Lassonde School of Engineering

Dept. of EECS

Professor G. Tourlakis
EELS 1028 M. Problem Set No
Posted: Feb. 4, 2023
Due: Feb. 17, 2023; by 6:00pm, in Class.

Q: How do I submit?

A:
(1) Submission must be a SINGLE standalone file to eClass. Submission by email is not accepted.
(2) Accepted File Types: PNG, JPEG, PDF, RTE, MS WORD, OPEN OFFICE, ZIP
${ }^{(3)}$ Deadline is strict, electronically limited.
(4) MAXIMUM file size $=10 \mathrm{MB}$
(3)

It is worth remembering (from the course outline):
The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course, as you recall.

1. (3 MARKS) Give small examples of equivalence relations R and P such that $R \cup P$ is not an equivalence relation.
2. (3 MARKS) Given two equivalence relations R and P on A. Prove that $R \cup P$ is reflexive and symmetric.
3. (3 MARKS) Given two equivalence relations R and P on A.

Prove that $(R \cup P)^{+}$is an equivalence relation.
4. (3 MARKS) Let $A \neq \emptyset$ be a set. Prove that A^{2} is an equivalence relation on A.
5. (5 MARKS) Prove that for any relation R on a set A,

$$
R^{+}=\bigcap\{Q: R \subseteq Q \wedge Q \text { is transitive }\}
$$

Caution. You need to prove FOUR things:
(a) The class $\{Q: R \subseteq Q \wedge Q$ is transitive $\}$ is not empty. Hint. One of the above problems helps!
(b) $\bigcap\{Q: R \subseteq Q \wedge Q$ is transitive $\}$ is a set. Hint. See whether this follows from (a) above, and if so argue succinctly why (don't write a story).
(c) $\cap\{Q: R \subseteq Q \wedge Q$ is transitive $\}$ is transitive and $R \subseteq \bigcap\{Q: R \subseteq$ $Q \wedge Q$ is transitive $\}$
(d) If $R \subseteq S$ and S is transitive (just as in the transitive closure definition), then $\bigcap\{Q: R \subseteq Q \wedge Q$ is transitive $\} \subseteq S$.
6. (4 MARKS) Let all the letters stand for integers (from \mathbb{Z}), with $m>1$.

Prove that if $x \equiv y \bmod m$ and $z \equiv w \bmod m$, then also $x+z \equiv y+w$ $\bmod m$ and $x-z \equiv y-w \bmod m$.
7. (2 MARKS) Find all integer values x that work in the "congruenceequation" below:
$x \equiv 8 \bmod 3$.
Hint. There are infinitely many values expressible by a simple formula.

Page 2

G. Tourlakis

