ En+1 since S is and A0 = SS.
But then A1 is as it is obtained by primitive recursion
from A0 and is bounded by Ak

n ∈ En+1 (for some k).
But then A2 is as it is obtained by primitive recursion
from A1 and is bounded by Ar

n ∈ En+1 (for some
r). Etc., etc., all the way to: but then An−1 is as it
is obtained by primitive recursion from An−2 and is
bounded by At

n ∈ En+1 (for some t).

Also note, for the small classes n < 3, for

E0 ⊆ E1 ⊆ E2 ⊆ E3

the argument is the same as for the general case, using
the bounding (initial) functions λxy.y + 1, λxy.x + y,
λxy.xy, and A2. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

302 Complexity of PR Functions

The Grzegorczyk classes, ever since [Grz53] was pub-
lished have been studied by many researchers. The low
classes E0, E1, E2 have enormous expressive power (the
reader will be asked to place the Kleene predicate in E2,
which will immediately render the equivalence problem
of the functions in this class non semi-recursive. (Why?)

[Rit63] studied E2 extensively (we will see an impor-
tant role it plays in the simulation of URMs by simulta-
neous recursions) while E3 coincides with the well-known
class of elementary functions directly defined by Kalmár
as

10.2.30 Definition. ([Kal43]) The class of the elemen-
tary functions E is the closure of the set of initial func-
tions {λxy.x + y, λxy.x .− y} under Grzegorczyk substi-
tution, summation (

∑
i≤z) and product (

∏
i≤z). �

The elementary functions contain λx.2x and hence also
“monster functions” like the one on p.276. Intuitively
they are viewed as the boundary class between “practi-
cal” and “impractical” computing.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.2 The Axt, loop-program and Grzegorczyk hierarchies 303

10.2.31 Remark. It is easy to show that λxy.x + y ∈
E1 − E0, λxy.xy ∈ E2 − E1, λx.2x ∈ E3 − E2, hence
E0 (E1 (E2 (E3.

The above hinge on VERY easy proofs that

1. For each function f ∈ E0 there are j, k such that
f(~x) ≤ xi + k, for all ~x.

2. For each function f ∈ E1 there are C, k such that
f(~x) ≤ C|~x|+ k, for all ~x.

3. For each function f ∈ E2 there are C, k, l such that
f(~x) ≤ C|~x|k + l, for all ~x.

In particular, from the last majorising result, A2 ∈
E2−E1, since A2 grows like 2x and thus it cannot be
bounded by C|~x|k + l, for any C, k, l.

Incidentally, it is also E−1 (E0 since λx.x+ 1 /∈ E−1.‡

�

‡By induction on the formation of E−1 one shows that for every f in this class there are
an i and C (depend on f) such that f(~x) ≤ xi or f(~x) ≤ C for all ~x.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

304 Complexity of PR Functions

10.2.32 Theorem. (En)n≥0 is a proper hierarchy of PR,
that is,

• En (En+1, for n ≥ 0

and

• PR =
⋃
n≥0 En

Proof.

• Firstly, the non-strict inclusion has been proved in
10.2.29. For n ≤ 2, En (En+1 by Remark 10.2.31.
On the the hand, for n ≥ 3, we have An ∈ En+1−En.
Note that An ∈ En would entail An(x) ≤ Ak

n−1(x) for
some k and all x, contradicting 8.1.12.

• The ⊇ is trivial.

The ⊆ is easy but nontrivial:

Say then that f ∈ PR and let us do induction on
the formation of f :

1. Case where f is initial. Then f ∈ E0 as initial.

2. Assume for h and g and let f = prim(h, g). By
the I.H. on h, g we have an n§ such {h, g} ⊆ En+1,
hence h ≤ Ak

n and g ≤ Ar
n. But then f ≤ Am

n+1

for some m, placing f in En+2 since prim(h, g) is
a limited (by Am

n+1) recursion in En+2 ⊇ En+1 ⊇
{h, g}.

3. Finally, assume f = comp(g, h1, . . . , hl). By the
I.H. g and the hj are all (wlog) in En+1 . But
the latter class is closed under composition thus
f ∈ En+1. �

§WLOG, ONE n.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.3 The Ritchie-Cobham property and hierarchy comparison 305

10.3 The Ritchie-Cobham property and hierar-
chy comparison

The comparison of the hierarchies involves proving that
the dynamic complexity of the functions in the various
classes we studied (Kn, K

sim
n ,Ln, En+1) goes hand in hand

with their definitional complexity —one complexity pre-
dicts the other. This result is the “Richie†-Cobham prop-
erty” which is the central tool in this section.

†D. Ritchie.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

306 Complexity of PR Functions

As we will simplify our “programming tasks” by using
loop programs instead of URMs we will start by making
explicit the implementation of the Loop X-end instruc-
tion that respects the stated loop-program semantics, in
particular the part where changing the loop variable in
the body of the loop does not change the number of iter-
ations . We need this elaboration as we shall be looking
into loop-program run times, thus we need to know what
exactly is going on in the looping mechanism.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.3 The Ritchie-Cobham property and hierarchy comparison 307

We imagine that we have numbered all instructions in
our loop-programs in the style of URMs.

Now, each of several Loop X-end instruction-pairs
—I emphasise: with the same variable X— is assigned a
distinct “hidden” variable Hm

X assigned to the m-th such
loop encountered from top to bottom of the overall pro-
gram. We translate so (“macro expand”) each Loop X-
end pair —which may occur multiple times.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

308 Complexity of PR Functions

A program segment

L : Loop X
...

R : end

is implemented as follows (e.g., on a URM or “real life
compiler”), where for simplicity of notation we call the
hidden variable assigned just “H”.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.3 The Ritchie-Cobham property and hierarchy comparison 309

� Why “hidden”? This is an often used nomenclature for
compiler-generated “internal” (to the compiler) variables
that are not accessible to the user (programmer). �

L : Loop X translates:

{
L : H ← X

L+ 1 : if H = 0 goto R + 2 else goto L+ 2
...

R : end translates:

{
R : H ← H .− 1

R + 1 : goto L+ 1

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

310 Complexity of PR Functions

� With the above clarification of what Loop X-end does
exactly, we note that thus a URM can simulate a given
loop program without any run time loss.

But what about the fact that the URM does

not have the instruction X ← Y (as primi-

tive) that loop programs do have, and thus

the former spends as much time as O(y),

where y is the contents of Y ? b

bThe reader recalls that the simulation is rather “expensive”. Cf. 2.4.7 and 2.4.8.

The simple (and also theoretically correct) answer is
“OK; let’s retroactively fit the URM with such instruc-
tions. This does not change the computability theory we
developed so far, since the instruction can be simulated
anyway”. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.3 The Ritchie-Cobham property and hierarchy comparison 311

Dec. 1, 2021
We next refer back to the simulation of a URM by a

simultaneous recursion, specifically, Theorem 10.1.1. We
quote the concluding sentence in the proof of the latter
theorem:

Also note that the recursive calls happen within
trivially “easy” functions such as λz.z, λz.z + 1
or λz.z .− 1 or trivial predicates like λz.z = y

and λz.z 6= y (y a constant). All in PR and
PR∗.

� As a result of our work in Section 1 of this chapter, the
part in the quote above “All in PR and PR∗” can be
replaced by “All (subfunctions/subpredicates of the “it-
erator” are) in Ksim

1 and Ksim
1,∗ ” and thus the simulating

functions IC and Xj are all in Ksim
2 = L2”. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

312 Complexity of PR Functions

10.3.1 Lemma. All the simulating functions in Theo-
rem 10.1.1, i.e., the Xi and IC are in Ksim

2 = L2.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.3 The Ritchie-Cobham property and hierarchy comparison 313

In fact, all simulating functions of a URM are in E2.
We prove first

10.3.2 Lemma. All En, n ≥ 2, are closed under limited
simultaneous recursion.

Proof. Let

for i = 1, . . . , k

fi(0, ~y) = hi(~y)

fi(x+ 1, ~y) = gi(x, ~y, f1(x, ~y), . . . , fk(x, ~y))

fi(x, ~y) ≤ bi(x, ~y)

(1)
where the hi, gi, bi are in En.

We convert the simultaneous recursion to a simple
(single) limited recursion in the style of 4.2.2, HOW-
EVER using the coding of Definition 4.3.8 and the pro-
jections —Πk+1

i — therein, expressed as substitutions us-
ing only K and L.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

314 Complexity of PR Functions

This is using the quadratic (non onto) pairing func-
tion from 4.3.7 J = λxy.(x+y)2 +x to define the “code”

[[~xk]](k) and the projections Πk
i , i = 1, . . . , k.

All these projections are in E2 since they are obtained
by substitution from the projections of J

Kz† = (
◦
µx)≤z(∃y)≤zz = J(x, y)

and
Lz = (

◦
µy)≤z(∃x)≤zz = J(x, y)

Note that λ~xk. [[~xk]](k) itself is in E2, being obtained by
a finite number of substitutions from J(x, y) (cf. 4.3.8).

†It is quite common to write Kz for K(z) and Πk
i z for Πk

i (z).

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.3 The Ritchie-Cobham property and hierarchy comparison 315

So, following the Hilbert and Bernays ([HB68]) process
of 4.2.2, we set

F (x, ~y)
Def
= [[f1(x, ~y), . . . , fk(x, ~y)]](k)

thus the simultaneous recursion becomes a simple (single)
limited recursion

F (0, ~y) = [[h1(x, ~y), . . . , hk(x, ~y)]](k)

F (x+ 1, ~y) = [[. . . , gi(x, ~y,Π
k
1F (x, ~y), . . . ,Πk

kF (x, ~y)), . . .]](k)

F (x, ~y) ≤ [[. . . , bi(x, ~y), . . .]](k)

where the inequality is valid since the J is increasing
with respect to both variables and composing it a finite
number of times with itself does not change this fact.

By the presence of the [[. . .]](k) and the Πk
i (all in E2),

it is F ∈ En, n ≥ 2. Hence so is fi = Πk
iF .

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

316 Complexity of PR Functions

We apply the above to the simulation via simultaneous
primitive recursion of URM computations (cf. 10.1.1 and
10.3.1).

10.3.3 Lemma. The simulating functions for a given
URM, i.e., λy~x.Xi(y, ~x) and λy~x.IC(y, ~x), are all in E2.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.3 The Ritchie-Cobham property and hierarchy comparison 317

Proof. It suffices to prove that the simultaneous recur-
sion we introduced in 10.1.1 is limited (bounded), with
bounds from E2.

Why so? Because the part-functions and and predi-
cates in the iterator of the simulating simultaneous re-
cursion are all in Ksim

1 and Ksim
1,∗ hence trivially also in

E2 and E2∗ , respectively.

All that remains to get a bound from E2.

To this end, we note that, for all variables of the under
simulation URM M , we have

Xi(y, ~x) ≤ max(~x) + max{a : a occurs in an X ← a

instruction of M}+ y

The estimate above is so since in each of y steps the
most we can add to any variable is 1.

Also, IC(y, ~x) ≤ k, where k labels stop in M .

Thus the bounding functions are all in E1 ⊆ E2. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

318 Complexity of PR Functions

This result is also needed:

10.3.4 Lemma. For n ≥ 2, En is closed under
∑

i≤z.

Proof. Let f ∈ En, n ≥ 2. We will show that

g = λz~y.
∑
i≤z

f(i, ~y) ∈ En (1)

Indeed,

g(0, ~y) = f(0, ~y)

g(z + 1, ~y) = f(z + 1, ~y) + g(z, ~y)

The iterator f(z+ 1, ~y) +w being in En we next look for
a bound for g.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.3 The Ritchie-Cobham property and hierarchy comparison 319

• First, the n = 2 case:

g(z, ~y) ≤
∑
i≤z

f(i, ~y) ≤
∑
i≤z

(
C
(

max(i, ~y)
)r

+ l
)

≤ C(z + 1)
((

max(z, ~y)
)r

+ l
)

The bound λz~y.C(z + 1)
((

max(z, ~y)
)r

+ l
)

is in E2

by the fact that λzw.zw ∈ E2.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

320 Complexity of PR Functions

• The n > 2 case: As Ak
n−1 majorises every function

in En, for a k that depends on the function, we have

g(z, ~y) ≤
∑
i≤z

f(i, ~y)

≤
∑
i≤z

Ak
n−1

(
|i, ~y|

)
≤ (z + 1)Ak

n−1

(
|z, ~y|

) (1)

Since λxy.xy ∈ En, for n ≥ 2, and An−1 ∈ En, we
have that the bound in (1) is in En. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.3 The Ritchie-Cobham property and hierarchy comparison 321

10.3.5 Lemma. (Brute force direction of R-C) For
n ≥ 2, if λ~xk.f(~xk) ∈ En, then there is a URM M —such

that f = M
~Xk

X1
— that runs within time λ~xk.t(~xk) ∈ En,

that is, for every input ~xk, M
~Xk

X1
halts (i.e., reaches stop)

in ≤ t(~xk) steps.

Proof. Just program it!

As noted earlier, it suffices to carry out our program-
ming on the loop programs formalism. The proof is by
induction on n ≥ 2.

For each n there is another induction on the closure
that the set En is.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

322 Complexity of PR Functions

n-Basis : n = 2. Induction on E2 requires to verify the
contention for the initial functions λx.x, λx.x + 1 and
λxy.xy first. The first two need one-line (loop) programs
whose run time is 1 —a constant. But E2 contains all
constant functions. Good!

As for λxy.xy, the loop program

P :

Loop X

Loop Y

Z ← Z + 1

end

end

satisfies PXY
Z = λxy.xy. Its run time is —since each ex-

ecution of end counts for two steps and of Loop counts
for one (except upon first entry, where an extra one step
is charged)— ≤ ((4y + 1) + 3)x+ 1.

Clearly, λxy.((4y + 1) + 3)x+ 1 ∈ E2!

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.3 The Ritchie-Cobham property and hierarchy comparison 323

We can also observe simply that ignoring constant
overhead we can estimate the run time quickly seeing
how many times we go around the loop and say at once
that the run time is O(xy).

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

324 Complexity of PR Functions

We postpone the induction over E2 as we prefer to do
all these simultaneously for n ≥ 2 (the reasoning is iden-
tical, for each n).

So we next bound from above the run time when com-
puting the initial functions of En, n > 2, on appropriate
loop programs (as proxies for appropriate URMs).

� Only An−1 is left to consider. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.3 The Ritchie-Cobham property and hierarchy comparison 325

We will find a run time upper bound, T , of a well cho-
sen loop program that computes An−1, n > 2, and show
that T ∈ En.

Now, An−1 ∈ Ksim
n−1 = Ln−1.

Let thenM be a loop program in Ln−1 (Definition 10.2.17)
such that

An−1 = MX
Y

Modify M into a new M̃ that is still in Ln−1 and still
computes An−1, namely,

An−1 = M̃X
Y

The modification is THIS: We choose a variable Z that
does not occur in M and strategically place several in-
structions Z ← Z + 1 in it to obtain M̃ .

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

326 Complexity of PR Functions

These are placed, one copy before each non-Loop,
non-end instruction of M .

For instructions Loop or end we act according to our
simulation protocol of loop programs by URMs, so we
place one copy of Z ← Z + 1 before a Loop instruction

and one after,

while we put two copies before an end instruction.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.3 The Ritchie-Cobham property and hierarchy comparison 327

See below.

...

Z ←Z + 1 Comment. Entry of loop count

Loop X

Z ←Z + 1 Comment. Loop’s second count
...

Z ←Z + 1 Comment. Count for next M -instruction

A non(loop/end) M-instruction: U ← 0 or U ← U + 1 or U ← W
...

Z ←Z + 1 Comment. Execution of end count one

Z ←Z + 1 Comment. Execution of end count two

end
...

Clearly M̃X
Y = An−1 STILL!, and M̃X

Z is in Ln−1 (no
new loops added) and measures the run time for An−1
according to M .

Since M̃X
Z ∈ Ksim

n−1 = Ln−1, for some r, this function
is majorised by Ar

n−1(x), for all inputs x that are “read”
in X.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

328 Complexity of PR Functions

Ar
n−1 is the “T” we promised:

1. It majorises the run time of An−1 = MX
Y on some

URM M .

2.

Since An−1 ∈ En, and En is closed under substi-
tution, this run-time majorant, T = Ar

n−1, is also
in En.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.3 The Ritchie-Cobham property and hierarchy comparison 329

Dec. 6, 2021

We finally are ready to do induction over the closure
En, n ≥ 2, to conclude, that if f ∈ En, then, for some
URM (loop program will do by earlier remarks) M ,

f = M
~Xk

Y and the run time is majorised by a func-
tion from En.

We have already established the Basis, that all
initial functions of En have the property.

We note

• The property propagates with substitution. So
let h and g have the property, and consider f =
h(g(~x), ~y).

We write tf , etc., for the run time majorising
function on some appropriate URM.

Programming in the obvious way (superposition)
we have

tf(~x, ~y) = th(g(~x), ~y) + tg(~x)

As our En is closed under substitution, contains
λxy.x + y and h and g, have the property, we
have tf ∈ En. The other substitution cases are
trivial.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

330 Complexity of PR Functions

• The property propagates with limited recursion.
So let f be given by the following schema, from
h, g, b in En:

f(0, ~y) = h(~y)

f(x+ 1, ~y) = g(x, ~y, f(x, ~y))

f(x, ~y) ≤ b(x, ~y)

The recursion is implemented on a loop program
as

i← 0

z ← h(~y)

Loop X

z ← g(i, ~y, z)

i← i+ 1

end

We next estimate —recalling how Loop-end works—
an upper bound tf(x, ~y) for the run time of the
above.

tf(x, ~y) = th(~y) + 2 +
∑
i<x

(4 + tg(i, ~y, f(i, ~y)))

By the I.H. {tg, th} ⊆ En and so is f . Thus, by
Lemma 10.3.4 we have that tf ∈ En. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.3 The Ritchie-Cobham property and hierarchy comparison 331

10.3.6 Theorem. (The Ritchie-Cobham property of En, n ≥ 2)
f ∈ En, for n ≥ 2, iff f runs on some URM M —that

is, f = M
~Xk

Y — within time tf ∈ En.

Proof. The only if is Lemma 10.3.5. For the if, say

f = M
~Xk

Y and tf on that M is in En, n ≥ 2.

By Lemma 10.3.3, λy~xk.Y (y, ~xk) ∈ E2. But f(~xk) =
Y (tf(~xk), ~xk) for all ~xk, and thus f ∈ En via substitution.

�

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

332 Complexity of PR Functions

10.3.7 Corollary. Ln = En+1, for n ≥ 2.

Proof. A function λ~x.f(~x) in Ln is computable by a loop
program from Ln and hence by a URM M —i.e., f =
M

~X
Y — within a run time that is bounded by Ak

n, for some
k.

Thus f(~x) = Y (Ak
n(|~x|), ~x), for all ~x. But λy~x.Y (y, ~x) ∈

E2 and Ak
n ∈ En+1.

Conversely, say f ∈ En+1. Let a URM M compute f

—that is f = M
~Xk

Y — in time tf ∈ En+1. Then for some
r, tf(max(~xk)) ≤ Ar

n(max(~xk)).

Therefore, f(~xk) = Y
(
Ar
n(max(~xk)), ~xk

)
, for all ~xk, as

well. (Why?)

It follows that f ∈ Ksim
n , since Ar

n is and also the sim-
ulating function Y (in fact the latter is in Ksim

2 (10.3.1)).
But Ksim

n = Ln. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.3 The Ritchie-Cobham property and hierarchy comparison 333

10.3.8 Corollary. Ksim
n = En+1, for n ≥ 2.

10.3.9 Corollary. Kn ⊆ En+1, for n ≥ 2.

Proof. Kn ⊆ Ksim
n , n ≥ 0. Now apply 10.3.8. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

334 Complexity of PR Functions

10.3.10 Corollary. Kn = En+1, for n ≥ 4.

Proof. We prove En+1 ⊆ Kn, for n ≥ 4.

We did not get the URM simulating functions place-
ment in the K hierarchy. Let’s do it here:

Aside: The simulating functions for a URM M are
in K4.

Proof.
We work as in 10.3.2 converting the simultaneous re-

cursion of Theorem 10.1.1 into a single recursion.

As in 10.3.2 we start with the quadratic pairing func-

tion J = λxy.(x+y)2+x ∈ K2. Thus Ik
Def
= λ~xk. [[~xk]](k) ∈

K2, for any fixed k (cf. 10.2.12).
In 4.3.7 we derived Kz = z .− b

√
zc2 and Lz =

b
√
zc .− Kz. Since λz. b

√
zc ∈ K3 (Exercise!), so are

K and L and thus the Πk
i as well.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

10.3 The Ritchie-Cobham property and hierarchy comparison 335

Therefore, imitating the proof of 10.3.2 (not using a
bounding function here), we set

F (y, ~x) = [[f1(y, ~x), . . . , fk(y, ~x)]](k)

and thus the iteration equation for F is

F (y+1, ~x) = [[. . . , gi(y, ~x,Π
k
1F (y, ~x), . . . ,Πk

kF (y, ~x)), . . .]](k)

(1)

Since we iterate —in (1)— the K3-functions Πk
j , the

result of the recursion, F and hence also the fj = Πk
jF ,

for all j, are in K4.

Wait! What is the contribution of the “gi”? Negligi-
ble, as these are definitions by cases of K1 functions and
K1,∗ predicates.

Let f ∈ En+1, n ≥ 4. Then f = M
~X
Y for some URM

M that computes f within time tf ≤ Ak
n, for some k.

The simulation function for the output variable, λ~x.Y (y, ~x)
is in K4 by the Aside above and thus f = λ~x.f(~x) =
λ~x.Y (Ak

n(|~x|), ~x) is in Kn, n ≥ 4. �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

336 Complexity of PR Functions

10.3.11� Remark. The Ritchie-Cobham property does
two things:

1. Connects the definitional with the computational com-
plexity of primitive recursive functions.

2. Is a powerful tool to compare primitive recursive hi-
erarchies.

Note however that the correspondence between defi-
nitional and computational complexity might be overstated
sometimes, inflating the computational complexity a
prior i estimate. For example the program P below

Loop X

Loop Y

Loop Z

W ← W + 1

end

end

end

computes PXY Z
W = λxyz.xyz, a function in L2 run-

ning in O(xyz) time. The predictions of our theory
are (correct but) pessimistic: “PXY Z

W runs in time
O(Am

3 (max(x, y, z))), for some m”.

The realisation that λxyz.xyz is computable inO(xyz)
time on some URM (that simulates our loop pro-
gram) means that this function is in E3 = L2. The
question of whether we can place an arbitrary func-
tion given by a program in the lowest level of the
hierarchies is recursively unsolvable ([MR67]). � �

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

Bibliography

[Axt65] P. Axt, Iteration of Primitive Recursion,
Zeitschrift für math. Logik 11 (1965), 253–255.

[Chu36] Alonzo Church, An unsolvable problem of ele-
mentary number theory, Amer. Journal of Math.
58 (1936), 345–363, (Also in [Dav65, 89–107]).

[Dav65] M. Davis, The undecidable, Raven Press,
Hewlett, NY, 1965.

[Ded88] R. Dedekind, Was sind und was sollen die
Zahlen?, Vieweg, Braunschweig, 1888, (In En-
glish translation by W.W. Beman [Ded63]).

[Ded63] , Essays on the Theory of Numbers,
Dover Publications, New York, 1963, (First En-
glish edition translated by W.W. Beman and
published by Open Court Publishing, 1901).

[Göd31] K. Gödel, Über formal unentscheidbare Sätze
der Principia Mathematica und verwandter Sys-
teme I, Monatshefte für Math. und Physik 38
(1931), 173–198, (Also in English in [Dav65, 5–
38]).

[Grz53] A. Grzegorczyk, Some classes of recursive func-
tions, Rozprawy Matematyczne 4 (1953), 1–45.

337

338 BIBLIOGRAPHY

[HB68] D. Hilbert and P. Bernays, Grundlagen der
Mathematik I and II, Springer-Verlag, New
York, 1968.

[Hei61] W. Heinermann, Untersuchungungen über die
Rekursionzahlen rekursiver Funktionen, Ph.D.
thesis, Münster Univers., 1961.

[Kal43] L. Kalmár, A Simple Example of an Undecidable
Arithmetical Problem (Hungarian with German
abstract), Matematikai és Fizikai Lapok 50
(1943), 1–23.

[Kle43] S.C. Kleene, Recursive predicates and quanti-
fiers, Transactions of the Amer. Math. Soc. 53
(1943), 41–73, (Also in [Dav65, 255–287]).

[LeV56] William J. LeVeque, Topics in number theory,
vol. I and II, Addison-Wesley, Reading, MA,
1956.

[Mar60] A. A. Markov, Theory of algorithms, Transl.
Amer. Math. Soc. 2 (1960), no. 15.

[MR67] A. R. Meyer and D. M. Ritchie, Computational
complexity and program structure, Technical Re-
port RC-1817, IBM, 1967.

[Mul73] H. Muller, Characterisation of the elementary
functions in terms of depth of nesting of prim-
itive recursive functions, Recursive Function
Theory: Newsletter 5 (1973), 14–15.

[Pos36] Emil L. Post, Finite combinatory processes, J.
Symbolic Logic 1 (1936), 103–105.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

BIBLIOGRAPHY 339

[Pos44] , Recursively enumerable sets of posi-
tive integers and their decision problems, Bull.
Amer. Math. Soc. 50 (1944), 284–316.

[Rit63] R. W. Ritchie, Classes of Predictably Com-
putable Functions, Transactions of the Amer.
Math. Soc. 106 (1963), 139–173.

[Rit65] D.M. Ritchie, Complexity Classification of
Primitive Recursive Functions by their Machine
Programs, Term paper for Applied Mathematics
230, Harvard University, 1965.

[Rog67] H. Rogers, Theory of Recursive Functions
and Effective Computability, McGraw-Hill, New
York, 1967.

[Sch69] Helmut Schwichtenberg, Rekursionszahlen und
die Grzegorczyk-Hierarchie, Arch. math. Logik
12 (1969), 85–97.

[SS63] J. C. Shepherdson and H. E. Sturgis, Com-
putability of recursive functions, Journal of the
ACM 10 (1963), 217–255.

[Tou84] G. Tourlakis, Computability, Reston Publishing,
Reston, VA, 1984.

[Tou12] , Theory of Computation, John Wiley &
Sons, Hoboken, NJ, 2012.

[Tur37] Alan M. Turing, On computable numbers, with
an application to the Entscheidungsproblem,
Proc. London Math Soc. 2 (1936, 1937), no. 42,
43, 230–265, 544–546, (Also in [Dav65, 115–
154].).

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

340 BIBLIOGRAPHY

[TW68] D. Tsichritzis and P. Weiner, Some Unsolv-
able Problems and Partial Solutions, Tech. Re-
port 69, Dept. of Electrical Eng. Comp. Sci-
ences Lab, Princeton University, Princeton,
N.J., 1968.

[War71] J. C. Warkentin, Small Classes of Recursive
Functions and Relations, Tech. Report CSRR
2052, Dept. of Appl. Analysis and Comp. Sci-
ence Research Report, University of Waterloo,
1971.

Notes on Computability© G. Tourlakis, 2019, 2020, 2021, 2022

	What is Computability?
	Preliminaries

	Algorithms, Computable Functions and Computations
	A Theory of Computability
	The URM
	The Classes P and R of Partial and Total Computable Functions
	URM ``Programming Examples''

	Primitive Recursive Functions
	PR-Derivations and PR-Functions
	The Class of Primitive Recursive Functions Defined (redat last!)
	A few examples of what we can do with PR functions
	Nothing is really ``rigid''

	Primitive Recursive Relations

	Thor's Hammer (Bounded Search and Friends)
	Bounded Quantification and Search
	CODING Sequences
	Simultaneous Primitive Recursion

	Pairing Functions

	Loop Programs
	Syntax and Semantics of Loop Programs
	Loop-Computable Functions
	PRL
	LPR
	Incompleteness of PR
	A total ``intuitively computable'' function not in PR

	Church's Thesis
	A Leap of Faith
	An Enumeration of redall one-argument functions of P
	A Universal function for unary P functions
	blueUnsolvable ``Problems’’; The Halting Problem

	(un)Computability via ``Church's Thesis’’ and the S-m-n theorem; Part II
	Semi-decidable relations (or sets)
	Unsolvability via Reducibility
	Projection Theorem II
	redComputation-simulating functions

	Recursively Enumerable Sets
	Some closure properties of decidable and semi-decidable relations
	Some tricky reductions

	The Ackermann Function
	A very fast growing function: Definition and properties
	Majorisation of PR functions

	The Recursion Theorem and Applications
	Two Applications of the Recursion Theorem

	Complexity of PR Functions
	The URM-simulating functions again, and the Kleene predicate
	The Axt, loop-program and Grzegorczyk hierarchies
	The Grzegorczyk hierarchy

	The Ritchie-Cobham property and hierarchy comparison

