Lassonde School of Engineering

Dept. of EECS
Professor G. Tourlakis
EELS 1028 M. Problem Set No
Posted: Feb. 17, 2023
Due: Mar. 17, 2023; by 6:00 pm, in Class.

Q: How do I submit?

A:
(1) Submission must be a SINGLE standalone file to eClass. Submission by email is not accepted.
(2) Accepted File Types: PNG, JPEG, PDF, RTE, MS WORD, OPEN OFFICE, ZIP
${ }^{(3)}$ Deadline is strict, electronically limited.
(4) MAXIMUM file size $=10 \mathrm{MB}$
(3)

It is worth remembering (from the course outline):
The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course, as you recall.

1. (5 MARKS) Show that if \mathbb{F} is a function and $\operatorname{dom}(\mathbb{F})$ is a set then \mathbb{F} is a set.
2. (4 MARKS) True or False and WHY? (without the correct "WHY" this maxes out to 0 (zero)). If \mathbb{P} is a relation and $\operatorname{dom}(\mathbb{P})$ is a set then \mathbb{P} is a set.
3. (a) (1 MARK) Define "Left Field" for a Relation \mathbb{R} and a Function \mathbb{F}.
(b) (4 MARKS) True or False and WHY? (No WHY nets a zero for guessing.) A function f is 1-1 by definition precisely if $f(x)=f(y)$ implies $x=y$ for all x, y in the function's left field.
4. (3 MARKS) Prove that if the function f is $1-1$, then f^{-1} is a function.

Caution! The ONLY assumptions here are 1) f is a function and 2) it is 1-1. It MAY be nontotal, non onto and a lot of other "non" that you may NOT assume, NOR negate!
5. (5 MARKS) Let $f: A \rightarrow B$. Then $\mathbf{1}_{B} f=f$ and $f \mathbf{1}_{A}=f$.

Hint. You may use the fact that $f g$, for functions f, g, means $g \circ f$.
6. (4 MARKS) Let $<$ be an abstract (strict) order and \mathbb{B} class.

Prove that $<\cap(\mathbb{B} \times \mathbb{B})$ is an order $\underline{\mathrm{ON}} \mathbb{B}$.
7. Suppose we know that each of $A_{n}, n \geq 0$, is countable.

Show that
(a) (3 MARKS) $\left\{A_{0}, A_{1}, \ldots, A_{n}, \ldots\right\}$ is a set.

If you used some of the Principles $0-3$ in this subquestion, be explicit!
(b) (4 MARKS) Prove that $\bigcup_{i \geq 0} A_{i}$ is countable.
(c) (2 MARKS) Did you need the Axiom of Choice in any of the subquestions here? Explain clearly in a FEW words.
8. (4 MARKS) Prove that the relation \sim between sets is symmetric and transitive.

