
Contents

1 Some Elementary Informal Set Theory 3
1.1 Russell’s “Paradox” . 7

2 Safe Set Theory 21
2.1 The “real sets” —Introduction to Stages . 26
2.2 What caused Russell’s paradox . 35
2.3 Some useful sets . 38
2.4 Operations on classes and sets . 47
2.5 The powerset . 59

3 The Ordered Pair and Cartesian Products 63
3.1 The Cartesian product . 69

4 Relations and functions 73
4.1 Relations . 74

4.1.1 Transitive closure . 93
4.1.2 Equivalence relations . 104
4.1.3 Partial orders . 128

5 Functions 161
5.1 Preliminaries . 162
5.2 Finite and Infinite Sets . 194
5.3 Diagonalisation and uncountable sets . 225

6 A Short Course on
Predicate Logic 239
6.1 Enriching our proofs to manipulate quantifiers . 241
6.2 Proofs and Theorems . 258
6.3 Induction . 300

6.3.1 Induction Practise . 308

7 Inductively defined sets; Structural induction 319
7.1 Induction over a closure . 328
7.2 Closure vs. definition by stages . 332

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2 CONTENTS

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Chapter 1

Some Elementary Informal Set
Theory

Jan. 9, 2023
Set theory is due to Georg Cantor.

“Elementary” in the title above does not apply to the body of his
work, since he went into considerable technical depth in this, his new
theory.

It applies however to our coverage as we are going to restrict our-
selves to elementary topics only.

Cantor made many technical mistakes in the process of developing
set theory, some of considerable consequence. The next section is about
the easiest to explain and most fundamental of his mistakes.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4 1. Some Elementary Informal Set Theory

How come he made mistakes?

The reason is that his theory was not based on axioms and rigid rules
of reasoning —a state of affairs for a theory that we loosely characterise
as “informal”.

At the opposite end of informal we have the formal theories that
are based on axioms and logic and are thus “safer” to develop (they
do not lead to obvious contradictions).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5

One cannot fault Cantor for not using logic in arguing his theorems
—that process was not invented when he built his theory— but then,
mathematical logic was not invented in Euclid’s time either, and yet
he did use axioms that stated how his building blocks, points, lines
and planes interacted and behaved!

Guess what: Euclidean Geometry leads to no contradictions.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6 1. Some Elementary Informal Set Theory

The problem with Cantor’s set theory is that anything goes as to
what sets are and how they come about.

He neglected to ask the most fundamental question:

“How are sets formed?”† He just sidestepped this and simply said
that a set is any collection.

In fact he took the term “set” as just a synonym for “collection”,
“class”, “aggregate”, etc. What you just get from a Dictionary: syn-
onyms!

Failure to ask and answer this question leads to “trouble”, which is
the subject matter of the next section.

One can still do “safe” set theory —devoid of “trouble”, that is—
within an informal (non axiomatic) setting, but

we have to ask and answer how sets are built first and derive from
our answer some principles that will guide (and protect!) the the-
ory’s development!

We will do so.

†It’s amazing how much trouble could be avoided if he had asked AND investigated!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

1.1. Russell’s “Paradox” 7

1.1. Russell’s “Paradox”

Cantor’s näıve (this adjective is not derogatory but is synonymous in
the literature with informal and non axiomatic) set theory was plagued
by paradoxes, the most famous of which (and the least “technical”)
being pointed out by Bertrand Russell and thus nicknamed “Russell’s
paradox”.†

†From the Greek word “paradoxo” (παράδοξο) meaning against one’s belief or knowledge; a contradiction.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

8 1. Some Elementary Informal Set Theory

His theory is the theory of collections (i.e., sets) of objects, as we
mentioned above, terms that were neither defined nor was it said how
they were built.†

This theory studies operations on sets, properties of sets, and aims
to use set theory as the foundation of all mathematics. Naturally,
mathematicians “do” set theory of mathematical object collections —
not collections of birds and other beasts.

†This is not a problem in itself. Euclid too did not say what points and lines were; but his axioms did characterise
their nature and interrelationships: For example, he started from these (among a few others) a priori truths (axioms):
a unique line passes through two distinct points; also, on any plane, a unique line l can be drawn parallel to another
line k on the plane if we want l to pass through a given point A that is not on k.

The point is:

� You cannot leave out both what the nature of your objects is and how they behave/interrelate and get away with it!
Euclid omitted the former but provided the latter, so all worked out. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

1.1. Russell’s “Paradox” 9

We have learnt some elementary aspects of set theory at high school.
We will learn more in this course.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

10 1. Some Elementary Informal Set Theory

1. Variables. Like any theory, informal or not, informal set theory
—a safe variety of which we will develop here— uses variables just
as algebra does. There is only one type of variable that varies
over set and over atomic objects too, the latter being objects that
have no set structure. For example integers. We use the names
A,B,C, . . . and a, b, c, . . . for such variables, sometimes with primes
(e.g., A′′) or subscripts (e.g., x23), or both (e.g., x′′′22, Y

′
42).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

1.1. Russell’s “Paradox” 11

2. Notation. Sets given by listing. For example, {1, 2} is a set that
contains precisely the objects 1 and 2, while

{
atom︷︸︸︷
1 ,

set︷ ︸︸ ︷
{5, 6}}

is a set that contains precisely the objects 1 and {5, 6}. The braces
{ and } are used to show the collection/set by outright listing.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

12 1. Some Elementary Informal Set Theory

3. Notation. Sets given by “defining property”. But what if we
cannot (or will not) explicitly list all the members of a set? Then
we may define what objects x get in the set/collection by having
them to pass an entrance requirement, P (x):

An object x gets in the set iff (if and only if) P (x)
is true of said object.

Let us parse “iff”:

(a) The IF : So, IF P (x) is true, then x gets in the set (it passed
the “admission requirement”).

(b) The ONLY IF : So, IF x gets in the set, then the only way for
this to happen is for it to pass the “admission requirement”;
that is, P (x) is true.

In other words, “iff” (as we probably learnt in high school or some
previous university course such as calculus) is the same thing as
“is equivalent”:

“x is in the set” is equivalent to “P (x) is true”.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

1.1. Russell’s “Paradox” 13

We denote the collection/set† defined by the entrance condition
P (x) by

{x : P (x)} (1)

but also as
{x |P (x)} (1′)

reading it “the set of all x such that (this “such that” is the “:”
or “|”) P (x) is true [or holds]”

†We have not yet reached Russell’s result, so keeping an open mind and humouring Cantor we still allow ourselves
to call said collection a “set”.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

14 1. Some Elementary Informal Set Theory

4. “x ∈ A” is the assertion that “object x is in the set A”. Of course,
this assertion may be true or false or “it depends”, just like the
assertions of algebra 2 = 2, 3 = 2 and x = y are so (respectively).

5. x /∈ A is the negation of the assertion x ∈ A.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

1.1. Russell’s “Paradox” 15

6. Properties

• Sets are named by letters of the Latin alphabet (cf. Variables,
above). Naming is pervasive in mathematics as in, e.g., “let
x = 5” in algebra.

So we can write “let A = {1, 2}” and let “c = {1, {1, 5, 6}}”
to give the names A and c to the two example sets above,
ostensibly because we are going to discuss these sets, and refer
to them often, and it is cumbersome to keep writing things like
{1, {1, 5, 6}}. Names are not permanent;† they are local to a
discussion (argument).

†OK, there are exceptions: ∅ is the permanent name for the empty set —the set with no elements at all— and
for that set only; N is the permanent name of the set of all natural numbers.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

16 1. Some Elementary Informal Set Theory

• Equality of sets (repetition and permutation do not matter!)

Two sets A and B are equal iff they have the same mem-
bers. Thus order and multiplicity do not matter! E.g., {1} =
{1, 1, 1}, {1, 2, 1} = {2, 1, 1, 1, 1, 2}.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

1.1. Russell’s “Paradox” 17

• Here is the fundamental equivalence pertaining to definition of
sets by “defining property”:

So, if we name the set in (1) above (p.13), S, that is, if we say
“let S = {x : P (x)}”, then “x ∈ S iff P (x) is true”

� By the way, we almost never say “is true” unless we want to
shout out this fact. We would say instead:

x ∈ S iff P (x) (†)

Equipped with the knowledge of the previous bullet, we see
that the symbol {x : P (x)} defines a unique set/collection:
Well, say A and B are so defined, that is, A = {x : P (x)} and
B = {x : P (x)}. Thus

x ∈ A
A={x:P (x)}

iff P (x)
B={x:P (x)}

iff x ∈ B

thus
x ∈ A iff x ∈ B

and thus A = B. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

18 1. Some Elementary Informal Set Theory

Let us pursue, as Russell did, the point made in the last bullet above.
Take P (x) to be specifically the assertion x /∈ x. He then gave a name
to

{x : x /∈ x}
say, R. But then, by the last bullet above, in particular, the equivalence
(†),

x ∈ R iff x /∈ x (2)

If we now believe,† as Cantor, the father of set theory did not question
and went ahead with it, that every P (x) defines a set, then R is a set.

� What is wrong with that? �

Well, if R is a set then this object has the proper type to be plugged
into the variable of type “math object”, namely, x, throughout the
equivalence (2) above. But this yields the contradiction

R ∈ R iff R /∈ R (3)

This contradiction is called the Russell’s Paradox.

†Informal mathematics often relies on “I know so” or “I believe” or “it is ‘obviously’ true”. Some people
call “proofs” like this —i.e., “proofs” without justification(s)— “proofs by intimidation”. Nowadays, with the
ubiquitousness of the qualifier “fake”, one could also call them “fake proofs”.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

1.1. Russell’s “Paradox” 19

� The following is the “traditional” way to give an exposition of Russell’s
argument in the literature. That is, having defined

R = {x : x /∈ x}

and thinking it to be a set, one asks:

• Is R ∈ R? An a priori legitimate question since R is a set of
MATH objects and R is such an object.

Well, if yes, then it satisfies the entrance condition R /∈ R. A
contradiction!

• OK, assume then the opposite of what we assumed in the above
bullet, namely, R /∈ R. But then R satisfies the entrance condition!
So R gets in! We have R ∈ R. A contradiction!

So both “R /∈ R” and “R ∈ R” are false (and hence both are true!)
A mind boggling very very bad situation! �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

20 1. Some Elementary Informal Set Theory

This and similar paradoxes motivated mathematicians to develop
formal symbolic logic and look to axiomatic set theory† as a means to
avoid paradoxes like the above.

Other mathematicians who did not care to use mathematical logic
and axiomatic theories found a way to do set theory informally, yet
safely.

See, they asked and answered “how are sets formed?”‡

Read on!

†There are many flavours or axiomatisations of set theory, the most frequently used being the “ZF” set theory,
due to Zermelo and Fraenkel.

‡Actually, axiomatic set theory —in particular, its axioms are— is built upon the answers this group came up
with. This story is told at an advanced level in [Tou03b].

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Chapter 2

Safe Set Theory

Jan. 11, 2023

� So, some collections of sets and/or atoms are not —technically— sets,
as the Russell Paradox taught us! How do we tell them apart? �

From now on we will deal with collections that may or may not be
sets, with a promise of learning how to create sets if we want to!

The modern literature uses the terminology “class” for any such
collection of sets and/or atoms (and uses the term “collection” non
technically and sparsely). A proper class is a non set collection.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

22 2. Safe Set Theory

The above is captured by the following picture:

All Classes

All Sets

All Proper Classes
(nonSets)

So some classes are proper (NON sets) and some are not.

So every set is a class but NOT the other way around!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

23

2.0.1 Definition. (Classes and sets)

From now on we call all collections classes.

Definitions by defining property “Let A = {x : P (x)}”, where x is a
set/atom-type variable!, always define a class, but as we saw, some-
times —e.g., if “P (x)” is specifically “x /∈ x”— that class is not a set
(Section 1.1).

Classes that are not sets are called proper classes. We will nor-
mally use what is known as “blackboard bold” notation and capital
latin letters to denote classes by names such as A,B,X. If we deter-
mine that some class A is a set, we would rather write it as A, but we
make an exception for the following sets:

Mathematicians use notation and results from set theory in their
everyday practice. We call the sets that mathematicians use the “real
sets” of our mathematical intuition, like the set of natural numbers,
N (also denoted by ω), integers Z, rationals Q, reals R and complex
numbers C. □

2.0.2 Example. Thus if R is the Russel (proper) class, then the con-
figuration

{R}

is not allowed —it is meaningless.

Because ALL classes are collections of atoms and sets only. We
never said that it is OK, and will NOT allow proper classes as
members of classes!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

24 2. Safe Set Theory

Of course Cantor would not care and allow {R} and even this

{{{R}}, R}

because in his set theory ALL collections were “sets” or “classes” or
“aggregates” or . . . (just give me a Dictionary!) □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

25

� In forming the class {x : P (x)} for any property P (x) we say that
we apply comprehension. It was the Frege/Cantor belief (explicitly
or implicitly) that comprehension was safe —i.e., they believed that
{x : P (x)} always was a set. We saw that Russell proved that it was
not. �

It is known that set theory, using as primitives the notions of set,
atom (an object that is not sub-divisible; not a collection of objects),
and the relation belongs to (∈), is sufficiently strong to serve as the
foundation of all mathematics.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

26 2. Safe Set Theory

2.1. The “real sets” —Introduction to Stages

So, how can we tell, or indeed guarantee, that a certain class is a set?
Russell proposed this “recovery” from his Paradox:

�

Make sure that sets are built by stages, where at stage 0 all atoms
are available.

Atoms are also called urelements in the literature, from the German
Urelemente, which in analogy with the word “urtext” —meaning the
earliest text— would mean that they are the “earliest” mathematical
objects. Witness that they are available at stage 0! �

We may then collect atoms to form all sorts of “first level” sets. We
may proceed to collect any mix of atoms and first-level sets to build
new collections —second-level sets— and so on.

Much of what set theory does is attempting to remove any ambiguity
from this “and so on”. See below, Principles 0–2.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.1. The “real sets” —Introduction to Stages 27

Thus, at the beginning we have all the level-0, or type-0, objects
available to us. For example, atoms such as 1, 2, 13,

√
2 are available.

At the next level we can include any number of such atoms (from
none at all, to all) to build a set, that is, a new mathematical object.

Allowing the usual notation, i.e., listing of what is included within
braces, we may cite a few examples of level-1 sets:

L1-1. {1}.

L1-2. {1, 1}.

L1-3. {1,
√
2}.

L1-4. {
√
2, 1}.

L1-5. N,Z,Q,R,C.

We already can identify a level-2 object, using what (we already
know) is available:

L2-1. {{
√
2, 1}, 42}.

� Note how the level of nesting of { }-brackets matches the level or stage
of the formation of these objects! �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

28 2. Safe Set Theory

2.1.1 Definition. (Class and set equality) This definition applies
to any classes, hence, in particular, to any sets as well.

Two classes A and B are equal —written A = B— means

x ∈ A iff x ∈ B (1)

That is, an object is in A iff it is also in B.

The IF: Read (1). So, IF x ∈ B then x ∈ A.

The ONLY IF: Read (1). So, I have x ∈ A ONLY IF x ∈ B, or
x ∈ B is forced (“only if”) or implied from x ∈ A.

A is a subclass of B —written A ⊆ B— means that every element of
the first class occurs also in the second, or

If x ∈ A, then x ∈ B (2)

If A is a set, then we say it is a subset of B.

If we have A ⊆ B but A ̸= B, then we write A ⫋ B (some of the
literature uses A ⊊ B or even A ⊂ B instead) and say that A is a
proper subclass of B.

Caution. In the terminology “proper subclass” the “proper” refers
to the fact that A is not all of B. It does NOT say that A is not a set!
It may be a set and then we say that it is “proper subset” of B. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.1. The “real sets” —Introduction to Stages 29

� If n is an integer-valued variable, then what do you understand by the
statement “2n is even”?

The normal understanding is that “no matter what the value of n
is, 2n is even”, or “for all values of n, 2n is even”.

When we get into our logic topic in the course we will see that we
can write “for all values of n, 2n is even” with less English as “(∀n)(2n
is even)”. So “(∀n)” says “for all (values of) n”.

Mathematicians often prefer to have statements like “2n is even”
with the “for all” implied.† You can write a whole math book without
writing ∀ even once, and without overdoing the English.

Thus in (1) and (2) above the “forall x” is implied. �

†An exception occurs in Induction that we will study later, where you fix an n (but keep it as a variable, not as
5 or 42) and assume the “induction hypothesis” P (n). But do not worry about this now!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

30 2. Safe Set Theory

2.1.2 Remark. Since “iff” between two statements S1 and S2 means
that we have both directions —boxed statement in 2.1.1,

If S1, then S2

and
If S2, then S1

we have that “A = B” is the same as (equivalent to) “A ⊆ B and
B ⊆ A” (2.1.1. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.1. The “real sets” —Introduction to Stages 31

2.1.3 Example. In the context of the “A = {x : P (x)}” notation we
should remark that notation-by-listing can be simulated by notation-
by-defining-property: For example, {a} = {x : x = a} —here “P (x)”
is x = a.

Also {A,B} = {x : x = A or x = B}. Let us verify the latter: Say
x ∈ lhs.† Then x = A or x = B. But then the entrance requirement
of the rhs‡ is met, so x ∈ rhs.

Conversely, say x ∈ rhs. Then the entrance requirement is met so
we have (at least) one of x = A or x = B (“true” implied).

Trivially, in the first case x ∈ lhs and ditto for the second case. □

†Left Hand Side.
‡Right Hand Side.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

32 2. Safe Set Theory

Jan. 13, 2023

We now postulate the principles of formation of sets!

Principle 0. Sets and atoms are the mathematical objects of our
(safe) set theory.

Sets are formed by stages. At stage 0 we have (and acknowledge)
the presence of atoms. They are given outright, they are not built.

At any stage Σ we are allowed to build a set, collecting together
other mathematical objects (sets or atoms) provided these (mathe-
matical) objects we put into our set were available at stages before
Σ.

Principle 1. Every set is built at some stage. A set does not
just happen!

Principle 2. If Σ is a stage of set construction, then there is a stage
Φ after it.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.1. The “real sets” —Introduction to Stages 33

� Principle 2 makes clear that we have infinitely many stages of set for-
mation in our toolbox.

“Clear”?

Can you argue that informally? (Exercise! Hint. Combine Prop-
erty 2 statement with a “what if”: What if there are only finitely many
stages? and go for a contradiction from the what if.)

Incidentally the property of a stage being “before” another is exactly
like “<” on the integers:

1. For any two integers n,m the statement “n = m or n < m or
m < n” is true.

2. We cannot have n < n, for any n (this is the “irreflexivity” of “<”).

3. If we have n < m and m < r, then n < r (this is the “transitivity”
of “<”).

For stages,

Using “<” as short for “lhs comes before rhs”, then

1′. For any two stages Σ and Σ′ the statement “Σ = Σ′ or Σ < Σ′ or
Σ′ < Σ” is true.

2′. We cannot have Σ is before (or after) Σ, for any Σ.

3′. If we have Σ < Σ′ and Σ′ < Σ′′, then Σ < Σ′′.

�

Notes on Discrete MATH (EECS1028)© G. Tourlakis

34 2. Safe Set Theory

2.1.4 Remark. If some set is definable (“buildable”) at some stage Σ,
then it is also definable at any later stage as well, as Principle 0 makes
clear.

The informal set-formation-by-stages Principle will guide us to
build, safely, all the sets we may need in order to do mathematics.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.2. What caused Russell’s paradox 35

2.2. What caused Russell’s paradox

How would the set-building-by-stages doctrine avoid Russell’s para-
dox?

� Recall that à la Cantor we get a paradox (contradiction) because we
insisted to believe that all classes are sets, that is, following Cantor we
“believed” Russell’s “R” was a set. �

Principles 0–2 allow us to know a priori that R is a proper class. No
contradiction is obtained!

How so?

OK, is x ∈ x true or false? Is there any mathematical object x

—say, A— for which it is true?

A ∈ A? (1)

1. Well, for atom A, (1) is false since atoms have no set structure,
that is, are not collections of objects. An atom A cannot contain
anything, in particular it cannot contain A.

2. What if A is a set and A ∈ A? Then in order to build A, the set
on the rhs, we have to wait until after its member, A —the set on
the lhs— is built (Principle 0). So, we need (the left) A to be built
before (the right) A in (1).

Absurd!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

36 2. Safe Set Theory

So (1) is false. A being arbitrary, we have just demonstrated that

x ∈ x is false

thus x /∈ x is true (for all x), therefore R of Section 1.1 is U, the
universe of all sets and atoms.

R = U

So?

Well,

So here is why U —that is R— is not a set. Well, if it is, then

• U ∈ U since the rhs contains all sets and we assumed the lhs to
be a set.

• but we just saw that the above is false if U is a set!

So U, aka R, is a proper class. Thus, the fact that R is not a set is
neither a surprise, nor paradoxical. It is just a proper class as we just
have recognised.

BTW,
A class A is proper iff we have NO stage left to build it (Principles

0 and 1).
Intuitively then if we ran out of stages building A it means that

there are are far too many elements in A—this class is “enormous”,
as indeed is U.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.2. What caused Russell’s paradox 37

� Often the informal (and sloppy) literature on sets will blame “size” for
a class failing to be a set. That is dangerous. Lack of set status must
be connected with lack of a stage at which to build said class as a set.

Incidentally not all “LARGE” classes contain “everything”. We will
see later that if we remove ALL atoms from U, then what remains is
a proper class too. So is S = {{x} : x ∈ U}: The class of all 1-element
sets. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

38 2. Safe Set Theory

2.3. Some useful sets

2.3.1 Example. (Pair) By Principles 0, 1, if A and B are sets or
atoms, then let A be available at stage Σ and B at stage Σ′. Without
loss of generality say Σ′ is not later than (after) Σ.

� For two stages Φ and Ψ we can write Φ ≤ Ψ as short for Φ < Ψ or
Φ = Ψ. �

Pick a stage Σ′′ after Σ (Principle 2). This will be be after both (cf.
Principle 2 and the �-remark there, on p.33) Σ,Σ′. So,

Σ′ ≤ Σ < Σ′′

At stage Σ′′ we can build

{A,B} (1)

as a set (because both A and B are available! cf. Principle 0).
We call (1) the (unordered) pair set.

Pause. Why “unordered”? See 2.1.1.◀ □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.3. Some useful sets 39

We have just proved a theorem above:

2.3.2 Theorem. If A,B are sets or atoms, then {A,B} is a set.

2.3.3 Exercise. Without referring to stages in your proof, prove that
if A is a set or atom, then {A} is a set. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

40 2. Safe Set Theory

Jan. 16, 2023

2.3.4� Remark. A very short digression into Boolean Logic —
for now. It will be convenient —but not necessary; we are doing fine
so far— to use truth tables to handle many simple situations that we
will encounter where “logical connectives” such as “not”, “and”, “or”,
“implies” and “is equivalent” enter into our arguments.

We will put on record here how to compute things such as “S1 and
S2”, “S1 implies S2”, etc., where S1 and S2 stand for two arbitrary
statements of mathematics. In the process we will introduce the math-
ematical symbols for “and”, “implies”, etc.

The symbol translation table from English to symbol is:

NOT ¬
AND ∧
OR ∨

IMPLIES (IF. . . ,THEN) →
IS EQUIVALENT ≡

The truth table below has a simple reading. For all possible truth
values —true/false, in short t/f— of the “simpler” statements S1 and
S2 we indicate the computed truth value of the compound (or “more
complex)” statement that we obtain when we apply one or the other
Boolean connective of the previous table to S1 and S2.

S1 S2 ¬S1 S1 ∧ S2 S1 ∨ S2 S1 → S2 S1 ≡ S2 S2 → S1

f f t f f t t t
f t t f t t f f
t f f f t f f t
t t f t t t t t

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.3. Some useful sets 41

Comment. All the computations of truth values satisfy our intu-
ition, except perhaps that for “→”: Indeed, ¬ flips the truth value
as it should, ∧ is eminently consistent with common sense, ∨ is the
“inclusive or” of the mathematician, and ≡ is just equality on the set
{f , t}, as it should be.

The “problem” with→ is that there is no causality from left to right.
The only “sane” entry seems to be for t→ f . The outcome should be
false for a “bad implication”† and so it is.

But look at it this way:

• Implication is supposed to preserve truth in proofs.

But it does just that! Look at → truth column!

• This version of → goes way back to Aristotle. It is the version
used by the vast majority of practising mathematicians and is nick-
named “material implication” or “classical implication”.

†A bad implication has a true premise but a false conclusion. A correct implication ought to preserve truth!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

42 2. Safe Set Theory

Practical considerations. Thus

1. if you want to demonstrate that S1∨S2 is true, for any component
statements S1, S2, then show that at least one of the S1 and S2 is
true.

2. If you want to demonstrate that S1 ∧ S2 is true, then show that
both of the S1 and S2 are true.

Note, incidentally, the if we know that S1 ∧ S2 is true, then the
truth table guarantees that each of S1 and S2 must be true.

3.

If now you want to show the implication S1 → S2 is true, then
the only real work is to show that if we assume S1 is
true, then S2 is true too.

If S1 is known to be false, then no work is required to prove the
implication because of the first two lines of the truth table!!

4. If you want to show S1 ≡ S2, then —because the last three columns

show that this is computed with the same result as
(
S1 → S2

)
∧(

S2 → S1

)
— it follows that you just have to compute and “show”

that each of the two implications S1 → S2 and S2 → S1 is true.

Priorities and Bracketing. Priority order is

¬,∧,∨,→,≡

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.3. Some useful sets 43

So, A∨B∧C says A∨(B∧C), ¬A∨B says (¬A)∨B, A ≡ B ≡ C
says A ≡ (B ≡ C), A → B → C says A → (B → C), A ∨ B ∨ C
says A ∨ (B ∨ C) (right associativity).

An important variant of → and ≡

Pay attention to this point since almost everybody gets it
wrong! In the literature and in the interest of creating a usable
shorthand many practitioners of mathematical writing use sloppy
notation

S1 → S2 → S3 (1)

attempting to convey the meaning

(S1 → S2) ∧ (S2 → S3) (2)

Alas, (2) is not the same as (1)! But what about a < b < c for
a < b ∧ b < c? That is wrong too!

Back to →-chains like (1) vs. chains like (2):

Take S1 to be t (true), S2 to be f and S3 to be t. Then (1) is
true because in a chain using the same Boolean connective we put
brackets from right to left : (1) is S1 → (S2 → S3) and evaluates
to t, while (2) evaluates clearly to false (f) since S1 → S2 = f and
S2 → S3 = t.

So we need a special symbol to denote (2) “economically”. We

Notes on Discrete MATH (EECS1028)© G. Tourlakis

44 2. Safe Set Theory

need a conjunctional implies ! Most people use =⇒ for that:

S1 =⇒ S2 =⇒ S3 (3)

that means, by definition, (2) above.

Similarly,
S1 ≡ S2 ≡ S3 (4)

isNOT conjunctional. It is not two equivalences —two statements—
connected by an implied “∧”, rather it says

S1 ≡ (S2 ≡ S3)

ONE formula, ONE statement.

Now if S1 = f , S2 = f and S3 = t, then (4) evaluates as t but the
conjunctional version

(S1 ≡ S2) ∧ (S2 ≡ S3) (5)

evaluates as f since the second side of ∧ is f .

So how do we denote (5) correctly without repeating the consecu-
tive S2’s and omitting the implied “∧”? This way:

S1 ⇐⇒ S2 ⇐⇒ S3 (4)

By definition, “⇐⇒” —just like “iff”— is conjunctional: It applies
to two statements —Si and Si+1— only and implies an ∧ before
the adjoining next similar equivalence. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.3. Some useful sets 45

2.3.5 Theorem. (The subclass theorem) Let A ⊆ B (B a set).
Then A is a set.

Proof. Well, B being a set there is a stage Σ where it is built (Princi-
ple 1). By Principle 0, all members of B are available or built before
stage Σ.

But by A ⊆ B, all the members of A are among those of B.
Hey! By Principle 0 we can build A at stage Σ, so it is a set. □

Some corollaries are useful:

2.3.6 Corollary. (Modified comprehension I) If for all x we have

P (x)→ x ∈ A (1)

for some set A, then B = {x : P (x)} is a set.

Proof. I will show that B ⊆ A, that is,

x ∈ B→ x ∈ A

Indeed (see 3 under Practical considerations in 2.3.4), let x ∈ B.
Then P (x) is true, hence x ∈ A by (1). Now invoke 2.3.5. □

2.3.7 Corollary. (Modified comprehension II) If A is a set, then
so is B = {x : x ∈ A ∧ P (x)} for any property P (x).

Proof. The defining property here is “(x ∈ A)† ∧ P (x)”. This implies
x ∈ A —by 2 in 2.3.4— that is, we have

(x ∈ A ∧ P (x))→ x ∈ A

Now invoke 2.3.6. □
†Brackets not needed; inserted for extra clarity.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

46 2. Safe Set Theory

Jan. 18, 2023

2.3.8� Remark. (The empty set) The class E = {x : x ̸= x} has no
members at all; it is empty. Why? Because

x ∈ E ≡ x ̸= x

but the condition x ̸= x is always false, therefore so is the statement

x ∈ E (1)

We do not collect anything into E. Is the class E a set?

Well, take A = {1}. This is a set as the atom 1 is given at stage 0,
and thus we can construct the set A at stage 1.

Note that, by (1) and 3 in 2.3.4 we have that

x ∈ E→ x ∈ {1}

is true (for all x). That is, E ⊆ {1}.

By 2.3.5, E is a set.

But is it unique so we can justify the use of the definite article “the”?
Yes. The specification of an empty set is a class with no members. So
if D is another empty set, then we will also have x ∈ D always false.
But then

x ∈ E ≡ x ∈ D (both sides of ≡ are false)

and we have E = D by 2.1.1.

The unique empty set is denoted by the symbol ∅ in the literature.
Never use “{}” for the empty set. Incorrect notation! □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.4. Operations on classes and sets 47

2.4. Operations on classes and sets

The reader probably has seen before (perhaps in calculus) the opera-
tions on sets denoted by ∩,∪,− and others. We will look into them in
this section.

2.4.1 Definition. (Intersection of two classes) We define for any
classes A and B

A ∩ BDef
=

{
x : x ∈ A ∧ x ∈ B

}
(1)

We call the operator ∩ intersection and the result A∩B the intersection
of A and B.

If A ∩ B = ∅ —which happens precisely when the two classes have
no common elements— we call the classes disjoint.

Taking liberties with notation (of definition by defining property) we
may write instead of (1) either

A ∩ BDef
=

{
x ∈ A : x ∈ B

}
(1′)

or
A ∩ BDef

=
{
x ∈ B : x ∈ A

}
(1′′)

It is meaningless to have ∩ operate on atoms.† □

We have the easy theorem below:

†The definition expects ∩ to operate on classes. As we know, atoms (by definition) have no set/class structure
thus no class and no set is an atom.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

48 2. Safe Set Theory

2.4.2 Theorem. If B is a set, as its notation suggests, then A∩B is
a set.

Proof. I will prove A ∩ B ⊆ B which will rest the case by 2.3.5. So, I
want

x ∈ A ∩B → x ∈ B

To this end, let then x ∈ A ∩ B (cf. 3 in 2.3.4). This says that x ∈
A ∧ x ∈ B is true, so x ∈ B is true. □

2.4.3 Corollary. For sets A and B, A ∩B is a set.

2.4.4 Definition. (Union of two classes) We define for any classes
A and B

A ∪ BDef
=

{
x : x ∈ A ∨ x ∈ B

}
We call the operator ∪ union and the result A∪B the union of A and B.

It is meaningless to have ∪ operate on atoms. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.4. Operations on classes and sets 49

2.4.5 Theorem. For any sets A and B, A ∪B is a set.

Proof. By assumption say A is built at stage Σ while B is built at
stage Σ′. Without loss of generality (in short, “wlg”) say Σ is no later
than Σ′, that is, Σ ≤ Σ′.

By Principle 2, I can pick a stage Σ′′ > Σ′, thus (transitivity of “later”)

Σ′′ > Σ′ (1)

and
Σ′′ > Σ (2)

Lets us pick any item x ∈ A ∪B:
I have two (not necessarily mutually exclusive) cases (by 2.4.4):

• x ∈ A. Then x was available or built† at a stage < Σ,

hence, by (2), x is available before Σ′′ (3)

• x ∈ B. Then x was available or built at a stage < Σ′,

hence, by (1), x is available before Σ′′ (4)

In either case, (3) or (4), the arbitrary x from A∪B is available before
Σ′′, so we can collect all those x-values at stage Σ′′ in order to form a
set: A ∪B. □

†As x may be an atom, we allow the possibility that it was available with no building involved, hence we said
“available or built”. For A and B though we are told they are sets, so they were built at some stage, by Principle 1!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

50 2. Safe Set Theory

2.4.6 Definition. (Difference of two classes) We define for any classes
A and B

A− BDef
=

{
x : x ∈ A ∧ x /∈ B

}
(1)

We call the operator “−” difference and the result A−B the difference
of A and B, in that order.

It is meaningless to have “−” operate on atoms. □

� Notation. As was the case for ∩ (Definition 2.4.1) for “−” too we
have a shorter alternative notation to (1) above:

A− BDef
=

{
x ∈ A : x /∈ B

}
�

2.4.7 Theorem. For any set A and class B, A− B is a set.

Proof. The reader is asked to verify that A− B ⊆ A. We are done by
2.3.5. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.4. Operations on classes and sets 51

2.4.8 Exercise. Prove that {Z} is a set, where Z is the set of integers
{. . . ,−1, 0, 1, . . .}. □

2.4.9 Exercise. Demonstrate —using Definition 2.4.1— that for any
A and B we have A ∩ B = B ∩ A. □

2.4.10 Exercise. Demonstrate —using Definition 2.4.4— that for any
A and B we have A ∪ B = B ∪ A. □

2.4.11 Exercise. By picking two particular very small sets A and B
show that A−B = B − A is not true for all sets A and B.

Is it true of all classes? □

Let us generalise unions and intersections next. First a definition:

2.4.12 Definition. (Family of sets) A class F is called a family of
sets iff it contains no atoms. The letter F is here used generically, and
a family may be given any name, usually capital (blackboard bold if
we do not know that it is a set). □

2.4.13 Example. Thus, ∅ is a family of sets; the empty family.
So are {{2}, {2, {3}}} and V, the latter given by

VDef
=

{
x : x is a set

}
BTW, as V contains all sets (but no atoms!) it is a proper class!
Why? Well, if it is a set, then it is one of the x-values that we are
collecting, thus V ∈ V. But we saw that this statement is false for sets!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

52 2. Safe Set Theory

Here are some classes that are not families: {1}, {2, {{2}}} and
U, the latter being the universe of all objects —sets and atoms— and
equals Russell’s “R” as we saw in Section 2.2. These all are disqualified
as they contain atoms. □

2.4.14 Definition. (Intersection and union of families) Let F be
a family of sets. Then

(i) the symbol
⋂
F denotes the class that contains all the objects that

are common to all A ∈ F.
In symbols the definition reads:⋂

FDef
=

{
x : for all A,A ∈ F→ x ∈ A

}
(1)

(ii) the symbol
⋃
F denotes the class that contains all the objects that

are found among the various A ∈ F. That is, imagine that the
members of each A ∈ F are “emptied” into a single —originally
empty— container {. . .}. The class we get this way is what we
denote by

⋃
F.

In symbols the definition reads (and I think it is clearer):⋃
FDef

=
{
x : for some A,A ∈ F ∧ x ∈ A

}
(2)

□

2.4.15 Example. Let F = {{1}, {1, {2}}}. Then emptying all the
contents of the members of F into some (originally) empty container
we get

{1, 1, {2}} (3)

This is
⋃
F.

Would we get the same answer from the mathematical definition
(2)? Of course:

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.4. Operations on classes and sets 53

1 is in some member of F, indeed in both of the members {1} and
{1, {2}}, and in order to emphasise this I wrote two copies of 1 —it is
emptied/contributed twice. Then {2} is the member that only {1, {2}}
of F contributes.

We do not see any other members in the two set-members —{1}
and {1, {2}}— of F. So, all done!

What is
⋂
F? Well, only 1 is common between the two sets —{1}

and {1, {2}}— that are in F. So,
⋂

F = {1}. □

2.4.16 Exercise.

1. Prove that
⋃{

A,B
}
= A ∪B.

2. Prove that
⋂{

A,B
}
= A ∩B.

Hint. In each of part 1. and 2. show that lhs ⊆ rhs and rhs ⊆ lhs. For
that analyse membership, i.e., “assume x ∈ lhs and prove x ∈ rhs”,
and conversely (cf. 2.1.1 and 2.1.2.) □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

54 2. Safe Set Theory

Jan. 20, 2023

2.4.17 Theorem. If the set F is a family of sets, then
⋃

F is a set.

Proof. Let F be built at stage Σ (Princ. 1). Now,

x ∈
⋃

F ≡ x ∈

some
↓
A ∈ F

Thus x is available or built before A which is built before stage Σ since
that is when F was built. x being arbitrary, all members of

⋃
F are

available/built before Σ, so we can build
⋃

F as a set at stage Σ. □

2.4.18 Theorem. If the class F ̸= ∅ is a family of sets, then
⋂

F is a
set.

Proof. By assumption there is some set in F. Fix one such and call it
D.

First note that
x ∈

⋂
F→ x ∈ D (∗)

Why? Because (1) of Definition 2.4.14 (1) says that

x ∈
⋂

F ≡ for all A ∈ F we have x ∈ A

Well, D is one of those “A” sets in F, so if x ∈
⋂

F then x ∈ D. We
established (∗) and thus we established⋂

F ⊆ D

by 2.1.1. We are done by 2.3.5. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.4. Operations on classes and sets 55

2.4.19� Remark. What if F = ∅? Does it affect Theorem 2.4.18? Yes,
badly!

In Definition 2.4.14 we read⋂
FDef

=
{
x : for all A,

f︷ ︸︸ ︷
A ∈ F→ x ∈ A

}
(∗∗)

However, as the hypothesis (i.e., lhs) of the implication in (∗∗) is
false, the implication itself is true. Thus the entrance condition
“for all A,A ∈ F → x ∈ A” is true for all x and thus allows ALL
objects x to get into

⋂
F,

Thus
⋂
F = U, the universe of all objects which we saw (cf. Sec-

tion 2.2) is a proper class —i.e., not a set. □ �

2.4.20 Exercise. What is
⋃

F if F = ∅? Set or proper class? Can
you “compute” which class it is exactly? □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

56 2. Safe Set Theory

2.4.21� Remark. (More notation)

Suppose the family of sets Q is a set of sets Ai, for i = 1, 2, . . . , n
where n ≥ 3.

Q = {A1, A2, . . . , An}

Then we have a few alternative notations for
⋂

Q:

(a)

A1 ∩ A2 ∩ . . . ∩ An

or, more elegantly,

(b)
n⋂

i=1

Ai

or also

(c) ⋂n

i=1
Ai

Similarly for
⋃

Q:

(i)

A1 ∪ A2 ∪ . . . ∪ An

or, more elegantly,

(ii)
n⋃

i=1

Ai

or also

(iii) ⋃n

i=1
Ai

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.4. Operations on classes and sets 57

If the family has so many elements that all the natural numbers are
needed to index the sets in the set family Q we will write

∞⋂
i=0

Ai

or ⋂∞

i=0
Ai

or ⋂
i≥0

Ai

or ⋂
i≥0

Ai

for
⋂

Q and
∞⋃
i=0

Ai

or ⋃∞

i=0
Ai

or ⋃
i≥0

Ai

or ⋃
i≥0

Ai

for
⋃

Q □ �

2.4.22 Example. Thus, for example, A ∪ B ∪ C ∪D can be seen —
just changing the notation— as A1 ∪A2 ∪A3 ∪A4, therefore it means,⋃
{A1, A2, A3, A4}, or

⋃
{A,B,C,D}.

Same comment for ∩. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

58 2. Safe Set Theory

Pause. How come for the case for n = 2 we proved † A ∪ B =⋃
{A,B} (2.4.16) but here we say (n ≥ 3) that something like the

content of the previous remark and example are just notation (defini-
tions)?

Well, we had independent definitions (and associated theorems re
set status for each, 2.4.5 and 2.4.17) for A ∪ B and

⋃
{A,B} so it

makes sense to compare the two independent definitions after the fact
and see if we can prove that they say the same thing.

For n ≥ 3 we opted to NOT give a definition for A1∪ . . .∪An that
is independent of

⋃
{A1 ∪ . . . ∪ An}, rather we gave the definition

of the former in terms of the latter.

No independent definitions, no theorem to compare the two!◀

†Well, you proved! Same thing :-)

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.5. The powerset 59

2.5. The powerset

2.5.1 Definition. For any set A the symbol P(A) —pronounced the
powerset of A— is defined to be the class

P(A)
Def
=

{
x : x ⊆ A

}
Thus we collect all the subsets x of A to form P(A).

The literature most frequently uses the symbol 2A in place for P(A).

□

� (1) The term “powerset” is slightly premature, but it is apt. Under
the conditions of the definition —A a set— 2A is a set as we prove
immediately below.

(2) We said “all the subsets x of A” in the definition. This is correct.
As we know from 2.3.5, if X ⊆ Y and Y is a set, then so is X. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

60 2. Safe Set Theory

2.5.2 Theorem. For any set A, its powerset P(A) is a set.

Proof. Let A be built at stage Σ.
We need three steps to argue this:

Step 1. By Princ. 2, pick a stage Σ′ after Σ: That is, Σ < Σ′.

Step 2. IF x ⊆ A, then we can build x at stage Σ (same as A).

Indeed, by Princ. 0, —and because all members of x are also
members of A— they are all available BEFORE Σ (the stage
at which A was built). So we can also build x at stage Σ.

Step 3. But then (Princ. 0) I can collect ALL the x satisfying x ⊆ A

and form 2A as a set at stage Σ′ (> Σ). □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

2.5. The powerset 61

2.5.3 Example. Let A = {1, 2, 3}. Then

P(A) =
{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {3, 2}, {1, 2, 3}

}
Thus the powerset of A has 8 elements.

We will later see that if A has n elements, for any n ≥ 0, then 2A has
2n elements. This observation is at the root of the notation “2A”. □

2.5.4 Remark. For any set A it is trivial (verify!) that we have ∅ ⊆ A
and A ⊆ A. Thus, for any A, {∅, A} ⊆ 2A. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

62 2. Safe Set Theory

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Chapter 3

The Ordered Pair and Cartesian
Products

Jan. 23, 2023

To introduce the concepts of cartesian product —so that, in prin-
ciple, plane analytic geometry can be developed within set theory—
we need an object “(A,B)” that is like the set pair (2.3.1) in that it
contains two objects, A and B (A = B is a possibility), but in (A,B)
order and length (here it is 2) matter!

That is,

We want (A,B) = (A′, B′) implies A = A′ and B = B′. Moreover,
(A,A) is not {A}! It is still an ordered pair but so happens that the
first and second component, as we call the members of the ordered
pair, are equal in this example.

� So, are we going to accept a new type of object in set theory? Not at
all! We will build (A,B) so that it is a set! �

3.0.1 Definition. (Ordered pair) By definition, (A,B) is the abbre-
viation (short name) given below:

(A,B)
Def
=

{
A, {A,B}

}
(1)

Notes on Discrete MATH (EECS1028)© G. Tourlakis

64 3. The Ordered Pair and Cartesian Products

We call “(A,B)” an ordered pair, and A its first component, while
B is its second component. □

3.0.2� Remark.

1. Note that A ̸= {A,B} because we would otherwise get A ∈ A,
which is false for sets or atoms A. Thus (A,B) does contain exactly
two members, or has length 2:

A and {A,B}.

Pause. We have not said in 3.0.1 that A and B are sets or atoms.
So what right do we have in the paragraph above to so declare?◀

2. What about the desired property that

(A,B) = (X, Y)→ A = X ∧B = Y (2)

Well, assume the lhs of “→” in (2) and prove the rhs, “A =
X ∧B = Y ”.

From our truth table we know that we do the latter by proving
each of A = X and B = Y true (separately).

The lhs that we assumed translates to{
A, {A,B}

}
=

{
X, {X, Y }

}
(3)

By the remark #1 above there are two distinct members in each
of the two sets that we equate in (3).

So since (3) is true (by assumption) we have (by definition of set
equality) one of:

(a) A = {X, Y } and {A,B} = X, that is, 1st listed element in
lhs of “=” equals the 2nd listed in rhs; and 2nd listed
element in lhs of “=” equals the 1st listed in rhs.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

65

(b) A = X and {A,B} = {X, Y }.

Now case (a) above cannot hold, for it leads to A = {{A,B}, Y }.
This in turn leads to

{A,B} ∈ A

and thus the set {A,B} is built before ONE of its members, A,
which contradicts Principle 0.

Let’s then work with case (b).

We have
{A,B} = {A, Y } (4)

Well, all the members on the lhs must also be on the rhs. I note that
A is.

• What if B is also equal to A? Then we have {B} = {A, Y } and
thus Y ∈ {B} (why?). Hence Y = B. We showed so far A = X

(listed in case (b)) and B = Y (proved here); great!

• Here B is not equal to A. But B must be in the rhs of (4), so the
only way is B = Y . All Done! □ �

Worth noting as a theorem what we proved above:

3.0.3 Theorem. If (A,B) = (X, Y), then A = X and B = Y .

But is (A,B) a set? (atom it is not, of course!) Yes!

3.0.4 Theorem. (A,B) is a set.

Proof. Now (A,B) =
{
A, {A,B}

}
. By 2.3.1, {A,B} is set. Applying

2.3.1 once more,
{
A, {A,B}

}
is a set. □

3.0.5 Example. So, (1, 2) = {1, {1, 2}}, (1, 1) = {1, {1}}, and ({a}, {b}) =
{{a}, {{a}, {b}}}. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

66 3. The Ordered Pair and Cartesian Products

3.0.6� Remark. We can extend the ordered pair to ordered triple, or-
dered quadruple, and beyond!

We take this approach in these notes:

(A,B,C)
Def
=

(
(A,B), C

)
(1)

(A,B,C,D)
Def
=

(
(A,B,C), D

)
(2)

(A,B,C,D,E)
Def
=

(
(A,B,C,D), E

)
(3)

etc. So suppose we defined what an n-tuple is, for some fixed unspec-
ified n, and denote it by (A1, A2, . . . , An) for convenience. Then

(A1, A2, . . . , An, An+1)
Def
=

(
(A1, A2, . . . , An), An+1

)
(∗)

This is an “inductive” or “recursive” definition, defining a concept
(n+ 1-tuple) in terms of a smaller instance of itself, namely, in terms
of the concept for an n-tuple, and in terms of the case n = 2 that we
dealt with by direct definition (not in terms of the concept itself!) in
3.0.1.

(∗) is a general (for each length n that is) formation rule that allows
us to build a tuple longer by ONE, compared to a tuple we have
already built.

Suffice it to say this “case of n+1 in terms of case of n” provides just
shorthand notation to take the mystery out of the red “etc.” above.
We condense/codify infinitely many definitions (1), (2), (3), . . . into
just two:

• 3.0.1

and

• (∗)

Notes on Discrete MATH (EECS1028)© G. Tourlakis

67

The reader has probably seen such recursive definitions before (likely
in calculus and/or high school).

The most frequent example that occurs is to define, for any natural
number n and any real number a > 0, what an means. One goes like
this:

a0 = 1
an+1= a · an

The above condenses infinitely many definitions such as

a0= 1
a1= a · a0= a

a2= a · a1= a · a
a3= a · a2= a · a · a
a4= a · a3= a · a · a · a
...

into just two!
We will study inductive definitions and induction soon!

Before we exit this remark note that (A,B,C) = (A′, B′, C ′) implies
A = A′, B = B′, C = C ′ because it says (3.0.6 (1))

((A,B), C) = ((A′, B′), C ′)

and thus (3.0.3) implies

C = C ′ and (A,B) = (A′, B′)

That is, (A,B,C) is an ordered triple (3-tuple).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

68 3. The Ordered Pair and Cartesian Products

We can also prove that (A1, A2, . . . , An, An+1) is an ordered n+ 1-
tuple, i.e.,

(A1, A2, . . . , An+1) = (A′1, A
′
2, . . . , A

′
n+1)→ A1 = A′1∧. . .∧An+1 = A′n+1

if we have followed the “etc.” all the way to the case of (A1, A2, . . . , An).

We will do the “etc.”-argument elegantly once we learn induction!

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

3.1. The Cartesian product 69

3.0.7 Definition. (Finite sequences) An n-tuple for n ≥ 1 is called
a finite sequence of length n, where we extend the concept to a one
element sequence —by definition— to be

(A)
Def
= A

□

� Note that now we can redefine all sequences of lengths n ≥ 1 —pushing
the starting point of the “etc.-construction” in 3.0.6 to n = 1 (from
n = 2).

Using again (∗) above, but this time with starting condition that of
3.0.7, for n = 2 we rediscover (A1, A2):

the “new” 2-tuple pair: (A1, A2)
by (∗)
=

(
(A1), A2

)
by 3.0.7
=

(
A1, A2

)
The big red brackets are applications of the ordered pair defined in
3.0.1, just as it was in the general definition (∗). �

3.1. The Cartesian product

We next define classes of ordered pairs.

3.1.1 Definition. (Cartesian product of classes) Let A and B be
classes. Then we define

A× BDef
=

{
(x, y) : x ∈ A ∧ y ∈ B

}
The definition requires both sides of × to be classes. It makes no sense
if one or both are atoms.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

70 3. The Ordered Pair and Cartesian Products

Jan. 25, 2023

3.1.2 Theorem. If A and B are sets, then so is A×B.

Proof. By 3.1.1 and 3.0.1

A×B=
{{

x, {x, y}
}
: x ∈ A ∧ y ∈ B

}
(1)

Plan: I want to “find” a set “X” so that the inclusion A×B ⊆ X

is true. Then I can then apply the subclass theorem (2.3.5).
Thus I am starting my search with “let {x, {x, y}} ∈ A×B” and

I am analysing this statement attempting to find a superset, X, of
A×B, that is, find an X such that {x, {x, y}} ∈ X.

So, for each
{
x, {x, y}

}
∈ A×B we have x ∈ A and {x,

in B

↓
y } ⊆ A ∪B,

or x ∈ A and {x, y} ∈ 2A∪B.
Thus

{
x, {x, y}

}
⊆ A ∪ 2A∪B and hence (changing notation)

(x, y) ∈ 2A∪2
A∪B

I found a “X” that works: 2A∪2
A∪B

We have established that

A×B ⊆ 2A∪2
A∪B

thus A×B is a set by 2.3.5, 2.4.5 and 2.5.2. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

3.1. The Cartesian product 71

3.1.3 Definition. Mindful of the Remark 3.0.6 where we defined
(
A,B,C

)
as short for

(
(A,B), C

)
,
(
A,B,C,D

)
as short for

(
(A,B,C), D

)
,

etc., we define here A1 × . . .× An for any n ≥ 3 to mean

{(x1, x2, . . . xn) : xi ∈ Ai, for i = 1, . . . , n}

and do it as follows:

A×B × C
Def of A×B×C

= {(x, y, z) : x ∈ A ∧ y ∈ B ∧ z ∈ C}
= {((x, y), z) : x ∈ A ∧ y ∈ B ∧ z ∈ C}
= {((x, y), z) : (x, y) ∈ A×B ∧ z ∈ C}
= (A×B)× C

A×B × C ×D
Def
= (A×B × C)×D

...
A1 × A2 × . . .× An × An+1

Def
= (A1 × A2 × . . .× An)× An+1

...

We may write
n

×
i=1

Ai for A1 × A2 × . . .× An

If A1 = . . . = An = B we may write Bn for A1×A2× . . .×An. □

3.1.4 Remark. Thus, what we learnt in 3.1.3 is, in other words,
n

×
i=1

Ai
Def
=

{
(x1, . . . , xn) : xi ∈ Ai, for i = 1, 2, . . . , n

}
and

Bn Def
=

{
(x1, . . . , xn) : xi ∈ B

}
□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

72 3. The Ordered Pair and Cartesian Products

3.1.5 Theorem. If Ai, for i = 1, 2, . . . , n is a set, then so is
n

×
i=1

Ai.

Proof. A×B is a set by 3.1.2. By 3.1.3, and in this order, we verify
that so is A×B×C and A×B×C×D and . . . and A1×A2× . . .×An

and . . . □

� If we had inductive definitions available already, then Definition 3.1.3
would simply read

A1 × A2
Def
=

{
(x1, x2) : x1 ∈ A1 ∧ x2 ∈ A2

}
and, for n ≥ 2,

A1 × A2 × . . .× An × An+1
Def
= (A1 × A2 × . . .× An)× An+1

Correspondingly, the proof of 3.1.5 would be far more elegant, via
induction. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Chapter 4

Relations and functions

The topic of relations and functions is central in all mathematics and
computing.

In mathematics, whether it is calculus, algebra or anything else, one
deals with relations (notably equivalence relations, order) and all sorts
of functions while in computing one computes relations and functions,
that is, writing programs that given an input to a relation they com-
pute the response (true or false) or given an input to a function they
compute a response which is some object (number, graph, tree, ma-
trix, other) or nothing, in case there is no response for said input (for
example, there is no response to input “x, y” if what we are computing

is
x

y
but y = 0).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

74 4. Relations and functions

We are taking an “extensional” point of view in this course —as is
customary in set theory, algebra, calculus— of relations and functions,
that is, we view them as classes of (input, output) ordered
pairs.

It is also possible to take an intentional point of view, especially in
computer science and some specific areas of mathematics, viewing rela-
tions and functions as methods to compute outputs from given inputs.

4.1. Relations

4.1.1 Definition. (Binary relation) A binary relation is a class R†

of ordered pairs.

The statements (x, y) ∈ R, xRy and R(x, y) are equivalent.

xRy is the preferred “infix” notation —imitating notation such as A ⊂
B, x < y, x = y and has notational advantages. □

4.1.2� Remark. R contains just pairs (x, y), that is, just sets {x, {x, y}},
that is, it is a family of sets.

Since (x1, x2, . . . , xn) =
(
(x1, x2, . . . , xn−1), xn

)
, it follows that bi-

nary relations (classes of ordered pairs) is all we need to study.

†I write “R” or “R” for a relation, generically, but P, Q, S are available to use as well. I will avoid specific names
such as <, ⊆ in a general discussion. These two are apt to bring in in examples.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 75

BTW, a class of ordered n-tuples, (x1, x2, . . . , xn), is called an n-ary
relation. As I said above we do not need to pay special attention to
them. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

76 4. Relations and functions

4.1.3 Example. Examples of relations:

(i) ∅

(ii) {(1, 1)}

(iii) {(1, 1), (1, 2)}

(iv) N2, that is {(x, y) : x ∈ N∧ y ∈ N}. This is a set by the fact that
N is (Why?) and thus so is N× N by 3.1.2.

(v) < on N, that is {(x, y) : x < y ∧ x ∈ N ∧ y ∈ N}. This is a set
since <⊆ N2.

(vi) ∈, that is,
{(x, y) : x ∈ y ∧ x ∈ U ∧ y ∈ V} (∗)

This is a proper class (non set). Why? Well, if ∈ is a set, then it
is built at some stage Σ.

Now examine the arbitrary (x, y) in ∈. This is {x, {x, y}} so it
is built before Σ, but then so is its member x (available before
Σ). Thus we can collect all such x into a set at stage Σ. But
this “set” contains all x ∈ U due to the middle conjunct in the
entrance condition in (∗).† That is, this “set” is U. This is absurd!

□

†Hmm. Doesn’t the first conjunct “x ∈ y” reduce the number of x-values? No: For every x out there take
y = {x} thus the conjunct x ∈ y is fulfilled for all x-values, as I showed how to find a y that works.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 77

So, a binary relation R is a table of pairs:

input: x output: y

a b
a′ b′

...
...

u v
...

...

1. Thus one way to view R is as a device that for inputs x, valued
a, a′, . . . , u, . . . one gets the outputs y, valued b, b′, . . . , v, . . . respec-
tively. It is all right that a given input may yield multiple outputs
(e.g., case (iii) in the previous example).

2. Another point of view is to see both x and y as inputs and the
outputs are true or false (t or f). Such is the way we usually view
the relations < and = on the natural numbers.

For example, (a, b) is in the table (that is, aRb is true) hence if
both a and b are ordered input values, then the relation outputs t.

Most of the time we will take the point of view in 1 above. This point
of view compels us to define domain and range of a relation R, that is,
the class of all inputs that cause an output and the class of all caused
outputs respectively.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

78 4. Relations and functions

4.1.4 Definition. (Domain and range) For any relation R we de-
fine domain, in symbols “dom” by

dom(R)Def
= {x : (∃y)xRy}

where we have introduced the notation “(∃y)” as short for “there exists
some y such that”, or “for some y”.

Range, in symbols “ran”, is defined also in the obvious way:

ran(R)Def
= {x : (∃y)yRx} □

We settle the following, before other things:

4.1.5 Theorem. For a set relation R, both dom(R) and ran(R) are
sets.

Proof. For domain we collect all the x such that xRy, for some y, that
is, all the x such that

{x, {x, y}} ∈ R (1)

for some y.

So, R is a set family of sets{
{x, {x, y}}, {x′, {x′, y′}}, {x′′, {x′′, y′′}}, . . .

}
{
x, {x, y}, x′, {x′, y′}, x′′, {x′′, y′′}, . . .

}
=

⋃
R

dom(R) is thus the collection of all the x, x′, x′′, . . . (4.1.4).

Thus

dom(R) ⊆
⋃

R (†)

Now, R is a set-family of sets, thus
⋃

R is a set. But then by (†) and
the subclass theorem, dom(R) is a set. This settles the domain case.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 79

Let A be the set of all atoms in
⋃

R and define

S
Def
=

(⋃
R
)
− A

So, S is a set family, and it contains all the {x, y} parts of all {x, {x, y}} ∈
R. Thus,

S =
{
{x, y}, {x′, y′}, {x′′, y′′}, . . . ; plus those x, x′, x′′, . . . that are sets

}
Then

⋃
S contains all the y. That is, ran(R) ⊆

⋃
S, and that settles

the range case. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

80 4. Relations and functions

Jan. 27, 2023

4.1.6 Definition. In practice we often have an a priori decision about
what are in principle “legal” inputs for a relation R, and where its out-
puts go.

Thus we have two classes, A and B for the class of legal inputs and
possible outputs respectively. Clearly we have R ⊆ A× B.

We call A and B left field and right field respectively, and instead of
R ⊆ A× B we often write

R : A→ B

and also
A R−→B

pronounced “R is a relation from A to B”.

The term field —without left/right qualifiers— for R : A→ B refers
to A ∪ B.

If A = B then we have
R : A→ A

but rather than pronouncing this as “R is a relation from A to A” we
prefer † to say “R is on A”. □

4.1.7 Example. The a priori legal inputs in Number Theory and in
Computability are all the natural numbers. □

†Both ways of saying it are correct.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 81

4.1.8� Remark. Trivially, for any R : A → B, we have dom(R) ⊆ A
and ran(R) ⊆ B (give a quick proof of each of these inclusions).

Also, for any relation P with no a priori specified left/right fields,
P is a relation from dom(P)→ ran(P).

Naturally, we say that dom(P)∪ ran(P) is the field of P in this case.

□ �

4.1.9� Example. As an example, consider the divisibility relation on
all integers (their set denoted by Z) denoted by “|”:

x|y means x divides y with 0 remainder

thus, for x = 0 and all y, the division is illegal, therefore

The input x = 0 to the relation “ |” produces no output, in
other words, “for input x = 0 the relation is undefined.”

We walk away with two things from this example:

1. It does make sense for some relations to a priori choose left and
right fields, here

| : Z→ Z
You would not have divisibility on real numbers !

2. dom(|) is the set of all inputs that produce some output. Thus,
it is NOT the case for all relations that their domain is the same
as the left field chosen! Note the case in this example! And forget
the term “codomain” that you may find in flawed publications on
discrete MATH! □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

82 4. Relations and functions

4.1.10� Example. Next consider the relation < with left/right fields
restricted to N. Then dom(<) = N, but ran(<) ⫋ N. Indeed, 0 ∈
N− ran(<). □ �

Let us extract some terminology from the above examples:

4.1.11 Definition. Given

R : A→ B

If dom(R) = A, then we call R total or totally defined. If dom(R) ⫋ A,
then we say that R is nontotal.

If ran(R) = B, then we call R onto. If ran(R) ⫋ B, then we say that
R is not onto. □

So, the relation | above is nontotal, and < is not onto.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 83

4.1.12 Example. Let A = {1, 2}.

• The relation {(1, 1)} on A is neither total nor onto.

• The relation {(1, 1), (1, 2)} on A is onto but not total.

• The relation {(1, 1), (2, 1)} on A is total but not onto.

• The relation {(1, 1), (2, 2)} on A is total and onto.

• The relation {(1, 2), (2, 1)} on A is total and onto. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

84 4. Relations and functions

4.1.13 Definition. The relation ∆A on the set A is given by

∆A
Def
= {(x, x) : x ∈ A}

We call it the diagonal (“∆” for “diagonal”) or identity relation on A.

Consistent with the second terminology, we may also use the symbol
1A for this relation. □

4.1.14 Definition. A relation R (not a priori restricted to have pre-
determined left or right fields) is

1. Transitive: Iff xRy ∧ yRz implies xRz.

2. Symmetric: Iff xRy implies yRx.

3. Antisymmetric: Iff xRy ∧ yRx implies x = y.

4. Irreflexive: Iff xRy implies x ̸= y. Also said this way: For NO x

can we have xRx.

5. Now assume R is on a set A. Then we call it reflexive iff ∆A ⊆ R.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 85

4.1.15 Example.

(i) Transitive examples: ∅ (vacuously), {(1, 1)}, {(1, 2), (2, 3), (1, 3)},
<, ≤, =, N2.

(ii) Symmetric examples: ∅ (vacuously), {(1, 1)}, {(1, 2), (2, 1)}, =,
N2.

(iii) Antisymmetric examples: ∅ (vacuously), {(1, 1)}, =, ≤, ⊆.

(iv) Irreflexive examples: ∅ (vacuously), {(1, 2)}, ⫋, the relations “<”
and “ ̸=” on N.

(v) Reflexive examples: 1A onA, {(1, 1)} on {1}, {(1, 2), (2, 1), (1, 1), (2, 2)}
on {1, 2}, = on N, ≤ on N. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

86 4. Relations and functions

Jan. 30, 2023

We can compose relations:

4.1.16 Definition. (Relational composition) Let R and S be (set)
relations. Then, their composition, in that order, denoted by R ◦ S
is defined for all x and y by:

xR ◦ Sy
Def
≡ (∃z)

(
xRz ∧ zSy

)
It is customary (lazy and incorrect, though) to abuse notation and
write “xRzSy” for “xRz ∧ zSy” just as one writes x < y < z for
x < y ∧ y < z.

The definition unchanged applies to any class relations R and S as
well. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 87

4.1.17 Example. Here is whence the emphasis “in that order” above.
Say, R = {(1, 2)} and S = {(2, 1)}. Thus, R ◦ S = {(1, 1)} while
S ◦R = {(2, 2)}. Thus, R ◦ S ̸= S ◦R in general. □

4.1.18� Example. For any R, we diagrammatically indicate xRy by

x
R−→ y

Thus, the situation where we have that xR ◦ Sy means, for some z,
xRzSy is depicted as:

□ �

4.1.19 Theorem. The composition of two (set) relations R and S in
that order is also a set.

Proof. Trivially, R ◦ S ⊆ dom(R)× ran(S) because

xR ◦ Sy

means

∈ dom(R) 4.1.4
↓
x R z S

∈ ran(S) 4.1.4
↓
y , for some z

Moreover, we proved in 4.1.5 that dom(R) and ran(S) are sets. Thus
so is dom(R)× ran(S) (3.1.2). □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

88 4. Relations and functions

4.1.20 Corollary. If we have R : A → B and S : B → C, then
R ◦ S : A→ C.

Proof. From R ◦ S ⊆ dom(R) × ran(S) above and dom(R) ⊆ A and
ran(S) ⊆ C. □

� The result of the corollary is depicted diagrammatically as

�

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 89

4.1.21 Theorem. (Associativity of composition) For any relations
R,S and T, we have

(R ◦ S) ◦ T = R ◦ (S ◦ T)

We state and prove this central result for any class relations.

Proof. We have two directions:
→: Fix x and y and let x(R ◦ S) ◦ Ty.
Then, for some z, we have x(R ◦ S)zTy and hence for some w, the

above becomes
xRwSzTy (1)

But wSzTy means wS ◦ Ty

hence we rewrite (1) as
xRw(S ◦ T)y

Finally, the above says xR ◦ (S ◦ T)y.
←: Fix x and y and let xR ◦ (S ◦ T)y.
Then, for some z, we have xRz(S ◦ T)y and hence for some u, the

above becomes
xRzSuTy (2)

But xRzSu means xR ◦ Su, hence we rewrite (2) as

x(R ◦ S)uTy

Finally, the above says x(R ◦ S) ◦ Ty. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

90 4. Relations and functions

The following is almost unnecessary, but offered for emphasis:

4.1.22 Corollary. If R, S and T are (set) relations, all on some set
A,† then “R ◦ S ◦ T” has a meaning independent of how brackets are
inserted.

� The corollary allows us to just omit brackets in a chain of compositions,
even longer than the above. It also leads to the definition of relational
exponentiation, below: �

4.1.23 Definition. (Powers of a binary relation) LetR be a (set)
relation. We define Rn, for n > 0, as

R ◦R ◦ · · · ◦R︸ ︷︷ ︸
n R

(1)

Note that the resulting relation in (1) is independent of how brackets
are inserted (4.1.22). It depends only on R and n.

If moreover we have defined R to be on a set A, then we also define
the 0-th power: R0 stands for ∆A or 1A. □

†Recall that “R is on a set A” means R ⊆ A2, which is the same as R : A → A.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 91

4.1.24� Remark. Say aRnb.
Then, viewing Rn as R ◦Rn−1 I have

aRnb⇐⇒ aRa1R
n−1b for some a1

⇐⇒ aRa1Ra2R
n−2b similarly, for some a2

⇐⇒ aRa1Ra2Ra3R
n−3b similarly, for some a3

...

⇐⇒
n R︷ ︸︸ ︷

aRa1Ra2Ra3Ra4 . . . an−1Rb similarly, for some an−1

Summarising:

Thus aRnb means that for some a1, a2, . . . , an−1 we have

a

∈

dom(R)

Ra1Ra2Ra3Ra4 . . . an−1 b

∈

ran(R)

(1)

□ �

4.1.25 Exercise. Let R be a relation on A. Then for all n ≥ 0, Rn is
a set.

Hint. See (1) above

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

92 4. Relations and functions

Feb. 1, 2023

4.1.26 Example. Let R = {(1, 2), (2, 3)}. What is R2?
Well, when can we have xR2y? Precisely if/when we can find x, y, z

that satisfy xRzRy. The values x = 1, y = 3 and z = 2 are the only
ones that satisfy xRzRy.

Thus 1R23, or (1, 3) ∈ R2. We conclude R2 = {(1, 3)} by the “only
ones” above. □

4.1.27 Exercise. Show that if for a relation R we know that R2 ⊆ R,
then R is transitive and conversely. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 93

4.1.1. Transitive closure

4.1.28 Definition. (Transitive closure of R) A transitive closure of
a relation R —if it exists— is a ⊆-smallest transitive T that contains
R as a subset.

More precisely,

1. T is transitive, and R ⊆ T .

2. If S is also transitive and R ⊆ S, then T ⊆ S. This makes the
term “⊆-smallest” precise. □

Note that we hedged twice in the definition, because at this point we
do not know yet:

• If every relation has a transitive closure; hence the “if it exists”.

• We do not know if it is unique either, hence the emphasised indef-
inite article “A”.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

94 4. Relations and functions

4.1.29� Remark. Uniqueness can be settled immediately from the def-
inition above: Suppose T and T ′ fulfil Definition 4.1.28, that is, suppose
both are transitive closures of some R. Thus,

1. R ⊆ T

and

2. R ⊆ T ′

since both are closures.
But now think of T as a closure and T ′ as the “S” of 4.1.28 (it in-

cludes R all right!)

Hence T ⊆ T ′.

Now reverse the role-playing and think of T ′ as a closure, while T

plays the role of “S”. We get T ′ ⊆ T . Hence, T = T ′. □ �

4.1.30 Definition. The unique transitive closure, if it exists, is de-
noted by R+. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 95

4.1.31 Exercise. If R is transitive, then R+ exists. In fact, R+ = R.

□

The above exercise is hardly exciting, but learning that R+ exists
for every R and also learning how to “compute” R+ is exciting. We
do this next.

4.1.32 Lemma. Given a (set) relation R. Then
⋃∞

n=1R
n is a transi-

tive (set) relation.

Proof. We have two things to do.

1.
⋃∞

n=1R
n is a set.

2.
⋃∞

n=1R
n is a transitive relation.

Proof of 1. By (1) in 4.1.24, aRn+1b implies a ∈ dom(R) and b ∈
ran(R).

Thus

Rn+1 ⊆ dom(R)× ran(R)

for n ≥ 0.

So†

X ∈ F = {Ri : i = 1, 2, 3, . . .} =⇒ X ⊆ dom(R)× ran(R)

=⇒ X ∈ 2dom(R)×ran(R)

Thus, F ⊆ 2dom(R)×ran(R) is a set family of sets Rn, for n ≥ 1
(apply 2.3.5) and we can use the notation from 2.4.21

∞⋃
i=1

Ri =
⋃

F

a set, as we know (2.4.17)
†Recall that “=⇒” says “implies” just like →, but the former is conjunctional!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

96 4. Relations and functions

Proof of 2. Now,
⋃∞

i=1R
i is a set (by part 1) but also, of course, a

binary relation since trivially it is a set of ordered pairs.

Next, we prove it is transitive.

Let

x
∞⋃
i=1

Ri y
∞⋃
i=1

Ri z

Thus for some n and m we have

xRn y †Rm z

this says the same thing as

x

n︷ ︸︸ ︷
R ◦R ◦ · · ·R y

m︷ ︸︸ ︷
R ◦R ◦ · · ·R z

or

x

n︷ ︸︸ ︷
R ◦R ◦ · · ·R ◦

m︷ ︸︸ ︷
R ◦R ◦ · · ·R z

or

x

n+m︷ ︸︸ ︷
R ◦R ◦ · · ·R z

hence, since (x, z) ∈ Rn+m from above, we have

(x, z) ∈
⋃{

. . . , Rn+m, . . .
}
, that is, (2.4.21), x

∞⋃
i=1

Ri z

□

†x
⋃∞

i=1 R
i y means (x, y) ∈

⋃∞
i=1 R

i, therefore (x, y) ∈ Rn for some n by definition of
⋃∞

n=1.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 97

4.1.33� Remark. Read me! Why all this work for Part 1 of the
proof above? Why not just use 2.4.21 right away? Because 2.4.21
offers only notation provided we know that

F = {A0, A1, A2, A3, . . .} (3)

is a set ! Cf. “Suppose the family of sets Q is a set of sets”, the opening
statement in the passage 2.4.21 on notation.

Here we do not know (yet) if every family of sets like (3) is indeed
a set —but in this case it turns out that we do not care because every
member of F = {Ri : i = 1, 2, 3, . . .} is included (as a subset) in
dom(R)× ran(R) (a set), which allows us to sidestep the issue!

Whether every family of sets like F in (3) is a set will be answered
affirmatively in 4.1.42. For now note that we cannot recklessly say that
after any sequence of constructions by stages there is a stage after all
those stages. Why? Well, take all the objects in set theory. Each is
given outright (atom; stage 0) or is constructed at some stage (set). If
we could prove there is a stage after all these stages then we could also
prove that U is a set, a claim we refuted with two methods so far! □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

98 4. Relations and functions

Since R ⊆
⋃∞

i=1R
i due to R = R1, all that remains to show is that⋃∞

i=1R
i is a transitive closure of R is to show the Lemma below.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 99

Feb. 3, 2023

4.1.34 Lemma. If R ⊆ S and S is transitive, then
⋃∞

i=1R
i ⊆ S.

Proof. I will just show that for all n ≥ 1, Rn ⊆ S.

(1) OK, R ⊆ S is our assumption, thus R1 ⊆ S is true.

(2) For R2 ⊆ S let xR2y, thus (for some z), xRzRy hence xSzSy.

But S is transitive, so xSy. Done.

(3) For R3 ⊆ S let xR3y, thus (for some z), xR2zRy hence

By (2)︷︸︸︷
xSz Sy.

But S is transitive, so the last expression gives xSy. Done.

(n+ 1) You see the pattern: Pretend we proved up to some fixed un-
specified n:

Rn ⊆ S (‡)
Thus, for the n+ 1 case, for the same n we just fixed,

xRn+1y ⇔ xRn ◦Ry ⇔ xRnzRy (some z)
by (‡)⇒ xSzSy ⇒ xSy†

□

†S is transitive.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

100 4. Relations and functions

We have proved:

4.1.35 Theorem. (The transitive closure exists) For any relation
R, its transitive closure R+ exists and is unique. We have that R+ =⋃∞

i=1R
i.

An interesting corollary that will lend a computational flavour to
4.1.35 is the following.

4.1.36 Corollary. If R is on the set A = {a1, a2, . . . , an} where, for
i = 1, . . . , n, the ai are distinct, then R+ =

⋃n
i=1R

i.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 101

Proof. By 4.1.35, all we have to do is prove

∞⋃
i=1

Ri ⊆
n⋃

i=1

Ri (1)

since the ⊇ part is obvious.

So let x
⋃∞

i=1R
iy. This means that

xRqy, for some q ≥ 1 (2)

Thus, I have two cases for (2):

Case 1. q ≤ n. Then x
⋃n

i=1R
iy since Rq ⊆

⋃n
i=1R

i, Rq being one of
the “Ri”, 1 ≤ i ≤ n.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

102 4. Relations and functions

Case 2. q > n. In this case I will show that there is also a k ≤ n such
that xRky, which sends me back to the “easy Case 1”. So, I
have

xRqy, for some q > n (3)

Well, if there is one q > n that satisfies (3) there are probably
more. Let us pretend that our q is the smallest > n that gives
us (3).

� Wait! Why is there a smallest q such that (3) holds?

Because among those “q” that fit (3)† imagine we fix attention
to one such.

Now, if it is not the smallest such, then go down to the next
smaller one that still satisfies (3), call it q′.

Now go down to the next smaller, q′′ > n, if q′ is not smallest.

Continue like this. Can I do this forever? That is, can we
have the following?

n < . . . < q(k)‡ < . . . < q′′′ < . . . < q′′ < q′ < q

If yes, then I will have an infinite “descending” chain of dis-
tinct natural numbers between q and n.

Absurd! �

†There is at least one, else we would not be in Case 2.
‡By “q(n)” I mean q with k primes.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 103

Back to the proof. So let the q we are working with be the
smallest that satisfies (3). Then we have the configuration
(see Remark 4.1.24 (1))

xRz1Rz2Rz3 . . .R ziRzi+1 . . . zrRzr+1 . . . Rzq−1Ry︸ ︷︷ ︸
q Rs

(4)

Now the sequence

z1, z2, z3 . . . zi, zi+1, . . . zr, zr+1, . . . , zq−1, y

in (4) above contains q > n members and as they all come
from A, not all are distinct.

So let zi = zr (the zr could be as late in the sequence as y,
i.e., equal to y).

Now omit the boxed part in (4). We obtain

xRz1Rz2Rz3 . . .Rzr
∥
zi

Rzr+1 . . . zq−1Ry (5)

which contains at least one “R” less than the sequence (4)
does —the entry “ziRzi+1” (and everything else in the “. . .”
part in the box) was removed. That is, (5) states

xRq′y

with q′ < q. Since the q in (3) was smallest > n, we must
have q′ ≤ n (Why?) which sends us to Case 1 and we are
done. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

104 4. Relations and functions

4.1.2. Equivalence relations

Feb. 6, 2023

Equivalence relations must be on some set A, since we require reflex-
ivity (definition below). They play a significant role in many branches
of mathematics and even in computer science. For example, the min-
imisation process of finite automata (a topic that we will not cover)
relies on the concept of equivalence relations.

4.1.37 Definition. A relation R on A is an equivalence relation, pro-
vided it is all of

1. Reflexive

2. Symmetric

3. Transitive □

� An equivalence relation on A has the effect, intuitively, of “grouping”
elements that we view as interchangeable in their roles, or “equivalent”,
into so-called (see Definition 4.1.40 below) “equivalence classes” —kind
of mathematical clubs! �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 105

4.1.38 Example. The following are equivalence relations

• {(1, 1)} on A = {1}.

• = (or 1A or ∆A) on A.

• LetA = {1, 2, 3}. ThenR = {(1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2), (1, 1),
(2, 2), (3, 3)} is an equivalence relation on A.

• N2 is an equivalence relation on N. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

106 4. Relations and functions

Here is a longish, more sophisticated example, that is central in num-
ber theory. We will have another instalment of it after a few definitions
and results.

4.1.39� Example. (Congruences) Fix an m ≥ 2. We define the re-
lation ≡mon Z by

x ≡m y iff m | (x− y)

Recall that “|” is the “divides with zero remainder” relation. We verify
the required properties for ≡m to be an equivalence relation.

A notation that is very widespread in the literature is to split the
symbol “≡m” into two and write

x ≡ y (mod m) instead of x ≡m y

“x ≡ y (mod m)” and x ≡m y are read “x is congruent to y modulo
m (or just ‘mod m’)”. Thus “≡m” is the congruence (mod m) short
symbol, while “≡ . . . (mod m)” is the long two-piece symbol. We will
be using the short symbol .

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 107

1. Reflexivity: Indeed, m | (x− x), hence x ≡m x.

2. Symmetry: Clearly, if m | (x − y), then m | (y − x). I translate: If
x ≡m y, then y ≡m x.

3. Transitivity: Let m | (x−y) and m | (y−z). The first says that, for
some k, x−y = km. Similarly the second says, for some n, y−z =
nm. Thus, adding these two equations I get x − z = (k + n)m,
that is, m | (x − z). I translate: If x ≡m y and y ≡m z, then also
x ≡m z. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

108 4. Relations and functions

4.1.40 Definition. (Equivalence classes) Given an equivalence re-
lation R on A. The equivalence class of an element x ∈ A is {y ∈ A :
xRy}. We use the symbol [x]R, or just [x] if R is understood, for the
equivalence class.

� Since A is a set and [x] ⊆ A, each equivalence class is a set by 2.3.5. �

The symbol A/R denotes the quotient class of A with respect to R,
that is,

A/R
Def
= {[x]R : x ∈ A}

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 109

Feb. 8, 2023

4.1.41 Remark. Suppose an equivalence relation R on A is given.

By reflexivity, xRx, for any x. Thus x ∈ [x]R, hence all equivalence
classes are nonempty.

� Be careful to distinguish the brackets {. . .} from these [. . .].

It is NOT a priori obvious that x ∈ [x]R until you look at the definition
4.1.40! [x]R ̸= {x} in general! �

□

If A is a set and R is an equivalence relation on A, is the quotient
class A/R a set?

An easy answer for this and similar indexed classes

{Aa, Ab, Ac, . . .}

where the members of the class above are as usual sets or atoms, is
provided by Principle 3 below.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

110 4. Relations and functions

This is a good time to introduce “Principle 3”† of set formation.

4.1.42� Remark. (Principle 3) Suppose that the class (of
sets and/or atoms) F is indexed by some (or all) mem-
bers of a set A. Then F is a set.

Being indexed by (some) members of a set A means that, to ev-
ery X ∈ F, we have attached as “label(s)” (often depicted as a
subscript/superscript) some member(s) of A.

We may label a member of F with many labels, but we may NOT
use the same label twice to label two (or the same) members of F
and may NOT leave any member of F unlabelled.

†This is the last Principle, I promise!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 111

Thus, if F = {A,B,C}, then {A1, B13,19,0, C42} is a valid labelling
with labels from N.†

{A1,13, B13, C19} is not correctly labelled (same label twice), the la-
belling of {A1,42, B13, C} is also invalid (C was not labelled):

†B has three labels attached to it.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

112 4. Relations and functions

Two observations:

1. We used at least as many labels from the label set A as there are
members in the class F —probably more since we allow multiple
labelling with the restriction that no label is used twice.

Thus F, intuitively speaking, has no “more” members than the
label set, and thus our intuition accepts that it is no “bigger” than
the label set, so it is a set itself.

This intuitive acceptance is made “Official” via Principle 3: A
class F is proved to be a set as long as it has no more elements
than a set A (demonstrated by providing a labelling of F using A).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 113

Some people call Principle 3 the size limitation doctrine.†

2. Why can’t I use the Principles 0–2 to argue that F, labelled by
any set L, is a set?

Well, because these Principles are notorious in not telling me if
a stage exists after infinitely many stages of construction that I
might have if, say, I were to build one set Ai for each natural
number (here L = N):

A0, A1, . . . , An, . . .

� This is good for the Principles 0, 1, 2! Do you see WHY? �

Hint. If I had a stage after any infinite class of stages what would
I conclude for U = {x : x = x}?

□ �

†Researchers on the foundations of set theory felt that paradoxes occurred in connection with enormous classes.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

114 4. Relations and functions

We can now state the obvious:

4.1.43 Theorem. A/R is a set for any set A and equivalence relation
R on A.

Proof. A provides labels for all members —namely, [x]R, where x ∈
A— of A/R. In other words, the x in [x]R labels the latter member of
A/R and all labels are from a set A. Now invoke Principle 3. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 115

Now that we have had an excuse to introduce Principle 3 early, and
applied it to the easy example above let us do the following exercise:

4.1.44� Exercise. Show that it was not necessary to apply the new
Principle to prove 4.1.43.

Specifically show that the Theorem follows by Principles 0–2 implic-
itly via 2.3.5.

Hint. You will need, of course, to find a superset of A/R, that is, a
class X that demonstrably is a set, and satisfies A/R ⊆ X. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

116 4. Relations and functions

4.1.45 Lemma. Let P be an equivalence relation on A. Then [x] = [y]
iff xPy —where we have omitted the subscript P from the [. . .]-notation.

Proof. (→) part. Assume [x] = [y].

By reflexivity, y ∈ [y] (4.1.41).

The assumption then yields y ∈ [x] and therefore xPy by 4.1.40.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 117

(←) part. Assume xPy.

Let z ∈ [x]. Then xPz.

By assumption yPx (by symmetry), thus, transitivity yields yPz.

That is, z ∈ [y], proving

[x] ⊆ [y] (1)

By swapping letters x, y we have ALSO proved above that

yPx implies [y] ⊆ [x] (2)

Now (by symmetry) our original assumption, namely xPy, implies
yPx, hence also [y] ⊆ [x] by (2).

All in all ((1)+(2)), [x] = [y]. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

118 4. Relations and functions

Feb. 10, 2023

4.1.46 Lemma. Let R be an equivalence relation on A. Then

(i) [x] ̸= ∅, for all x ∈ A.

(ii) [x] ∩ [y] ̸= ∅ implies [x] = [y], for all x, y in A.

(iii)
⋃

x∈A[x] = A.

Proof.

(i) 4.1.41.

(ii) Let z ∈ [x] ∩ [y]. Then xRz and yRz, therefore xRz and zRy
(the latter by symmetry) hence xRy (transitivity).

Thus, [x] = [y] by Lemma 4.1.45.

(iii) The ⊆-part is obvious from [x] ⊆ A.

The ⊇-part follows from
⋃

x∈A{x} = A and {x} ⊆ [x]. □

The properties (i)–(iii) are characteristic of the notion of a partition
of a set.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 119

4.1.47 Definition. (Partitions) Let F be a family of subsets of A.
It is a partition of A iff all of the following hold:

(i) For all X ∈ F we have that X ̸= ∅.

(ii) If {X, Y } ⊆ F and X ∩ Y ̸= ∅, then X = Y .

(iii)
⋃

F = A. □

There is a natural affinity between equivalence relations and parti-
tions on a set A. In fact,

Notes on Discrete MATH (EECS1028)© G. Tourlakis

120 4. Relations and functions

4.1.48 Theorem. Given a partition F on a set A. This leads to the
definition of an equivalence relation P whose equivalence classes are
precisely the sets of the partition, that is F = A/P .

Proof. First we define P :

xPy
Def

iff (∃X ∈ F){x, y} ⊆ X (1)

Observe that

(i) P is reflexive: Take any x ∈ A. By 4.1.47(iii), there is an X ∈ F
such that x ∈ X, hence {x, x} ⊆ X. Thus xPx.

(ii) P is, trivially, symmetric since there is no order in {x, y}.

(iii) P is transitive: Indeed, let xPyPz. Then {x, y} ⊆ X and {y, z} ⊆
Y for some X, Y in F .

Thus, y ∈ X ∩ Y hence X = Y by 4.1.47(ii). Hence {x, z} ⊆ X,
therefore xPz.

So P is an equivalence relation. Let us compare its equivalence
classes with the various X ∈ F .

Now [x]P (dropping the subscript P in the remaining proof) is

{y : xPy} (2)

Let us compare [x] with the unique X ∈ F that ALSO contains x
—why unique? By 4.1.47(ii). Thus,

y ∈ [x]
(2)⇐⇒ xPy

(1)⇐⇒ x ∈ X ∧ y ∈ X
x∈X is t⇐⇒ y ∈ X

Thus [x] = X. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 121

4.1.49 Example. (Another look at congruences; Read Me!)
Euclid’s theorem for the division of integers states:

If a ∈ Z and 2 ≤ m ∈ Z, then there are unique q and r such that

a = mq + r and 0 ≤ r < m (1)

There are many proofs, but here is one: Fix a and m ≥ 2. The set

T = {x : 0 ≤ x = a−mz, for some z}

is not empty. For example,

• if a > 0, then take z = 0 to obtain x = a > 0 in T .

• If a = 0, then take z = 0 to obtain x = 0 ∈ T .

• Finally, if a < 0, then take z = −|a| † to obtain x = −|a|+m|a| =
|a|(m− 1) > 0 in T (since m ≥ 2 we have m− 1 ≥ 1).

Let then r be the smallest x ≥ 0 in T .

†Absolute value.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

122 4. Relations and functions

The corresponding “z” to the smallest x = r let us call q. So we
have

a = mq + r, where 0 ≤ r (2)

Can r ≥ m? If so, then write r = k +m, where k = r −m ≥ 0 and
thus k < r. I got

a = m(q + 1) + k

As k < r, I have contradicted the minimality of r in (2) in the box
above.

This proves that r < m.

We have proved existence of at least one pair q and r that works
for (1) on p.121.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 123

How about uniqueness?

Well, the worst thing that can happen is to have two representa-
tions 1). Here is another one:

a = mq′ + r′ and 0 ≤ r′ < m (2)

As both r and r′ are < m, their “distance” (absolute difference) is
also < m.†

Now, from (1) and (2) we get

m|q − q′| = |r − r′| (3)

This cannot be unless q = q′ (in which case r = r′, therefore uniqueness
is proved).

Wait: Why it “cannot be” if q ̸= q′?

Because then |q − q′| ≥ 1 thus the lhs of “=” in (3) is ≥ m but the
rhs is < m.

†From 0 ≤ r′ < m I get −m < r′ ≤ 0. Using (1) (p.121), I get −m < r − r′ < m. That is, |r − r′| < m.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

124 4. Relations and functions

We now take a deep breath!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 125

Now, back to congruences! The above was just a preamble!

Fix an m > 1 and consider the congruences x ≡m y. What are the
equivalence classes?

Better question is what representative members are convenient to
use for each such class? Given that a ≡m r by (1) (p.121), and using
Lemma 4.1.45 we have [a]m = [r]m.

� r is a far better representative than a for the class [a]m as it is “nor-
malised”. �

Thus, we have just m equivalence classes [0], [1], . . . , [m− 1].

Wait! Are they distinct? Yes! Since [i] = [j] is the same as i ≡m j
(4.1.45) and, since 0 < |i − j| < m, m cannot divide i − j with 0
remainder, we cannot have [i] = [j] if i ̸= j. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

126 4. Relations and functions

4.1.50 Example. (A practical example) Say, I chosem = 5. Where
does a = −110987 belong?

I.e., in which class out of [0]5, [1]5, [2]5, [3]5, [4]5?

Well, let’s do primary-school-learnt long division of −a > 0 divided
by 5 and find quotient q and remainder r. We find, in this case,
q = 22197 and r = 2. These satisfy

−a = 22197× 5 + 2

Thus,

a = −22197× 5− 2 (1)

(1) can be rephrased as

a ≡5 −2 (2)

But easily we check that −2 ≡5 3 (since 3− (−2) = 5). Thus,

a ∈ [−2]5 = [3]5 □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 127

4.1.51 Exercise. Can you now easily write the same a above as

a = Q× 5 +R, with 0 ≤ R < 5?

Show all your work. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

128 4. Relations and functions

Feb. 13, 2023

4.1.3. Partial orders

This subsection introduces one of the most important kind of binary
relations in set theory and mathematics in general: The partial order
relations.

4.1.52 Definition. (Converse or inverse relation of P) For any re-
lation P, the symbol P−1 is called the converse or inverse relation of P
and is defined by

P−1={(x, y) : yPx} (1)

xP−1y iff yPx is an equivalence that says exactly what (1) does. □

4.1.53 Theorem. dom(P) = ran(P−1) and dom(P−1) = ran(P).

Proof. The two columns of the tables P and P−1 are the same, BUT
swapped. Done.

Algebraically (formulaically) I will only say

dom(P) = {y : (∃x)yPx} = {y : (∃x)xP−1y} = ran(P−1)

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 129

4.1.54 Example. If I take P to be “<” on N, then >=<−1 since

x > y iff y < x □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

130 4. Relations and functions

More notation!

4.1.55 Definition. (Important: “(a)P” notation) For any relation
P we write “(a)P” to indicate the class —possibly proper— of all out-
puts of P for input a. That is,

(a)PDef
= {y : aP y}

If (a)P = ∅, then P is undefined at a —that is, a /∈ dom(P).

The “underlined” statement is often denoted simply by “(a)P ↑” and
is naturally read as “P is undefined at a”.

If (a)P ̸= ∅, then P is defined at a —a does produce outputs!— that
is, a ∈ dom(P).

The blue underlined statement is often denoted simply by “(a)P ↓”
and is naturally read as “P is defined at a”. □

4.1.56 Remark. So, if R is an equivalence relation on a set A, then,
using the above notation, [x] = (x)R. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 131

4.1.57 Exercise. Give an example of a specific relation P and one
specific object (set or atom) a such that (a)P is a proper class. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

132 4. Relations and functions

4.1.58� Example. We note that for any P and a,

(a)P−1 = {y : aP−1y} = {y : yPa}

Also,

(a)P−1 ↑
4.1.55

iff a /∈ dom(P−1)
4.1.53

iff a /∈ ran(P)

and

(a)P−1 ↓ iff a ∈ dom(P−1) iff a ∈ ran(P)

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 133

4.1.59 Definition. (Partial Order) A relation P is called a partial
order or just an order, iff it is all of

(1) irreflexive (i.e., xPy → x ̸= y, for all x, y), or

(1′) Alternatively, irreflexive (i.e., xPx is false, for all x), and

(2) transitive.

It is emphasised that in the interest of generality —for much of this
subsection (until we say otherwise)— P need not be a set.

Some people call this a strict order as it imitates the “<” on, say,
the natural numbers. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

134 4. Relations and functions

4.1.60� Remark. (1) We will usually use the symbol “<”

even in the abstract setting

to denote any unspecified order P, and it will be pronounced “less
than”.

(2) If the order < is a subclass of A× A —i.e., it is <: A→ A— then
we say that < is an order on A.

(3) Clearly, for any order < and any class B, < ∩(B × B) is an order
on B.

We call < ∩(B×B) the relational restriction of < on B and denote
it by < |B.

□ �

4.1.61 Exercise. How clearly? (re (3) above.) Give a simple, short
proof.

Hint. x
(
< ∩ (B× B)

)
y iff x < y and {x, y} ⊆ B. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 135

4.1.62 Example. The standard concrete “less than”, <, on N is an
order, but ≤ is not (it is not irreflexive).

The “greater than” relation, >, on N is also an order, but ≥ is not.

In general, it is trivial to verify that “P is an order iff P−1” is an
order. Exercise! □

4.1.63 Example. ∅ is an order.

Moreover for any A, ∅ ⊆ A× A,

hence ∅ is also an order on A for the arbitrary A. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

136 4. Relations and functions

4.1.64 Example. The relation ∈ is irreflexive by the well known A /∈
A, for all A.

It is not transitive though.

For example, if a is a set (or atom), then a ∈ {a} ∈ {{a}} but
a /∈ {{a}}.

So ∈ is not an order. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 137

4.1.65 Example. Let M =

{
∅, {∅},

{
∅, {∅}

}
,
{
∅, {∅},

{
∅, {∅}

}}}
.

The relation
ε =∈ ∩(M ×M)

is transitive (and irreflexive), hence it is an order (on M). Verify!

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

138 4. Relations and functions

4.1.66 Example. ⊂ is an order, ⊆—failing irreflexivity— is not. □

4.1.67� Example. Consider the order ⊂ again. In this case we have
none of {∅} ⊂ {{∅}}, {{∅}} ⊂ {∅} or {{∅}} = {∅}.

That is, {∅} and {{∅}} are non comparable items.

This justifies the qualification partial for orders in general (Defini-
tion 4.1.73).

On the other hand, the “natural” < on N is such that one of x = y,
x < y, y < x always holds for any x, y in N.

That is, all (unordered) pairs x, y of N are comparable under <.

While all orders are “partial”, some are total (< above) and others
are nontotal (⊂ above).

“Partial” is not the negation of “total”.

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 139

4.1.68 Definition. Let < be an arbitrary (abstract) partial order on
A. We define

≤ Def
= ∆A∪ <

We pronounce ≤ “less than or equal”.

∆A∪ > is denoted by ≥ and is pronounced “greater than or equal”.

Let us call ≤ a reflexive order or a non strict order. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

140 4. Relations and functions

� (1) In plain English, given < on A, we have defined x ≤ y to mean

x < y ∨
equality is ∆A︷ ︸︸ ︷
x = y

for all x, y in A.

(2) The definition of ≤ depends on A due to the presence of ∆A.

There is no such dependency on any “reference” class in
the case of <. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 141

4.1.69 Lemma. For any abstract —that is, not specific— <: A→ A,
the associated relation ≤ on A is reflexive, antisymmetric and transi-
tive.

Proof. (1) Reflexivity is trivial.

(2) For antisymmetry, let x ≤ y and y ≤ x. If x = y then we are
done.

So assume the remaining case x ̸= y (i.e., (x, y) /∈ ∆A). Then the
hypothesis becomes x < y and y < x, therefore x < x by transitivity,
contradicting the irreflexivity of <. This case does NOT apply!

� Can also argue by contradiction: I will prove x = y. Suppose the
opposite: x ̸= y. Then hypothesis becomes x < y ∧ y < x, hence
(trans.) x < x. This contradicts reflexivity! �

(3) As for transitivity let x ≤ y and y ≤ z.

(a) If x = z, then x ≤ z (x = z →
x≤z︷ ︸︸ ︷

x = z ∨ x < z) and we are done.

(b) The remaining case is x ̸= z.

• If x = y or y = z (we cannot have both (Why?)), then we are
done again: E.g., from first case, “y ≤ z” reads “x ≤ z”.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

142 4. Relations and functions

• So it remains to consider x < y and y < z.

By transitivity of < we get x < z, hence x ≤ z, since by logic:
x < z → x < z ∨ x = z︸ ︷︷ ︸

x≤z
; but we got x < z. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 143

Feb. 15, 2023

4.1.70 Lemma. Let P on A be reflexive, antisymmetric and transitive.
Then P−∆A is a (strict) order on A.

Proof. Since
P−∆A ⊆ P (1)

it is clear that P−∆A is on A.

It is also clear that it is irreflexive. We only need verify that it is
transitive.

So let
(x, y) and (y, z) be in P−∆A (2)

We want (x, z) ∈ P−∆A.

By (1) and (2)
(x, y) and (y, z) are in P (3)

hence
(x, z) ∈ P

by the given transitivity of P.

Can (x, z) ∈∆A, i.e., can x = z?

No, for antisymmetry of P (given) and (3) would imply x = y, i.e.,
(x, y) ∈∆A contrary to (2).

So, (x, z) ∈ P−∆A. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

144 4. Relations and functions

4.1.71 Corollary. Let ≤ on A be reflexive, antisymmetric and tran-
sitive. Then < defined by

x < y
Def
≡ x ≤ y ∧ x ̸= y

is a (strict) order on A.

Proof. The corollary just rephrases 4.1.70 in a different notation. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 145

4.1.72� Remark. Often in the literature, but decreasingly so, it is the
“reflexive order” ≤: A→ A that is defined as a “partial order” by the
requirements that it is reflexive, antisymmetric and transitive.

Then < is obtained as in Lemma 4.1.70, namely, as “≤ −∆A”.

Lemmas 4.1.69 and 4.1.70 show that the two approaches are inter-
changeable, but the “modern” approach of Definition 4.1.59 avoids the
nuisance of having to tie the notion of order to some particular “field”
A (4.1.6).

For us “≤” is the derived notion defined in 4.1.68. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

146 4. Relations and functions

4.1.73 Definition. (PO Class) If < is an order on a class A, we call
the informal pair (A, <) a partially ordered class, or PO class.

If < is an order on a set A, we call the pair (A,<) a partially ordered
set or PO set. Often, if the order < is understood as being on A or A,
one says that “A is a PO class” or “A is a PO set” respectively. □

� � Formally, (A, <) is not an ordered pair since A may be a proper class
and we do not allow class members —e.g., in {A, {A, <}}— to be
proper classes. We may think then of “(A, <)” as informal notation
that simply “ties” A and < together into a “toolbox” (. . .). � �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 147

4.1.74 Definition. (Linear order) A relation < on A is a total or
linear order on A iff it is all of

(1) An order, and
(2) For any x, y in A one of x = y, x < y, y < x is true —this is

the so-called “trichotomy” property.

If A is a class, then the informal pair (A, <) is a linearly ordered
class —for short, a LO class.

If A is a set, then the pair (A, <) is a linearly ordered set —for short,
a LO set.

One often calls just A a LO class or LO set (as the case warrants)
when < is understood from the context. □

4.1.75 Example. The standard <: N → N is a total order, hence
(N, <) is a LO set.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

148 4. Relations and functions

4.1.76 Definition. (Minimal and minimum elements) Let < be
an order and A some class.

We are not postulating that < is on A.

An element b ∈ A is a <-minimal element in A, or a <-minimal
element of A, iff

¬(∃x ∈ A)x < b

or
A ∩ {x : x < b} = ∅

In words, there is nothing below b in A.

m ∈ A is a <-minimum element in A iff (∀x ∈ A)m ≤ x.

We also use the terminologyminimal orminimum with respect to <,
instead of <-minimal or <-minimum.

If a ∈ A is >-minimal in A, that is ¬(∃x ∈ A)x > a, we call a a
<-maximal element in A. Similarly, a >-minimum element is called
a <-maximum.

If the order < is understood, then the qualification “<-” is omitted.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 149

4.1.77 Exercise. In particular, if b (∈ A) is not in the field

dom(<) ∪ ran(<)

(cf. 4.1.6) of <, then b is both <-minimal and <-maximal in A. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

150 4. Relations and functions

Feb. 17, 2023

4.1.78� Remark. Note how the notation learnt from 4.1.55 can sim-
plify the expression

¬(∃x ∈ A)x < a (1)

Since x < a iff a > x, (1) says that no x is in both A and (a) >.†

That is, a is <-minimal in A iff

A ∩ (a) >= ∅ (2)

□ �

†(a) >= {x : a > x} = {x : x < a} (4.1.58).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 151

4.1.79� Example. 0 is minimal, also minimum, in N with respect to
the natural ordering.

In P(N), ∅ is both ⊂-minimal and ⊂-minimum.

On the other hand, all of {0}, {1}, {2} are ⊂-minimal in P(N)−{∅}
but none are ⊂-minimum in that set.

Observe from this last example that minimal elements in a class are
not unique. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

152 4. Relations and functions

4.1.80 Remark. (Hasse diagrams) Read me! There is a neat pic-
torial way to depict orders on finite sets known as “Hasse diagrams”.
To do so one creates a so-called “graph” of the finite PO set (A,<)
where A = {a1, a2, . . . , an}.

How? The graph consists of n nodes —which are drawn as points—
each labeled by one ai. The graph also contains 0 or more arrows that
connect nodes. These arrows are called edges.

When we depict an arbitrary R on a finite set like A we draw one
arrow (edge) from ai to aj iff the two relate: aiRaj.

In Hasse diagrams for PO sets (A,<) we are more selective: We say
that b covers a iff a < b, but there is no c such that a < c < b. In a
Hasse diagram we will

1. draw an edge from ai to aj iff aj covers ai.

2. by convention we will draw b higher than a on the page if b covers
a.

3. given the convention above, using “arrow-heads” is superfluous:
our edges are plain line segments.

So, let us have A = {1, 2, 3} and <= {(1, 2), (1, 3), (2, 3)}.

1

2

3

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 153

The above has a minimum (1) and a maximum (3) and is clearly a
linear order.

A slightly more complex one is this (A,<), where A = {1, 2, 3, 4}
and <= {(1, 2), (4, 2), (2, 3), (1, 3), (4, 3)}.

1

2

3

4

This one has a maximum (3), two minimal elements (1 and 4) but no
minimum, and is not a linear order: 1 and 4 are not comparable. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

154 4. Relations and functions

4.1.81 Lemma. Given an order < and a class A.
(1) If m is a minimum in A, then it is also minimal.
(2) If m is a minimum in A, then it is unique.

Proof. (1) Let m be minimum in A. Then

m ≤ x, that is, m = x ∨m < x (i)

for all x ∈ A. Now, prove that there is no x ∈ A such that x < m.

OK, let us go by contradiction:

So let instead, for some a,

A ∋ a < m (ii)

that is, suppose m is NOT minimal. I also have m ≤ a by (i), that is,

m = a ∨m < a (iii)

Now, by irreflexivity, (ii) rules out a = m. So, (iii) nets m < a.

(ii) and (iii) and transitivity yield a < a; contradiction (< is ir-
reflexive). Done.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 155

(2) Let m and n both be minima in A. Then m ≤ n (with m
posing as minimum) and n ≤ m (now n is so posing), hence m = n by
antisymmetry (Lemma 4.1.69). □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

156 4. Relations and functions

4.1.82� Example. Let m be <-minimal in A.

Let us attempt to “show” that it is also <-minimum (this is, of
course, doomed to fail due to 4.1.79 and 4.1.81(2) —but the “faulty
proof” below is instructive):

By 4.1.76 we have that there is no x in A such that x < m.

Another way to say this is:

For all x ∈ A, “x < m” is false, that is, I have ¬x < m. (1)

But from “our previous math” (high school? university? Netflix?)

“¬x < m implies m ≤ x”

Thus (1) says (∀x ∈ A)m ≤ x, in other words, m is the minimum
in A.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 157

Do you accept this anecdotal “fact”?

¬x < m implies m ≤ x (2)

Don’t! For the order ⊂ we noted {1} ̸⊂ {{1}}, but then also both
of {1} = {{1}} and {{1}} ⊂ {1} are false.

The false “fact” stems from a wishful (wrong) assumption that the
arbitrary order is like < on N; total. It is not! See above!

For such an order x < m ∨ x = m ∨ x > m is true, hence if x < m

is false, then x = m ∨ x > m is true; that is, we have x ≥ m. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

158 4. Relations and functions

4.1.83 Lemma. If < is a linear order on A, then every minimal ele-
ment is also minimum.

Proof. The “false proof” of the previous example is valid under the
present circumstances. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

4.1. Relations 159

Feb. 27, 2023

The following type of relation has fundamental importance for set
theory, and mathematics in general.

4.1.84 Definition.

1. A general (non specific) order < satisfies the minimal condition,
for short it has MC, iff every nonempty A has <-minimal elements.

2. If a total order <: B→ B has MC, then it is called a well-ordering†

on (or of) the class B.

3. If (B, <) is a LO class (or set) where “<” has MC, then it is a
well-ordered class (or set), or WO class (or WO set).

□

†The term “well-ordering” is ungrammatical, but it is the terminology established in the literature!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

160 4. Relations and functions

4.1.85� Remark.
What Definition 4.1.84 says in case 1. is —see (2) in 4.1.78— “if,

for some fixed order < the following statement

∅ ≠ A→ (∃a ∈ A)A ∩ (a) >= ∅ (1)

is true in set theory, for any A, then we say that < has MC ”.

The following observation is very important for future reference:

If A is given via a defining property F (x), as

ADef
= {x : F (x)}

then (1) translates —in terms of F (x)— into

(∃a)F (a)→ (∃a)
(
F (a) ∧ ¬(∃y)

(
a > y ∧ F (y)

))
(2′)

OR
(∃a)F (a)→ (∃a)

(
F (a) ∧ ¬(∃y)

(
y < a ∧ F (y)

))
(2)

Conversely, for each formula (“property”) F (x) we get a class A =
{x : F (x)} and thus —if A has MC with respect to <—we may express
this fact as in (2) above.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Chapter 5

Functions

At last! We consider here a special case of relations that we know as
“functions”.

Many of you know already that a function is a relation with some
special properties.

Let’s make all this official:

Notes on Discrete MATH (EECS1028)© G. Tourlakis

162 5. Functions

5.1. Preliminaries

5.1.1 Definition. A function R is a single-valued relation.

That is,
whenever we have both xRy and xRz

then
we will also have y = z

It is traditional to use, generically, lower case letters from among
f, g, h, k when dealing with functions that are sets and F,G,H,K for
functions that are proper classes —with primes and/or subscripts if we
run out of letters. □

The above definition does not care about left or right fields.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 163

5.1.2� Remark. Another way of putting it, using the notation from
4.1.55, is:

A relation R is a function iff, for each a, (a)R is either empty or
contains exactly one element.

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

164 5. Functions

5.1.3 Example. The empty set is a relation of course, the empty set
of pairs. It is also a function since

(x, y) ∈ ∅ ∧ (x, z) ∈ ∅ → y = z

vacuously, by virtue of the left hand side of → being false. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 165

5.1.4 Definition. (Function-specific notations) Let F be a func-
tion.

1. First off, the concepts AND notation for domain, range, and —in
case of a function F : A → B— left field, right field, field, total
and onto are inherited from those for relations without change.

2.

Even the notations “aRb” and “(a, b) ∈ R” transfer over to
functions and are often useful and are employed!.

3. And yet, we have an annoying difference in notation:

Notes on Discrete MATH (EECS1028)© G. Tourlakis

166 5. Functions

For a relation F —or viewing a function F as a relation— the set

{y : aFy} (1)

is denoted by (a)F (see 4.1.55).

If F is a function, then the set in (1) is either empty or has one
element only. In Relational Notation that is:

(a)F =

{
{y} if F defined at a

∅ if F undefined at a
(2)

The literature in generalb denotes (2) this “function-specific” way

F(a)= y ⟨note order reversal and brace removal!⟩
F(a)↑ ⟨F undefined at a⟩

bNot all the literature: The significant book [Kur63] writes “af” for (set) functions AND relations, omitting
even the brackets around a.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 167

Notation: Thus for a function F,

aFy iff (a)F = {y} iff F(a) = y

and
¬(∃y)aFy iff (a)F = ∅ iff F(a) ↑

In short, F(a) reports THE unique ELEMENT IN {y : aFy} ≠
∅ —not the entire singleton set {y : aFy}— or reports nothing:
F(a) ↑ if {y : aFy} = ∅

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

168 5. Functions

5.1.5� Example. In particular F(a) = ∅ means (a)F = {∅}, that is,
(a, ∅) ∈ F or aF∅ —not what one might hastily think it means!

Definitely, F(a) ↓ here, with output the object “∅”, it is NOT F(a) ↑
□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 169

Mar. 1, 2023

5.1.6 Definition. (Images) The class of all outputs of a function F,
when the inputs come from a particular class X, is called the image of
X under F and is denoted by F[X].

� It is NOT assumed that X ⊆ dom(F) or even that X ∩ dom(F) ̸= ∅.
If the latter fails, then clearly F[X] = ∅. �

Thus,

F[X]Def
= {F(x) : x ∈ X} (1)

Note that careless notation like F(A) —where A is a set— will not
do.

This notation means the input IS A —not members of A.

If I want the inputs to be from INSIDE A, then I must use other
than the round brackets notation; I did.

� F(X) is meaningless —round brackets!— for a proper class X. I cannot
have, for example, (X, y) ∈ F since (X, y) = {X, {X, y}} is meaningless. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

170 5. Functions

The inverse image of a class Y under a function F is useful as well,
that is, the class of all inputs that generate F-outputs exclusively in Y.

It is denoted by F−1[Y] and is defined as

F−1[Y]Def
= {x : F(x) ∈ Y} (2)

� There well may exist y ∈ Y such that NO x exists such that F(x) = y. �

□

5.1.7� Remark. By (1), F is onto the class F[X] since every y ∈ F[X]
is an “F(x)” by definition.

Connecting the remark of the preceding sentence with (2) let us look
at the special case where Y = F[X]. So

1. By the first sentence in this remark, y ∈ Y implies that y = F(x),
for some x ∈ X.

2. But then x ∈ F−1[{y}] —due to F(x) ∈ {y} (Definition!) from
F(x) = y— hence

x ∈ X ∩ F−1[{y}] ̸= ∅

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 171

5.1.8 Theorem. If F is a function, and A is a set, then F[A] is a set.

Proof. Let
Y = F[A] (†)

Thus, for every y, y ∈ Y iff for some x ∈ A, F(x) = y.

In short, each y ∈ Y is labelled —in the sense of 4.1.42— by
all the x ∈ A with the property F(x) = y.

� We say all such x are mapped onto y. �

Note that the described label-set is valid according to 4.1.42 since

• All members of Y receive labels from A: Indeed, by (†) —see Re-
mark 5.1.7,

if y ∈ Y, the label-set for y —A ∩ F−1[{y}]— is nonempty (1)

• The set A ∩ F−1[{y}] has no repeated members (it is a set!) thus
the labels assigned to y are distinct, and more importantly

• If y ̸= y′, both in Y, then they receive non overlapping labels, be-
cause F−1[{y}] ∩ F−1[{y′}] = ∅.

Indeed, if z ∈ F−1[{y}] ∩ F−1[{y′}], then F(z) = y and F(z) = y′;
impossible for a function.

By Principle 3, Y —being labelled by the members of A— is a set
too. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

172 5. Functions

5.1.9 Corollary. If F is a function and dom(F) is a set, then F is a
set.

Proof. Exercise! □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 173

Mar. 8, 2023

Pause. So far we have been giving definitions regarding functions
of one variable. Or have we?◀

Not really: We have already said that the multiple-input case is sub-
sumed by our notation. If F : A→ B and A is a class of n-tuples, then
F is a function of “n-variables”.

The binary relation, that such an F is, contains pairs like
(
(x⃗n), xn+1

)
.

However, we usually abuse the notation F
(
(x⃗n)

)
—or

(
(x⃗n)

)
F—

and write instead F(x⃗n) —or (x⃗n)F— omitting the brackets of the n-
tuple (x⃗n).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

174 5. Functions

5.1.10� Remark. Regarding, say, the definition of F[X] (5.1.6):

What if F(a) ↑? How do you “collect” an undefined “value” into a class?

Well, you don’t.

Both (1) and (2) in 5.1.6 have a rendering that is independent of the
notation “F(a)”.

F[X] = {y : (∃x ∈ X)xFy} (1′)

F−1[Y] = {x : (∃y ∈ Y)xFy} (2′)

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 175

5.1.11 Example. Thus, f [{a}] = {f(x) : x ∈ {a}} = {f(x) : x =
a} = {f(a)}.

Let now g =
{
(1, 2),

(
{1, 2}, 2

)
, (2, 7)

}
, clearly a function. Thus,

g({1, 2}) = 2, but g[{1, 2}] = {2, 7}. Also, g(5) ↑ and thus g[{5}] = ∅.

On the other hand, g−1[{2, 7}] = {1, {1, 2}, 2} and g−1[{2}] = {1, {1, 2}},
while g−1[{8}] = ∅ since no input causes output 8. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

176 5. Functions

5.1.12� Remark. (Kleene Equality) When f(a) ↓, then f(a) = f(a)
as is naturally expected.

What about when f(a) ↑?

This begs a more general question that we settle as follows (follow-
ing Kleene, [Kle43]):

When is f(a) = g(b) where f, g are two functions?

f(a) = g(b)
Def ([Kle43])

≡ f(a) ↑ ∧ g(b) ↑ ∨(∃y)
(
f(a) = y ∧ g(b) = y

)
□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 177

5.1.13 Example. Let g = {(1, 2), ({1, 2}, 2), (2, 7)}.

Then, g(1) = g({1, 2}) and g(1) ̸= g(2).

g(3) = g(4) since both sides are undefined. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

178 5. Functions

5.1.14 Definition. A function f is 1-1 iff (i.e., the concept is short
for) for all x, y and z, f(x) = f(y) = z implies x = y.

Or, in relational notation,

xfz∧yfz → x = y : distinct inputs must cause distinct outputs (1)

So 1-1 ness is about actual outputs being distinct —“↑” is not an
output— for distinct inputs.

Same definition for a possibly non-set function F. □

� Wait! Why does our definition say distinct inputs map to distinct
results? Well take the contrapositive of (1):

suppose t︷ ︸︸ ︷
x ̸= y → ¬

(suppose t︷︸︸︷
xfz ∧

must be f︷︸︸︷
yfz

)
That is, if the inputs are different and one (the x) produces z, then
the other (the y) cannot also produce z. �

5.1.15� Remark. You might ask, “What’s wrong with defining f is 1-1
by simply requiring f(x) = f(y) → x = y?? I saw a run-of-the-mill
text doing just that!”

Well, run-of-the-mill texts pretend (or probably “believe”) that all
functions are total. We know that is wrong.

Yet 1-1-ness is about any function, total or not. For example the
function f = {(1, 2), (2, 9), (3, 8)} is 1-1 according to intuitive expec-
tations that are respected by our definition: distinct inputs 1, 2, 3 pro-
duce distinct actual outputs 2, 9, 8.

If we used the run-of-the-mill definition this f would not be 1-1 since,
for example, we have f(4) ↑= f(5) ↑, yet 4 ̸= 5.

Our definition supports what we immediately see: f is 1-1. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 179

5.1.16 Example. {(1, 1)} and {(1, 1), (2, 7)} are 1-1: No output that
is due to two distinct inputs. Also,

∅ is 1-1 vacuously.

{(1, 0), (2, 0)} is not 1-1. □

5.1.17 Exercise. Prove that if f is a 1-1 function, then the relation
converse f−1 is a function (that is, a single-valued relation). □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

180 5. Functions

5.1.18 Definition. (1-1 Correspondence) A function f : A → B
is called a 1-1 correspondence iff it is all three: 1-1, total, and onto.

Often we say that A and B are in 1-1 correspondence writing A ∼ B,
often omitting mention of the function that is the 1-1 correspondence.

□

The terminology is derived from the fact that every element of A is
paired with precisely one element of B and vice versa.

5.1.19 Exercise. Show that ∼ is a symmetric and transitive relation
on sets. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 181

5.1.20� Remark. (Done already) Composition of functions is inher-
ited from the composition of relations.

It is the identical concept since a function IS a relation.

Thus, f ◦ g for two functions still means

x f ◦ g y iff, for some z, x f z g y (1)

▶ Note!,
f ◦ g is also a function. Indeed, if we have

xf ◦ gy and xf ◦ gy′

then
for some z, xfzgy (2)

and
for some w, xfwgy′ (3)

As f is a function, (2) and (3) give z = w. In turn, this (since g is a
function too!) gives y = y′. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

182 5. Functions

The notation (as in 4.1.55) “(a)f” for relations is uncommon† when
applied to functions —but it IS correct— where “f(a)” may be more
convenient and “normal”.

However, the “normal” notation “f(a)” is awkward in connection
with composition. Consider

x→ f → z → g → y

that represents (1) on p.181 above, note that f acts first.

Its result z = f(x) is then inputed to g —that is, we do g(z) = g
(
f(x)

)
to obtain output y. Thus the first acting function f is “called” first
with argument x and then g is called with argument f(x).

†See however [Kur63].

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 183

Note that if we wrote “(f ◦ g)(a)” this would imply —wrongly—
that g acts first (first call) being closest to the input!

To get around this misleading illusion we need a new notation
(below) for functional composition.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

184 5. Functions

5.1.21 Definition. (Salvaging Notation “f(a)” Done before)
We just learnt (5.1.20) that the composition of two functions pro-

duces a function.

The present definition is about notation only.

Let f : A → B and g : B → C be two functions. The Notation
f ◦ g : A→ C, their relational composition, is the one in 4.1.16.

For composition of functions, we have the alternative —so-called
functional notation for composition:

“gf” stands for “f ◦ g”; note the order reversal AND the absence
of “◦”, the composition symbol.

In particular we write (gf)(a) for (a)(f ◦ g) —cf. 5.1.4— placing
the input close to the function that uses it.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 185

Thus let f and g be functions, hence as we saw (5.1.20), f ◦ g is a
function as well.

Therefore(
gf

)
(a) = b iff (a)(f ◦ g) = {b} (Box on p.184 via the lens of p.167)

iff a(f ◦ g)b
iff (a)f = {c} ∧ (c)g = {b}, for some c

iff f(a) = c ∧ g(c) = b, for some c

iff g
(
f(a)

)
= b

So the notation “gf” above works if we want the input “(a)” to the
right —see also bottom of p.182. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

186 5. Functions

5.1.22 Theorem. Functional composition is associative, that is,

(gf)h = g(fh)

Proof. Exercise!
Hint. Note that by, 5.1.21, (gf)h = h ◦ (f ◦ g). Take it from here.

□

5.1.23 Example. The identity relation on a set A is a function since
(a)1A is the singleton —meaning “one-element” set— {a}. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 187

The following interesting result connects the notions of ontoness and
1-1ness with the “algebra” of composition.

5.1.24 Theorem. Let f : A→ B and g : B → A be functions. If

gf = 1A (1)

then g is onto while f is total and 1-1.

5.1.25 Definition. Relating to (1) in the theorem above we say that
g is a left inverse of f and f is a right inverse of g.

Using the indefinite article “a” because these are not in general
unique! Stay tuned on this!

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

188 5. Functions

Proof. (of 5.1.24)

About g: Our goal, ontoness, means that, for each x ∈ A, I can
“solve the equation g(y) = x for y”.

Indeed I can: By definition of 1A,

g
(
f(x)

)
5.1.21
= (gf)(x)

(1)
= 1A(x) = x (1)

So to solve, take y = f(x).

Mar. 10, 2023

About f : As seen above —the “About g:” heading plus (1)— we
have x = g(f(x)), for each x ∈ A. Thus,

Totalness: Note that x = g(f(x)), for each x ∈ A, is the same as “x f ◦ g x is
true” —all x ∈ A. Therefore, for each x, there must be a z such
that x f z (and z g x).

Thus f is total.

1-1 ness: For the 1-1ness, we prove f(a) = f(b) = c implies a = b. Since
totalness —of the previous step— guarantees the existence of c for
each a and b the rest of the proof ignores c.

Assume then f(a) = f(b) and apply g to both sides of “=”. We
get g(f(a)) = g(f(b)), that is,

(gf)(a) = (gf)(b)

But this says a = b, by gf = 1A, and we are done. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 189

5.1.26� Example. The above is as much as can be proved. For exam-
ple, say A = {1, 2} and B = {3, 4, 5, 6}.

Let f : A→ B be {(1, 4), (2, 3)} and

g : B → A be {(4, 1), (3, 2), (6, 1)}, or in friendlier notation

f(1)= 4
f(2)= 3

and
g(3)= 2
g(4)= 1
g(5)↑
g(6)= 1

Clearly, gf = 1A holds, but note:
(1) f is not onto B.
(2) g is neither 1-1 nor total. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

190 5. Functions

5.1.27� Example. With A = {1, 2}, B = {3, 4, 5, 6} and f : A → B
and g : B → A as in the previous example, consider also the functions
f̃ and g̃ given by

f̃(1)= 6
f̃(2)= 3

and
g̃(3)= 2
g̃(4)= 1
g̃(5)= 2
g̃(6)= 1

Clearly, g̃f = 1A and gf̃ = 1A hold, but note:

(1) f ̸= f̃ .

(2) g ̸= g̃.

Thus, neither left nor right inverses need to be unique. The article
“a” in the definition of said inverses was well-chosen. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 191

The following two partial converses of 5.1.24 are useful.

5.1.28 Theorem. Let f : A → B be total and 1-1. Then there is an
onto g : B → A such that gf = 1A.

Proof. Consider the converse relation (4.1.52) of f —that is, the rela-
tion f−1— and call it g:

x g y
Def

iff y f x (1)

�

ran(g) = ran(f−1)
4.1.53
= dom(f)

f is total
= A, so g is onto A (2)

�

By Exercise 5.1.17 (do this!), g : B → A is a (possibly nontotal)
function.

Since f is total on its left field A, we have

For any y ∈ A, a x ∈ B exists such that yfx. (3)

By (1) we also have xgy, thus yfx ∧ xgy is true, from which we get

yf ◦ gy (4)

Since g is a function, we can write (4) as

y(gf)y

that is,

(gf)(y) = y (5)

(5) is true for all y ∈ A (by (3)) so it says gf = 1A.

By 5.1.24, (5) proves that g is onto —but we already got this is
in (2).

We got both statements that we needed to prove. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

192 5. Functions

5.1.29 Theorem. Let f : A → B be onto. Then there is a total and
1-1 g : B → A such that fg = 1B.

Proof. By assumption, ∅ ≠ f−1[{b}] ⊆ A, for all b ∈ B.

To define g(b) choose ONE

c ∈ f−1[{b}] (†)

and Define g(b) = c.

▶ Do so for each b ∈ B. ◀

Since f(c) = b by (†), we get f(g(b)) = b for all b ∈ B, that is,
fg = 1B.

Hence g is 1-1 and total by 5.1.24. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.1. Preliminaries 193

5.1.30� � Remark. (Axiom of Choice) The proof of 5.1.29 states

choose one c ∈ f−1[{b}]

and that must be done for all b ∈ B that may be infinitely many.

But how do you choose “the” c? If we were dealing with natural
numbers I can see that (How?).

But not with the reals and not with arbitrary unspecified sets!

How do you DESCRIBE in a finite mathematical way the process
of choosing ONE element out of each of (potentially) infinitely many
nonempty sets?

Why finite? Because a proof MUST be written in a finite space of
symbols and words!

How —for example (due to Russell)— do you describe the process of
choosing ONE sock from each of infinitely many pairs?

True, you might sit there for an infinite amount of time, and pick
ONE sock at random from each pair. But can you sit that long? Even
if you can, you will end up (when you write up all that you are do-
ing) using infinite amount of space in your proof. This is NOT allowed!

Incidentally you could describe a process of choosing from an infinite
set of pairs of shoes!

In set theory one takes as an axiom that a SET of (results of) c-
choices exists! They call it the “Axiom of Choice”. □ � �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

194 5. Functions

5.2. Finite and Infinite Sets

Broadly speaking (that is, with very little detail contained in what I
will say next) we have sets that are finite —intuitively meaning that
we can “count” all their elements in a “finite amount” of “time” (but
see the �-remark 5.2.3 below)— and those that are not, the infinite
sets!

What is a mathematical way to say all this?

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 195

Any counting process of the elements of a finite set A will have us say
out loud —every time we pick, or point at, an element of A— “0th”,
“1st”, “2nd”, etc.,

Once we reach and pick the last element of the set, we finally pro-
nounce “nth”, for some appropriate n that we reached in our counting
(Again, see 5.2.3.)

Thus, mathematically, we are pairing each member of the set —or
label each member of the set— with a member from {0, . . . , n}.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

196 5. Functions

Thus the following makes sense:

Mar. 13, 2023

5.2.1 Definition. (Finite and infinite sets) A set A is finite iff it
is either empty, or is in 1-1 correspondence with {x ∈ N : x ≤ n}.
This “normalised” “small” set of natural numbers we usually denote
by {0, 1, 2, . . . , n}.

If a set is not finite, then it is —by definition— infinite. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 197

5.2.2 Example. For any n, {0, . . . , n} is finite since, trivially,

{0, . . . , n} ∼ {0, . . . , n}

using the identity (∆) function on the set {0, . . . , n}. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

198 5. Functions

5.2.3� Remark. One must be careful when one attempts to explain
finiteness via counting by a human.

For example, Achilles† could count infinitely many objects by con-
stantly accelerating his counting process as follows:

He procrastinated for a full second, and then counted the first ele-
ment. Then, he counted the second object exactly after 1/2 a second
from the first. Then he got to the third element 1/22 seconds after the
previous, . . . , he counted the n th item at exactly 1/2n−1 seconds after
the previous, and so on forever.

Hmm! It was not “forever”, was it? After a total of 2 seconds he
was done!

You see (as you can easily verify from your calculus knowledge (lim-
its)),‡

1 +
1

2
+

1

22
+ . . .+

1

2n−1
+ . . . =

1

1− 1/2
= 2

So “clock-time” is not a good determinant of finiteness! □ �

†OK, he was a demigod; but only “demi”.
‡1 + 1

2
+ 1

22
+ . . .+ 1

2n−1 =
1−1/2n

1−1/2
. Now let n go to infinity at the limit.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 199

March 13, 2022

5.2.4 Theorem. If X ⊊ {0, . . . , n}, then there is no onto function
f : X → {0, . . . , n}.

� I am saying, no such f , whether total or not exists; totalness is imma-
terial. �

Proof. First off, the claim holds if X = ∅, since then any such f equals
∅ —no inputs, therefore no outputs!

The range of f is empty so it cannot be onto.

� But how about the case of X ̸= ∅? �

Let us proceed by way of contradiction, and assume that the the-
orem is wrong.

That is, assume that it IS possible to have such onto functions,
for some n and well-chosen ∅ ≠ X ⊊ {0, . . . , n}.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

200 5. Functions

So let n0 be the smallest n that contradicts the theorem, and let X0

be a corresponding set “X” that supports the contradiction, that
is,

X0 ⊊ {0, . . . , n0} AND f : X0 → {0, . . . , n0} is onto (1)

Firstly, we saw that X0 ̸= ∅, since X0 = ∅ does NOT FAIL the theo-
rem.

Secondly, n0 > 0, since otherwise —i.e., IF n0 = 0— X0 = ∅
(Why?) and, as remarked, the latter does NOT FAIL the theorem.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 201

Let us set H = f−1[{n0}].

∅ ≠ H ⊆ X0; the ̸= by ontoness.

Case 1. n0 ∈ H. Then removing all pairs (a, n0) from f —all these have
a ∈ H—we get a new function f ′ : X0−H → {0, 1, . . . , n0−1},
which is still onto as we only removed inputs that cause output
n0 —and thus contradicts the theorem.

This also contradicts minimality of n0 since n0 − 1 works too!
(works to provide an onto map and thus refute the theorem).

0

1

Case 2. n0 /∈ H.

(a) Subcase n0 /∈ X0. Given that X0 ⫋ {0, 1, . . . , n0}, thus
also X0 ⊆ {0, 1, . . . , n0 − 1}.† By H ̸= ∅, X0 − H ⫋
{0, 1, . . . , n0−1}. As in Case 1, f ′ : X0−H → {0, 1, . . . , n0−
1} is onto. Contradiction to minimality of n0.

NOTE that f(n0) ↑ in this case since f has X0 as left field
and n0 /∈ X0 ⊇ dom(f).

(b) n0 ∈ X0. We have two subcases:

• f(n0) ↑. Then we (almost) act as in Case 2(a):
The new “X0” is (X0 −H)− {n0}.

†X0 ⫋ {0, 1, . . . , n0} might be due to X0 = {0, 1, . . . , n0 − 1} and n0 /∈ X0.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

202 5. Functions

We remove n0 ∈ X0 to ensure that the new “X0” will be
a subset of {0, 1, . . . , n0− 1} and we get a contradiction
exactly per Case 2(a). The new onto function is

f ′ = f −H × {n0}

• We have the picture below —that is, f(n0) = m ̸= n0

for some m.

0

1

We simply transform the picture to the one below, “cor-
recting” f to have f(a) = m and f(n0) = n0, that is
defining a new “f” that we will call f ′ by

f ′ =
(
f − {(n0,m), (a, n0)}

)
∪ {(n0, n0), (a,m)}

0

1

We get a contradiction per Case 1. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 203

5.2.5 Corollary. (Pigeon-Hole Principle) Ifm < n, then {0, . . . ,m} ̸∼
{0, . . . , n}.

Proof. If the conclusion fails then we have an onto f : {0, . . . ,m} →
{0, . . . , n}, contradicting 5.2.4. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

204 5. Functions

� Important!

5.2.6 Theorem. If A is finite due to A ∼ {0, 1, 2, . . . n} then there
is no justification of finiteness via another canonical set
{0, 1, 2, . . .m} with n ̸= m.

Proof. If {0, 1, 2, . . . n} ∼ A ∼ {0, 1, 2, . . .m}, then {0, 1, 2, . . . n} ∼
{0, 1, 2, . . .m} by 5.1.19, hence n = m, otherwise we contradict 5.2.5.

□

5.2.7 Definition. Let A ∼ {0, . . . , n}. Since n is uniquely determined
by A we say that A has n+ 1 elements and write |A| = n+ 1. □

�

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 205

5.2.8 Corollary. There is no onto function from {0, . . . , n} to N.

� “For all n ∈ N, there is no. . . ” is, of course, implied. �

Proof. Fix an n. By way of contradiction, let g : {0, . . . , n} → N be
onto.

Let X be the set of all inputs that g maps onto {0, . . . , n+ 1}. (†)

X
Def
= g−1[{0, 1, . . . , n+ 1}] ⊆

left field of g︷ ︸︸ ︷
{0, 1, . . . , n} ⊊ {0, 1, . . . , n, n+ 1} (‡)

As (‡) entails X ⊊ {0, . . . , n + 1}, using (†) we have contradicted
Theorem 5.2.4

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

206 5. Functions

5.2.9 Corollary. N is infinite.

Proof. By 5.2.1 the opposite case requires that there is an n and a
function f : {0, 1, 2, . . . , n} → N that is a 1-1 correspondence. Impos-
sible, since any such an f will fail to be onto N. □

� Our mathematical definitions have led to what we hoped they would:

For example, that N is infinite as we intuitively understand, notwith-
standing Achilles’s accelerated counting! �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 207

Mar. 15, 2023

N is a “canonical” infinite set that we can use to index or label the
members of many infinite sets.

Sets that can be indexed using natural number indices

a0, a1, . . .

are called countable.

� Wait! I said “sets”. Can’t I enumerate using N all members of a proper
class? �

In the interest of technical flexibility, we do not insist that all mem-
bers of N be used as indices.

We might enumerate with gaps:

b5, b9, b13, b42, . . .

Thus, informally, a set A is countable if it is empty or (in the opposite
case) if there is a way to index, hence enumerate, all its members in
an array, utilising indices from N. See also 4.1.42 regarding index-
ing/labelling.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

208 5. Functions

It is allowed to repeatedly list any element of A, so that finite sets
are countable.

For example, the set {42}:

42, 42, 42,
42 forever︷︸︸︷. . .

We may think that the enumeration above is done by assigning to “42”
all of the members of N as indices, in other words, the enumeration is
effected, for example, by the constant function f : N→ {42} given by
f(n) = 42 for all n ∈ N.

This is consistent with our earlier definition of indexing (4.1.42).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 209

Now, mathematically,

5.2.10 Definition. (Countable Sets) We call a set A countable if
A = ∅, or there is an onto function f : N→ A.

We do NOT require f to be total.

This means that some or many indices from N need not be used in
the enumeration.

If f(n) ↓, then we say that f(n) is the nth element of A in the enu-
meration f .

We often write fn instead of f(n) and then call n a “subscript” or
“index”. □

Thus a nonempty set is countable iff it is the range of some function
that has N as its left field.

BTW, since we allow f to be nontotal, the separate case “nonempty”
in the Definition is unnecessary: ∅ is the range of the empty func-
tion that has N as its left field.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

210 5. Functions

We said that the f that proves countability of a set A need not be
total.

But such an f can always be “completed”, by adding pairs to it, to
get an f ′ such that f ′ : N→ A is onto and total. Here is how:

5.2.11 Proposition. Let f : N → A ̸= ∅† be onto. Then we can
extend f to f ′ so that f ′ : N→ A is onto and total.

Proof. Pick an a ∈ A —possible since A ̸= ∅— and keep it fixed. Now,
our sought f ′ is given for all n ∈ N by cases as below:

f ′(n) =

{
f(n) if f(n) ↓
a if f(n) ↑

□

†Since we are constructing a total onto function to A we need to assume the case A ̸= ∅ as we cannot put any
outputs into ∅.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 211

Some set theorists also define sets that can be enumerated using all
the elements of N as indices without repetitions.

5.2.12 Definition. (Enumerable or denumerable sets) A set A
is enumerable iff A ∼ N. □

5.2.13� Example. Every enumerable set is countable, but the converse
fails. For example, {1} is countable but not enumerable due to 5.2.8.

{2n : n ∈ N} is enumerable, with f(n) = 2n effecting the 1-1
correspondence f : N→ {2n : n ∈ N}. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

212 5. Functions

5.2.14 Theorem. If A is an infinite subset of N, then A ∼ N.

Proof. We will build a 1-1 and total enumeration of A, presented in a
finite manner as a (pseudo) program below, which enumerates all the
members of A in strict ascending order and arranges them in an array

a(0), a(1), a(2), . . . a(k − 1), . . . (1)

n ← 0
a(0) ← minA Initialisation; A ̸= ∅
while A− {a(k) : k ≤ n} ≠ ∅
a(n+ 1) ← min

(
A− {a(k) : k ≤ n}

)
n ← n+ 1
end while

� Note that the sequence {a(0), a(1), . . . , a(m)} is strictly increasing
for any m. Indeed (instruction below the word “while”),

a(n+ 1) = min
(
A− {a(0), a(1), . . . , a(n)}

)
hence,

a(0) < a(1), a(0) < a(1) < a(2), . . . ,

say we verified ordering up to a(n)︷ ︸︸ ︷
a(0) < a(1) < · · · < a(n)︸ ︷︷ ︸

all these, selected earlier, are <a(n+1)

< a(n+ 1)

�

Will this loop ever exit?

Suppose yes. Then, say, this happens the first time we gotA−{a(k) :
k ≤ n} = ∅ for some n, that is, A = {a(0), a(1), . . . , a(n)}.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 213

The function a taking {0, 1, . . . , n} onto A (why “onto”?) is total on
{0, 1, . . . , n} and strictly increasing, so is 1-1. Thus A ∼ {0, 1, . . . , n}
and A is finite. A contradiction.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

214 5. Functions

Thus, we never exit the loop! We do fill the array “a”

Therefore, by the remark in the � paragraph above, (1) on p.212
enumerates A in strict ascending order, since what we said there is
true for any n.

Thus distinct inputs cause distinct outputs in the function that maps
n ∈ N to the element a(n) ∈ A.

The function

(Remember This Notation for a Function!) n 7→ a(n)

is 1-1.
That we never exit the loop means that for every iteration a(n) ↓,

hence the function n 7→ a(n) is total.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 215

Mar. 17, 2023

The function n 7→ a(n) is also onto, so all in all we got N ∼ A via a.

Wait! Why is n 7→ a(n) onto?

If you don’t think so, let m ∈ A be one entry we missed and did not
insert in the array a.

Let n be smallest such that

m < a(n)

Such n exists unless all a(n) < m —which is preposterous as we cannot
have infinitely many a(i) < m.

� Remember that every enumerable set is infinite (remember why?). Of
course, the set of the entries in the array is enumerable (why?) before
we even setle ontoness of n 7→ a(n). That’s why I said “we cannot
have infinitely many a(i) < m”. �

But we selected a(n) to be min
(
A− {a(0), a(1), . . . , a(n− 1)}

)
.

Then how come we did not select m instead of a(n)?!!
After all, m is in A−{a(0), a(1), . . . , a(n−1)} and is supposedly

smaller than a(n)! Contradiction.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

216 5. Functions

5.2.15 Theorem. Every infinite countable set is enumerable.

Proof. Let f : N→ A be onto, where A is infinite.

� Reminder: f need not be total. �

Let g : A→ N such that fg = 1A (5.1.29).

Thus, g is total and 1-1 and moreover is onto B = ran(g).

� Every function is onto its range! �

We have the following configuration:

A

g

→
∼ B ⊆ N f→A (1)

Hence B is infinite, else we would have A ∼ B ∼ {0, . . . , n} (some
n) and thus A ∼ {0, . . . , n} (see Exercise 5.1.19) making A finite!

Thus, by 5.2.14, B ∼ N, hence A ∼ N via A ∼ B ∼ N and 5.1.19
once more. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 217

� So, if we can enumerate an infinite set at all, then we can enumerate
it without repetitions. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

218 5. Functions

We can linearise an infinite square matrix of elements in each loca-
tion (i, j) by devising a traversal that will go through each (i, j) entry
once, and will not miss any entry !

In the literature one often sees the method diagrammatically, see
below, where arrows clearly indicate the sequence of traversing, with
the understanding that we use the arrows by picking the first unused
chain of arrows from left to right.

(0, 0) (0, 1) (0, 2) (0, 3) . . .

↗ ↗ ↗
(1, 0) (1, 1) (1, 2)

↗ ↗
(2, 0) (2, 1)

↗
(3, 0)
...

So the linearisation induces a 1-1 correspondence between N and the
linearised sequence of matrix entries, that is, it shows that N×N ∼ N.

In short,

5.2.16 Theorem. The set N × N is countable. In fact, it is enumer-
able.

Is there a “mathematical” way to do this? Well, the above IS math-
ematical, don’t get me wrong, but is given in outline. It is kind of an
argument in geometry, where we rely on drawings (figures).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 219

READ ME! Here are the algebraic details:

Proof. (of 5.2.16 with an algebraic argument). Let us call i+ j+1 the
“weight” of a pair (i, j). The weight is the number of elements in the
group:

(i+ j, 0), (i+ j − 1, 1), (i+ j − 2, 2), . . . , (i, j), . . . , (0, i+ j)

Thus the diagrammatic enumeration proceeds by enumerating groups
by increasing weight

1, 2, 3, 4, 5, . . .

and in each group of weight k we enumerate in ascending order of the
second component.

Thus the (i, j) th entry occupies position j in its group —the first
position in the group being the 0 th, e.g., in the group of (3, 0) the
first position is the 0 th— and this position globally is the number of
elements in all groups before group i + j + 1, plus j. Thus the first
available position for the first entry of group (i, j) members is just after
this many occupied positions:

1 + 2 + 3 + . . . (i+ j) =
(i+ j)(i+ j + 1)

2

That is,

global position of (i, j) is this:
(i+ j)(i+ j + 1)

2
+ j

The function f which for all i, j is given by

f(i, j) =
(i+ j)(i+ j + 1)

2
+ j

is the algebraic form of the above enumeration. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

220 5. Functions

� There is an easier way to show that N× N ∼ N without diagrams:

By the unique factorisation of numbers into products of primes (Eu-
clid) the function

g : N × N → N given for all m,n by g(m,n) = 2m3n is 1-1, since
Euclid proved that 2m3n = 2m

′
3n

′
implies m = m′ and n = n′.

It is not onto as it never outputs, say, 5, but ran(g) is an infinite
subset of N (Exercise!).

Thus, trivially,

N× N via g∼ ran(g) ∼ N
the 2nd “∼” by 5.2.14. END READ ME! �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 221

5.2.17 Exercise. Say A ⊆ B and A is infinite. Prove that B too is
infinite. □

5.2.18 Exercise. If A and B are enumerable, so is A×B.
Hint. So, N ∼ A and N ∼ B. Can you show now that N×N ∼ A×B?

□

With little additional effort one can generalise to the case of
n

×
i=1

Ai.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

222 5. Functions

5.2.19 Remark.

1. Let us collect a few more remarks on countable sets here. Suppose
now that we start with a countable set A. Is every subset of A
countable?

Yes, because the composition of onto functions is onto. Exercise!

5.2.20 Exercise. What does composition of onto functions have
to do with this? Well, prove that if B ⊆ A then there is a natural
onto function g : A→ B. Which one?

Hint. Think “natural”! Get a natural total and 1-1 function f :
B → A and then use f to get g. □

2. As a special case, if A is countable, then so is A ∩ B for any B,
since A ∩B ⊆ A.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.2. Finite and Infinite Sets 223

3. How about A∪B? If both A and B are countable, then so is A∪B.
Indeed, and without inventing a new technique, let

a0, a1, . . .

be an enumeration of A and

b0, b1, . . .

for B. Now form an infinite matrix with the A-enumeration as
the 1st row, while each remaining row is the same as the B-
enumeration. Now linearise this matrix!

Of course, we may alternatively adapt the unfolding technique to
an infinite matrix of just two rows. How?

Notes on Discrete MATH (EECS1028)© G. Tourlakis

224 5. Functions

4. 5.2.21 Exercise. Let A be enumerable and an enumeration of A

a0, a1, a2, . . . (1)

is given.

So, this is an enumeration without repetitions.

Use techniques we employed in this section to propose a new enu-
meration in which every ai is listed infinitely many times (this is
useful in some applications of logic). □

5.2.22 Example. Any proper subsetX of {0, 1, . . . , n}—any n ≥ 0—
is finite.

Say X is infinite instead. Since X ⊆ {0, 1, . . . , n} ⊆ N, we have
(5.2.14) X ∼ N, that is, X is enumerable.

So let f : X → N be 1-1, total and onto. Then (the nontotal)
f : {0, . . . , n} → N is onto, contradicting 5.2.8. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.3. Diagonalisation and uncountable sets 225

Mar. 20, 2023

5.3. Diagonalisation and uncountable sets

5.3.1 Example. Suppose we have a 3× 3 matrix

1 1 0
1 0 1
0 1 1

and we are asked:

Find a sequence of three numbers, using only 0 or 1, that does not
fit as a row of the above matrix —i.e., is different from all rows.

Sure, you reply: Take 1 1 1. Or, take 0 0 0.

That is correct. But what if the matrix were big, say, 10350000 ×
10350000, or even infinite?

Is there a finitely describable technique that can produce an “unfit”
row for any square matrix, even an infinite one?

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

226 5. Functions

Yes, it is Cantor’s diagonal method or technique.

5.3.2 Definition. (Diagonalisation: How-to) Cantor noticed that
any row that fits in a matrix M as the, say, i-th row, intersects the
main diagonal at entry M(i, i).

Thus if we take the main diagonal —a sequence that has the same
length as any row— and make a copy of it changing every one of the
original entries M(x, x), then it will not fit anywhere in M as a row!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.3. Diagonalisation and uncountable sets 227

Thus the Main (Original) Diagonal is the sequence of entries below:

pos. 0
↓

M(0, 0),

pos. 1
↓

M(1, 1),

pos. 2
↓

M(2, 2), . . . ,

pos. i
↓

M(i, i), . . .

The modified diagonal is (where we named “D” the array below):

D =

pos. 0
↓

M(0, 0),

pos. 1
↓

M(1, 1),

pos. 2
↓

M(2, 2), . . . ,

pos. i

↓
M(i, i), . . .

where, for all positions i, M(i, i) ̸= M(i, i).

Thus if D fits as row x, then the x-th element of D —M(x, x)—
will overlap the (original) x-th element of M —M(x, x).

But these two are different! So, the modified diagonal D does NOT
FIT as the x-th row! □

� This HOW TO would give the alternative answer 0 1 0 to our orig-
inal question in 5.3.1. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

228 5. Functions

5.3.3 Example. We have an infinite matrix M of 0-1 entries. Can we
produce an infinite sequence of 0-1 entries that does not match any
row in the matrix?

Yes, to get the counterpart of D above just define for all x:

M(x, x) = 1−M(x, x)

In words, take the main diagonal and flip every entry (0 to 1; 1 to 0).

Now refer to 5.3.2. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.3. Diagonalisation and uncountable sets 229

5.3.4� Example. (Cantor) Let S denote the set of all infinite se-
quences —also called infinite strings— of 0s and 1s.

Pause. What is an infinite sequence? Our intuitive understanding
of the term is captured mathematically by the concept of a total func-
tion f with left field (and hence domain) N.

The n-th member of the sequence is f(n).◀

Can we arrange all of S in an infinite matrix —one element per row?

No, since the preceding example shows that we would miss at least
one infinite sequence (i.e., we would fail to list it as a row), because
a sequence of infinitely many 0s and/or 1s can be found, that does
not match any row!

□ �

But arranging all members of S as an infinite matrix —one element
per row— is tantamount to saying that we can enumerate all the
members of S using members of N as indices.

So we cannot do that. S is not countable!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

230 5. Functions

5.3.5 Definition. (Uncountable Sets) A set that is not countable
is called uncountable. □

� If it is not countable —uncountable— then it is NOT enumerable,
right??? �

Example 5.3.4 shows that uncountable sets exist. Here is a more
interesting one.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.3. Diagonalisation and uncountable sets 231

5.3.6� Example. (Cantor) The set of real numbers in the interval

(0, 1)
Def
={x ∈ R : 0 < x < 1}

is uncountable. This is done via an elaboration of the argument in
5.3.4.

Think of a member of (0, 1), in form, as an infinite sequence of num-
bers from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} prefixed with a dot; that is,
think of the number’s decimal notation.

Some numbers have representations that end in 0s after a certain
point. We call these representations finite. Every such number has
also an “infinite representation” since the non zero digit d immedi-
ately to the left of the infinite tail of 0s can be converted to d− 1, and
the infinite tail into 9s, without changing the value of the number.

Allow only infinite representations.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

232 5. Functions

Assume now by way of contradiction that a listing of all members
of (0, 1) exists, listing them via their infinite representations —where
the leading decimal point is omitted and all aij satisfy 0 ≤ aij ≤ 9
(decimal digits).

a00a01a02a03a04 . . .
a10a11a12a13a14 . . .
a20a21a22a23a24 . . .
a30a31a32a33a34 . . .

...

(1)

The “How To” of Definition 5.3.2 is applied now to obtain a

number
D = (.)a00 a11 a22 . . . axx . . .

where

axx =

{
2 if axx = 0 ∨ axx = 1

1 otherwise
(2)

Clearly (by 5.3.2) D does not fit in any row i of (1), that is, the
number it represents is both

• In (0, 1) —since its digits are 1 or 2 it is 0 < D < 1,

AND

• Not in (0, 1) —by the diagonalisation in (2).

This contradiction shows that we do NOT have the enumeration of all
of (0, 1) depicted as (1): The real interval is uncountable. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.3. Diagonalisation and uncountable sets 233

5.3.7 Example. (5.3.4 Revisited) Consider the set of all total func-
tions from N to {0, 1}. Is this countable?

Well, if there is an enumeration of these one-variable functions

f0, f1, f2, f3, . . . (1)

consider the function g : N→ {0, 1} given by g(x) = 1− fx(x).

Clearly, this must appear in the listing (1) since it has the correct
left and right fields, and is total.

Too bad! If g = fi then g(i) = fi(i). By definition, it is also 1−fi(i).

A contradiction.

This is just version of 5.3.4; as already noted there, an infinite se-
quence of 0s and 1s is just another way of viewing a total function from
N to {0, 1}. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

234 5. Functions

The same argument as above shows that the set of all functions from
N to N is uncountable.

Taking g(x) = fx(x) + 1 also works here to “systematically change
the diagonal” f0(0), f1(1), . . . since we are not constrained to keep the
function values in {0, 1}.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.3. Diagonalisation and uncountable sets 235

5.3.8� Remark. Worth Emphasizing. Here is how we constructed
g: We have a set of in principle available f -indices for g —i.e., in prin-
ciple, g is a fi, for some i.

We want to make sure that none of the indices applies —i.e., that
in fact g is NOT fi for any such index.

A convenient method to do that is to inspect each available index,
i, and using the diagonal method do this: Ensure that g differs from
fi at input i, by setting

g(i) = 1−
diag. entry

fi(i) (1)

What we did: We think of F as the name of an infinite matrix.
F (i, j) = fi(j) by definition (of F).

Thus (1) above defines an altered diagonal “g” for F that cannot
fit as a row —as an “fi” (5.3.2).

(1) ensures that g ̸= fi; period.

We say that we cancelled the index i as a possible “f -index” of g.

Since the process is applied for each i, we have cancelled all possible
indices for g: For no i can we have g = fi. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

236 5. Functions

5.3.9� Example. (Cantor) What about the set of all subsets of N —
P(N) or 2N?

Cantor showed that this is uncountable as well: If not, we have an
enumeration of its members as

S0, S1, S2, . . . (1)

Define the set
D

Def
= {x ∈ N : x /∈ Sx} (2)

So, D ⊆ N, thus it must appear in the list (1) as an Si. But then

i ∈ D iff i ∈ Si

by virtue of D = Si.

However, also i ∈ D iff i /∈ Si by (2).

This contradiction establishes that a legitimate subset of N, namely
D, is not an Si.

That is, 2N cannot be so enumerated; it is uncountable. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

5.3. Diagonalisation and uncountable sets 237

Mar. 22, 2023

5.3.10� Example. (Characteristic functions) Let S ⊆ N. We can
represent S as a total function cS : N→ {0, 1} given by:

cS(x) =

{
1 if x ∈ S

0 if x ∈ N− S

Thus,
S = {x ∈ N : cS(x) = 1}

The correspondence that maps S to cS —and back— is a 1-1 corre-
spondence between subsets of N and total functions f : N→ {0, 1}.

Now, if we use the abbreviation

ci for cSi

then with reference to the “D” of 5.3.9, we note that

cD(x)= 1 iff x ∈ D

= 1 iff x /∈ Sx ⟨Comment: (2) in 5.3.9⟩
= 1 iff cx(x) = 0

So
cD(x) = 1− cx(x)

Thus the argument in 5.3.9 is not new then, but is rather a “trans-
lation” of the diagonalisation over the list of 0/1 functions cx, for
x = 0, 1, 2, . . ., in the manner of 5.3.7. □ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

238 5. Functions

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Chapter 6

A Short Course on
Predicate Logic

We have become somewhat proficient in using informal logic in our
arguments about aspects of discrete mathematics, in particular prov-
ing statements like A ⊆ B and X = Y, for any classes that we know
something about their properties.

Although we have used quantifiers already —∃ and ∀— we did so
mostly viewing them as symbolic abbreviations of English texts about
mathematics.

In this chapter we will expand our techniques in logic, extending
them to include the correct syntactic —also called “formal”— manip-
ulation of quantifiers.

This chapter also includes the WHAT and the HOW TO of the
versatile Induction —or mathematical induction— technique used to
prove properties of the natural numbers.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

240 6. A Short Course on Predicate Logic

We know how to detect fallacious statements formulated in Boolean
logic: Simply show by a truth table that the statement is not a tau-
tology (or not a so-called tautological implication).

Correspondingly, we will show in the domain of quantifier logic not
only how to prove statements that include quantifiers but also how to
disprove false statements that happen to include quantifiers.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.1. Enriching our proofs to manipulate quantifiers 241

6.1. Enriching our proofs to manipulate quantifiers

Manipulation of quantifiers boils down to “how can I remove a quanti-
fier from the beginning of a formula?” and “how can I add a quantifier
at the beginning of a formula?”

Once we learn this technique we will be able to reason within math-
ematics with ease.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

242 6. A Short Course on Predicate Logic

But first let us define once and for all what a mathematical proof
looks like: its correct, expected syntax or form.

We will need some concepts to begin with.

1. The alphabet and structure of formulas. Formulas are strings and
name statements of mathematics and computer science.

The alphabet of symbols that we use to write down formulas con-
tain, at a minimum,

=,¬,∧,∨,→,≡, (,),∀,∃, ∗object variables†

We finitely generate the infinite set of object variables using single
letters, if necessary with primes and/or subscripts: A, x, y′′, w′′′23, u501.

∗∃ is introduced as an abbreviation of something more complex in 6.2.2.
†That is, variables that denote objects such as numbers, arrays, matrices, sets, trees, etc.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.1. Enriching our proofs to manipulate quantifiers 243

2. One normally works in a mathematical area of interest, or mathe-
matical theory —such as Geometry, Set Theory, Number Theory,
Algebra, Calculus, Theory of Computation— where one needs ad-
ditional symbols to write down formulas, like

0, ∅,∈,⊆,⫋,
⋂

,
⋃

,∪,
∫

, ◦,+,×, µ

and many others.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

244 6. A Short Course on Predicate Logic

3. Mathematicians as a rule get to recognise the formulas (name
statements) and terms (name objects) in the math areas of their
interest via practise without being necessarily taught the recursive
definition of the syntax of these.

We will not spell out the syntax in these notes either (but see
[Tou08] if you want to know!). Thus one learns to be content
with getting to know formulas and terms by their behaviour and
through use, rather than by their exact definition of syntax.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.1. Enriching our proofs to manipulate quantifiers 245

• Terms are “function calls”, in the jargon of the computer savvy
person.

These calls take math objects as inputs and return math ob-
jects as outputs.

Examples are: x, A, ∅, 0, 5, 42, x+ y, x× 3, 0× x+ 1, A∩B.

The underlined examples above are the simplest possible
objects (terms): Constants and variables.

More complex ones are build via function calls.

NOTE. One is told that × is stronger than +, so, notwith-
standing the bracket-parsimonious notation “0 × x + 1”, we
know it means “(0× x) + 1”, so this call returns 1, no matter
what we plugged into x.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

246 6. A Short Course on Predicate Logic

• Formulas are also function calls, but their output is restricted
(by their syntax that I will not define carefully!) to be one or
the other of the truth values true or false (t or f) but nothing
else! Their input, just as in the case for terms, is any math
object.

Examples are:

2 < 3 (t),

(∀x)x = x (t),

(∀x)x = 0 (f),

(∃x)x = 0 (t),

x = 0 neither true nor false; answer depends on the input we
place in x!

More: x = x (t) answer is independent of input; x = 0→ x = 0
(t) answer is independent of input;

x = 0 → (∀x)x = 0 neither true nor false; answer depends on
the input in x!

The input variable is the leftmost x; the other two (x’s)are
bound and unavailable to accept inputs. See below.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.1. Enriching our proofs to manipulate quantifiers 247

• If an occurrence of formula variable is available for input it
would normally be called “an occurrence as an input variable”.

Rather, such occurrences are called free occurrences in the lit-
erature.

Non-input occurrences of a variable are called “bound”.

Let’s emphasise: It is not a variable x that is free or bound
in a formula, but it is the occurrences of said variable that
we are speaking of, as the immediately preceding example
makes clear.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

248 6. A Short Course on Predicate Logic

4. In (∀x)x = 0 the variable x is non input, it is “bound” we say.

Just like this: Σ4
i=1i, which means 1 + 2 + 3 + 4 and “i” is an

illusion! Not available for input:

Something like Σ4
3=13 is nonsense!

Similar comment for (∀x)x = 42. Neither of these two occurrences
of x is free (available) for substitution in it.

No wonder “bound” variables are sometimes called “apparent vari-
ables”.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.1. Enriching our proofs to manipulate quantifiers 249

5. We call ∀,∃,¬,∧,∨,→,≡ the “logical connectives”, the last 5 of
them being called Boolean connectives.

People avoid cluttering notation with too many brackets by agree-
ing that the first 3 connectives have the same “strength” or “pri-
ority”; the highest. The remaining connectives have priorities de-
creasing as we walk to the right.

Thus, if A and B are (denote) formulas, then ¬A ∨ B means
(¬A) ∨ B; ¬ wins the claim for A. If we want (∀x) to apply
to the entire A→ B we must write (∀x)(A→ B).

What about A → B → C and A ≡ B ≡ C? Brackets are implied
from right to left: A→ (B → C) and A ≡ (B ≡ C).

And this? (∃y)(∀x)¬A. Brackets are implied, again, from right to
left : (∃y)

(
(∀x)(¬A)

)
.

BTW, the part of a formula where a (∀x) or (∃x) acts upon
—the “(. . .)” in (∀x)(. . .) and (∃x)(. . .)— is called their scope.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

250 6. A Short Course on Predicate Logic

March 24, 2023

6. Boolean deconstruction. A formula like (∀x)A → B can be
deconstructed Boolean-wise into (∀x)A and B. If I knew more
about B —say, e.g., it is x = 3 → x = 7, then I can deconstruct
further.

So, now I have got the full deconstruction:

(∀x)A, x = 3, x = 7

The last two have NO Boolean structure so deconstructing stops
with them. How about (∀x)A? This cannot be deconstructed ei-
ther, even if A had Boolean structure!

� Such structure is locked up in the scope of (∀x). �

We call the formulas where deconstruction stops “prime”.

A prime formula is one with no explicit Boolean structure, e.g.,
x < 8, or one of the form (∀x)A (A is the scope) or (∃x)A (A is
the scope).

Every formula is either prime or can be deconstructed into prime
components.

Here the Boolean (block-)structure of the original above is

(∀x)A → x = 3 → x = 7

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.1. Enriching our proofs to manipulate quantifiers 251

Playing the “WHAT-IF game” of Boolean logic —that is, being
ONLY ABLE to say that the “boxes” have as value one of t or f
each, but I do not know which— I conclude (from truth tables)
that the Boolean structure does NOT make the above true for all
choices of “what if” values.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

252 6. A Short Course on Predicate Logic

6.1.1� Remark. (Tautologies) A formula A is a tautology iff it is
true due to its Boolean structure, according to truth tables (2.3.4)
no matter what are the “what-if” values of its prime formulas into
which it is deconstructed are assumed to be.

Note “Assumed to be”:

We do NOT compute the intrinsic truth value of a prime formula
that is part ofAwhen we check whether A is a tautology or not.

▶ For example, x = x is a prime formula and thus its assumed value
could be ANY ONE of t or f .

Thus it is NOT a tautology, even though, it intrinsically IS true, no
matter what the value of x! □ �

The term “tautology” is applied only to formulas that do have
Boolean structure.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.1. Enriching our proofs to manipulate quantifiers 253

6.1.2 Example.

1. (∀x)A is not a tautology as it has two possible truth values (being
a prime formula).

2. x = 0→ x = 0 is a tautology. Which are its prime (sub) formulas?

□

3. (∀x)x = 0→ x = 0 is not a tautology. I repeat (one last time):

To determine tautologyhood we DO NOT evaluate prime formulas;
we just consider each of the two scenarios, t or f , for each prime
formula and use truth tables to compute the overall truth value.

� If we DID evaluate (∀x)x = 0 we would see that (say over the
natural numbers, or reals, or complex numbers) it is false.† So the
implication is true! But we DON’T do that! �

This one is Not true as a Boolean formula!

†If we are doing our mathematics restricted to the set {0}, then, in this “theory” the formula IS true!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

254 6. A Short Course on Predicate Logic

� So, how do we show that (∀x)A is true (if it is)?

Well, in easy cases we try to see if A is true for all values of x —
which boils down to

“fix an (arbitrary, hence undisclosed) x” and show A is true for
THAT x.

▶ That failing, we will use a proof (see Section 6.2).

Similarly for (∃x)A. To show it is true (if it is) we try to see if A is
true for some value of x.

Often we just guess one such value that works, say c, and verify the
truth of A when x = c.

▶ That failing, we will use a proof. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.1. Enriching our proofs to manipulate quantifiers 255

6.1.3 Definition. (Important! Tautological implication)
We say that the formulas A1, A2, . . . , An tautologically imply a for-

mula B —in symbols A1, A2, . . . , An |=taut B— meaning

“the truth of A1 ∧ A2 ∧ . . . ∧ An implies the truth of B”

that is, by the truth table for →, that

A1 ∧ A2 ∧ . . . ∧ An → B is a tautology

□

� So, |=taut propagates truth from left to right. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

256 6. A Short Course on Predicate Logic

6.1.4 Example. Here are some easy and some involved tautological
implications. They can all be verified using truth tables, either building
the tables in full, or taking shortcuts.

1. A |=taut A

2. A |=taut A ∨B

3. A |=taut B → A

4. A,¬A |=taut B —any B. Because I do “work” only if A ∧ ¬A is
true! See 6.1.3.

5. f |=taut B —any B. Because I do work only if lhs is true! See
above.

6. Is this a valid tautological implication? B,A→ B |=taut A, where
A and B are distinct.

No, for if A is false and B is true, then the lhs is true, but the rhs
is false!

7. Is this a valid tautological implication? A,A→ B |=taut B? Yes!
Say A = t and (A→ B) = t. Then, from the truth table of →, it
must be B = t.

8. How about this? A,A ≡ B |=taut B? Yes! Verify!

9. How about this? A ∨B ≡ B |=taut A→ B? Yes! I verify:

First off, assume lhs of |=taut —that is, A ∨B ≡ B— is true.

Two cases:

• B = f . Then I need the lhs of ≡ to be true to satisfy the red
“assume”. So A = f as well and clearly the rhs of |=taut is true
with these values.

• B = t. Then I need not worry about A on the lhs. The rhs of
|=taut is true by truth table of →.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.1. Enriching our proofs to manipulate quantifiers 257

10. A ∧ (f ≡ A) |=taut B, for any B. Well, just note that the lhs of
|=taut is f so we need to do no work with B to conclude that the
implication is valid.

11.
A→ B,C → B |=taut A ∨ C → B

This is nicknamed “proof by cases” for the obvious reasons. Verify
this tautological implication! □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

258 6. A Short Course on Predicate Logic

6.2. Proofs and Theorems

The job of a mathematical proof is to start from assumed (axioms)
truths and unfailingly preserve truth in all its steps as it is developed.

Thus, when the proof ends it will have produced a truth at its very
last step. A theorem.

A proof is a finite sequence of formulas —it is our “mathematical
argument”— where each formula we write down, one per line with a
short explanation, is either

1. an “assumption/hypothesis†” or an axiom,

OR

2. is obtained from formulas we wrote earlier IN THIS PROOF em-
ploying some valid rule.

†To be explained on p.263.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 259

Am I allowed in step 1. above to write an already proved theorem
A?

Yes, because doing so is equivalent to lengthening the proof by

adding —instead of just A— . . . , A , that is, the entire proof of A
obtained from axioms only, not invoking other theorems.

Programming analogy: I am allowed to invoke macros in a
program because this is equivalent to writing down explicitly the
macro-expansion code.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

260 6. A Short Course on Predicate Logic

What are our axioms, our starting assumptions, when we do proofs?

We have two types:

1. Axioms needed by Logic (Logical Axioms) that are common in all
proof-work that we do in mathematics or computer science.

▶ For example, such is the “identity” axiom x = x and the tau-
tology ¬A ∨ A.

Both these configurations —“x = x” and “¬A ∨ A”— define in-
finitely many axioms as their “instances”.

The first allows us to use ANY object variable in place of “x” the
second allows to use any “statement” (formula) in place of A.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 261

2. Axioms needed to do MATH in some theory (Mathematical ax-
ioms).

Here is a sample of axioms from a few MATH (theories):

(i) i. Number theory for N:
• x < y ∨ x = y ∨ x > y (trichotomy)

• ¬x < 0 this axiom indicates that 0 is minimal in N.

Adding the previous one makes < a total order, so 0 is
also minimum.

• Many others that we omit.

ii. Euclidean Geometry:

• From two distinct points passes one and only one line.

• (“Axiom of parallels”) From a point A off a line named
k —both A and k being on the same plane— passes a
unique line on said plane that is parallel to k.

• Many others that we omit.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

262 6. A Short Course on Predicate Logic

iii. Axiomatic Set Theory:

• For any set A, we have

(∃y)y ∈ A→ (∃x)
(
x ∈ A ∧ ¬(∃z ∈ A)z ∈ x

)
This is the so-called axiom of “foundation” from which
one can prove things like A ∈ A is always false.

This axiom incarnates Principles 0-2 in an axiomatic
set theory like “ZFC”.

It says that IF A ̸= ∅ —this is “(∃y)y ∈ A”— THEN

there is some element in A —this is the part “(∃x)
(
x ∈

A”— which contains no element of A —this is the part
“¬(∃z ∈ A)z ∈ x”.

• And a few others —including the Axiom of Choice,
acronym “AC”— that we omit. □

� Foundation above tells us, among other things, that we cannot contain
all members of a chain

. . . ∈ x′′ ∈ x′ ∈ x

in a set A. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 263

And then we have “hypotheses” or “assumptions”.

Are those not just axioms of logic or math? Not necessarily!

You recall that to prove A ⊆ B you go like this:

“Let x ∈ A for some fixed x”. This “x ∈ A” is a hypothesis from
which you will prove (hopefully) x ∈ B.

It is NOT an axiom of logic nor one of mathematics!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

264 6. A Short Course on Predicate Logic

6.2.1 Definition. (The Logical Axioms)

1. All tautologies; these need no defence as “start-up truths”.

2. Formulas of the form (∀x)A[x]→ A[t], for any formula A, variable
x and “object” t.

This object can be as simple as an (object) variable y (might
be same as x), constant c, or as complex as a “function call”,

f
(
g
(
y, h(z)

)
, a, b, w

)
where f accepts 4 inputs, g accepts 2 and

h accepts one. y, z, w are variables while a and b are unspecified
constants.

The axiom is true in any theory as it “says” “if A is true for all
(values of) x, then it is also true for the specific value t”.

The axiom works only if we take care that the free variables of t
(if any) that we substitute into the x of A[x] do not accidentally
get caught (“captured”) into the scope of a quantifier (∀z) or
(∃z) lurking inside A.

So, If A[y] is (∃x)x = y we cannot take t to be f(x) and do
A[f(x)]. Taking t to be f(z) is OK: (∃x)x = f(z).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 265

BTW “[x]” indicates the free variable of interest to us. It does
not imply that x actually occurs free in A nor does it imply
that there may not be other free variables in A.

How do I indicate that x, y, z are precisely all the free variables
(“inputs”) of A? A(x, y, z).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

266 6. A Short Course on Predicate Logic

3. Formulas of the form A[x]→ (∀x)A[x], for any formula A where
the variable x does not occur free in it.

That is. the truth value of A is independent of the value of x and
writing —or not writing— “(∀x)” up in front makes no difference.

For example say A is 3 = 3. This axiom says then, “if 3 = 3 is
true, then so is (∀x)3 = 3”.

Sure! 3 = 3 does not depend on x. So saying “for all values of x
we have 3 = 3” is the same as saying just “we have 3 = 3”.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 267

4. x = x is the identity axiom, no matter what “x” I use to express
it. So, y = y and w = w are also instances of the axiom.

5. x = y → y = x and x = y∧y = z → x = z are the equality axioms.

They can be expressed equally well using variables other than x
and y (e.g., u, v and w).

□

6.2.2� Remark. (The “∃”) The symbol ∃ is an abbreviation:

For any formula A, (∃x)A[x] stands for or is short for ¬(∀x)¬A[x].

We also get the tautology (hence theorem)

⊢
using abbrev. of rhs︷ ︸︸ ︷

(∃x)A ≡ ¬(∀x)¬A

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

268 6. A Short Course on Predicate Logic

The “rules of proving”, or rules of inference. These are two up in
front —you will find I am grossly miscounting:

6.2.3 Definition. (Rules of Inference)
The rules used in proofs are called rules of inference and are these

two (actually the second contains infinitely many rules).

1. From A[x] I may infer (∀x)A[x]. Logicians write the up-in-front
(“primary”) rules as fractions without words:

A[x]

(∀x)A[x]
(1)

this rule we call generalisation, or Gen in short.

2. I may construct (and use) using any tautological implication that
I have verified, say, this one

A1, A2, . . . , An |=taut B (2)

the rule
A1, A2, . . . , An

B
Seeing readily that A,A→ B |=taut B, we have the rule

A,A→ B

B

This is a very popular rule, known as modus ponens, for short MP.

� Worth Saying. So rules preserve truth. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 269

Read a rule such as (1) or (2) as saying

If you already wrote all the formulas of the “numerator” (in any
order) in a proof, then it is legitimate to write thereafter in the proof
the denominator formula (of the rule).

We call the numerator input or hypotheses of the rule and call
the denominator result or conclusion.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

270 6. A Short Course on Predicate Logic

6.2.4� Remark.

1. The second “rule” above is a rule constructor.

Any tautological implication we come up with is fair game:

It leads to a valid rule since the name of the game (in a proof) is
preservation/propagation of truth.

This is NOT an invitation to learn and memorise infinitely many
rules (!) but is rather a license to build your own rules as you go,
as long as you bothered to verify the validity of the tautological
implication they are derived from.

2. Gen is a rule that indeed propagates truth: If A[x] is true, that
means that it is so for all values of x —and all values of any other
free variables on which A depends but I did not show in the [. . .]
notation.

But then so is (∀x)A[x] true, as it says precisely the same thing :
“A[x] is true, for all values of x and all values of any other free
variables on which A depends but I did not show in the [. . .] nota-
tion”.

The only difference between the two notations is that I added some
notational emphasis in the second —(∀x).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 271

� This use of generalisation is called in the literature “strong gen-
eralisation” and is the favourite of mathematicians, who prefer
“open (mathematical) axioms” —axioms with free variables and
no leading quantifiers— as they call them.

For example, in Peano Arithmetic all axioms are (in many ad-
vanced logic texts [Sho67, Men87, Tou03a]) open (with no leading
generalisations that is). Note the following axioms

• (Trichotomy) x = y ∨ x < y ∨ y < x —which those who like to
put a (∀x) even in their coffee would rather render as

(∀x)(∀y)(x = y ∨ x < y ∨ y < x)

• The PA axiom x+ 1 ̸= 0 we mentioned already.†

• (Axiom 1 of addition) x+ 0 = x

• (Axiom 2 of addition) x+ (y + 1) = (x+ y) + 1

�

†Here and in the last bullet one rather uses “S” —the name of the successor function x 7→ x+1— to write these
two axioms as

(a) ¬Sx = 0,

and

(b) x+ Sy = S(x+ y).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

272 6. A Short Course on Predicate Logic

3. Hmm. So is ∀x redundant? Yes, but only as a formula PREFIX.
In something like this

x = 0→ (∀x)x = 0 (1)

over N it is NOT redundant!

Dropping ∀ we change the meaning of (1).

As is, (1) is not a true statement. For example, if the value of the
“input x” (the left one) is 0, then it is false.

However dropping ∀x, (1) changes to x = 0 → x = 0 which is a
tautology; always true.

□ �

We saw the shape of proofs at the outset, on p.258.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 273

6.2.5 Definition. (Theorems)

A theorem is a formula that appears in a proof.

Often one writes ⊢ A to symbolically say that A is a theorem. If we
must indicate that we worked in some specific theory, say ZFC (set
theory), then we may indicate this as

⊢ZFC A

If moreover we have had some “non-axiom hypotheses” (see box on
p.263) that form a set Σ, then we may indicate so by writing

Σ ⊢ZFC A

□

� Why Σ —and not A,B,C?— for a set of (non-axiom) assumptions?
Because we reserve upper case latin letters for formulas. For sets of
formulas we use a distinguishable capital letter, so, we chose distin-
guishable Greek capital letters, such as Γ,Σ,∆,Φ,Θ,Ψ,Ω. Obviously,
Greek capital letters like A,B,E, Z will not do! �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

274 6. A Short Course on Predicate Logic

6.2.6� Remark. (Hilbert-style proofs) The proof concept as defined
is known as a “Hilbert-style proof”.

We write them vertically, ONE formula per line, every formula con-
secutively numbered, with annotation to the right of each formula writ-
ten (this is the “why did I write this?”).

Like this

1) F1 ⟨because⟩
2) F2 ⟨because⟩
...

...
...

n) Fn ⟨because⟩

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 275

Mar. 27, 2023

6.2.7 Example. (New (derived) rules) A derived rule is one we
were not given —in 6.2.3— to bootstrap logic, but we can still prove
that they propagate truth.

1. We have a new (derived) rule: (∀x)A[x] ⊢ A[t].

This is called Specialisation, or Spec.

Aha! We used a non-axiom assumption here!

I write a Hilbert proof to show that A[t] is a theorem if (∀x)A[x]
is a (non-axiom) hypothesis (assumption) —shortened to “hyp”.

1) (∀x)A[x] ⟨hyp⟩
2) (∀x)A[x]→ A[t] ⟨axiom⟩
3) A[t] ⟨1 + 2 + MP⟩

2.

Taking t to be x we have (∀x)A[x] ⊢ A[x], simply written as
(∀x)A ⊢ A.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

276 6. A Short Course on Predicate Logic

3. The Dual Spec derived rule:

A[t] ⊢ (∃x)A[x] (1)

We prove it below, but first I must prove:

⊢ A[t]→ (∃x)A[x] (2)

Here it goes

1) (∀x)¬A[x]→ ¬A[t] ⟨axiom⟩
2) A[t]→ ¬(∀x)¬A[x] ⟨1 + Taut. Impl.⟩
2′) A[t]→ (∃x)A[x] ⟨2 + using abbreviation “∃”⟩

Now, Dual Spec:

1) A[t] ⟨hyp⟩
2) A[t]→ (∃x)A[x] ⟨proved above; we quoted a theorem!⟩
3) (∃x)A[x] ⟨1 + 2 + MP⟩

Taking t to be x we have A[x] ⊢ (∃x)A[x], simply written as A ⊢ (∃x)A.
□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 277

There are two principles of proof that we state without proving them
(see [Tou03a, Tou08] if curious).

6.2.8� Remark. (Deduction theorem and proof by contradiction)

1. The deduction theorem (also known as “proof by assuming the
antecedent”) states, if

Γ, A ⊢ B (1)

then also Γ ⊢ A → B, provided that in the proof of (1), all
free variables that appear in A were treated as constants (as we
say, were “frozen”) AT or BELOW the point where A was inserted
as a hypothesis:

This “freezing” applies to ALL formulas in the proof that con-
tain the free variables of A —NOT only to A.

We cannot apply ∀ to any such variable in any formula at or
below the hypothesis A, nor can we substitute values in them.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

278 6. A Short Course on Predicate Logic

6.2.9 Example. To show A ⊆ B do (∀x)(x ∈ A → x ∈ B) or
—same thing— x ∈ A→ x ∈ B for all x.

To do the latter we pick a fixed (“frozen”!) undisclosed x and as-
sume x ∈ A to ensure the “→” goes through for all (chosen) x.

Then we proceed to show x ∈ B for that same x.

Hey! This is an application of the DThm!

You see above, intuitively, why free variables like x must be frozen
—“fixed and undisclosed” we said! □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 279

The notation “Γ, A” is standard for the more elaborate Γ ∪ {A}.

In practice, this principle is applied to prove Γ ⊢ A→ B, by doing
instead the “easier” (1).

Why “easier”?

(1) We are helped by an extra hypothesis, A, and

(2) the formula to prove, B, is less complex than A→ B.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

280 6. A Short Course on Predicate Logic

Mar. 29, 2023

2. Proof by contradiction. To prove Γ ⊢ A —where A has no free
variables or, as we say, is closed or is a sentence— is equivalent to
proving the “constant formula” f from hypothesis Γ,¬A.

3. Here is another reason to work with non-axiom hypotheses: The
Deduction Theorem, which we apply as follows:

Suppose we want to prove “⊢ A→ B → C → D”.

So we go like this:

• By DThm, it suffices to prove A ⊢ B → C → D instead (here
“Γ” is {A}).

• Again, by DThm, it suffices to prove A,B ⊢ C → D instead
(here “Γ” is {A,B}).

• Again, by DThm, it suffices to prove A,B,C ⊢ D instead (here
“Γ” is {A,B,C}).

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 281

� � I referred you to [Tou08] for some things.

However, the short intro here adopted the so-called “strong gener-
alisation” (as did [Tou03a] and many other such as [Men87, Sho67])
—because it is closest to intuition of the practicing mathematician or
computer scientist: “Stating A(x) means that A(x) is true for all the
values of x”, which has the side-effect of obliging the deduction theo-
rem to be restricted:

In proving B from Γ, A one must ensure that no variable of A was
subject to generalisation or substitution.

[Bou66, End72, Tou08] trade some power AND convenience of gener-
alisation in order to get an easier to apply deduction theorem, without
restrictions.

So this is a choice on what we want to be “easy”, and what we want
to “be not so easy”. There are two options! � �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

282 6. A Short Course on Predicate Logic

6.2.10 Remark. (Ping-Pong) For any formulas A and B, the for-
mula —where I am using way more brackets than I have to, ironically,
to improve readability—

(A ≡ B) ≡
(
(A→ B) ∧ (B → A)

)
is a tautology (we say this when discussing “→”).

Thus to prove the lhs of the ≡ suffices to prove the rhs.

In turn, to prove the rhs it suffices to prove each of A → B and
B → A separately. This last idea encapsulates the ping-pong approach
to proving equivalences. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 283

Here are a few applications.

6.2.11 Example. 1. Establish ⊢ (∀x)(A ∧B) ≡ (∀x)A ∧ (∀x)B.

By ping-pong.

• Prove ⊢ (∀x)(A ∧ B)→ (∀x)A ∧ (∀x)B. By DThm suffices to
do (∀x)(A ∧B) ⊢ (∀x)A ∧ (∀x)B instead.

1) (∀x)(A ∧B) ⟨hyp⟩
2) A ∧B ⟨1 + Spec⟩
3) A ⟨2 + tautological implication⟩
4) B ⟨2 + tautological implication⟩
5) (∀x)A ⟨3 + Gen; OK: x is not free in line 1⟩
6) (∀x)B ⟨4 + Gen; OK: x is not free in line 1⟩
7) (∀x)A ∧ (∀x)B ⟨5 + 6 + tautological implication⟩

Why the note “OK: x is not free in line 1”?

Because I applied DThm and moved (∀x)(A∧B) to the left of
“⊢”(made it hyp).

DThm requires all free variables of this to be frozen from the
point of insertion down.

In particular I am NOT allowed to invoke (∀x) for such a frozen
free variable. It is essentially a constant!

So the annotation observes that x is not free in what we moved over
by DThm; Good!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

284 6. A Short Course on Predicate Logic

• Prove ⊢ (∀x)A ∧ (∀x)B → (∀x)(A ∧ B). By DThm suffices to
do (∀x)A ∧ (∀x)B ⊢ (∀x)(A ∧B) instead.

1) (∀x)A ∧ (∀x)B ⟨hyp⟩
2) (∀x)A ⟨1 + tautological implication⟩
3) (∀x)B ⟨1 + tautological implication⟩

Complete the above proof!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 285

2. Prove ⊢ (∀x)(∀y)A ≡ (∀y)(∀x)A.

By ping-pong.

(a) Prove ⊢ (∀x)(∀y)A→ (∀y)(∀x)A.
By DThm suffices to do (∀x)(∀y)A ⊢ (∀y)(∀x)A instead.

1) (∀x)(∀y)A ⟨hyp⟩
2) (∀y)A ⟨1 + Spec⟩
3) A ⟨2 + Spec⟩
4) (∀x)A ⟨3 + Gen; OK, no free x in line 1⟩
5) (∀y)(∀x)A ⟨4 + Gen; OK, no free y in line 1⟩

(b) Prove ⊢ (∀y)(∀x)A→ (∀x)(∀y)A.
Exercise! □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

286 6. A Short Course on Predicate Logic

6.2.12 Exercise. Prove for any A and B — where x is not free in A—
that ⊢ (∀x)(A→ B)→ (A→ (∀x)B). □

6.2.13 Exercise. Prove for any A and B — where x is not free in A—
that A→ B ⊢ A→ (∀x)B. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 287

� We have seen how to add an (∃x) in front of a formula (6.2.7 3).

How about removing an (∃x)-prefix? This is much more complex
than removing a (∀x)-prefix:

The technique can be proved to be correct (eg., [Tou03a]) but I will
omit the proof here as I did omit the proof of the deduction theorem
technique and of the proof by contradiction technique.

I could say “see [Tou03a] if you want to learn the proof”, but this
reference is too advanced for a first year course on discrete math.

So, why not say “look at [Tou08]”?

Because, unfortunately, these two books have chosen incompatible
“generalisation” rules, which results to incompatible deduction theo-
rem versions.

The proof of the technique of eliminating ∃-prefixes relies on the
deduction theorem. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

288 6. A Short Course on Predicate Logic

Technique of removing an ∃-prefix: Suppose I have that (∃x)A[x] is
true —either as an assumption or a theorem I proved earlier—
and I want to prove B.

Then I assume that —for some constant c that does not occur in
B— A[c] is true.

In words, “Let c be a value (constant!) that makes A[c] true”.

That is, I add A[c] for an NEW constant c NOT in B as a NEW
non-axiom hypothesis.

People annotate this step in a proof as “aux. hyp. related to (∃x)A[x].”

Now I proceed to prove B using all that is known to me —that is,
the axioms of the theory T and the non-axiom hypotheses Γ and the
non-axiom hypothesis A[c].

I do so by using all free (input-) variables of A[c] as constants in
my proof.b

bThis is a side-effect of using the deduction theorem in the proof of correctness of the theorem below that
justifies this technique.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 289

6.2.14 Metatheorem. (Aux. Hyp. Metatheorem) Suppose I work
within theory T and hypotheses Γ and I have proved

Γ ⊢T (∃x)A[x]

Suppose next I add the hypothesis A[c] to Γ, where c is a NEW constant
that is not part of B, and I manage to prove

Γ, A[c] ⊢T B (1)

where

(1) All free variables of A[c] were frozen throughout the proof

(2) c does not appear in the formulas of Γ or in the MATH axioms of
T .

Then obtaining (1) under all stated restrictions constitutes a proof
of Γ ⊢T B.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

290 6. A Short Course on Predicate Logic

The “big deal” in 6.2.14 is that normally if you add a hypothesis
X to hypotheses Γ and prove

Γ, X ⊢T B

then you cannot in general get rid of the dependence of the theo-
rem B on the added hypothesis X.

Not so with the technique of Metatheorem 6.2.14: You get

Γ ⊢T B

as if you never assumed or used A[c]!

That is why they call it “auxiliary hypothesis”. Once it helps
you to prove B it drops out; it does not stay around to get credit!

�

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 291

6.2.15 Example. Prove ⊢ (∃y)(∀x)A[x, y]→ (∀x)(∃y)A[x, y].

By the DThm it suffices to prove (∃y)(∀x)A[x, y] ⊢ (∀x)(∃y)A[x, y]
instead.

1) (∃y)(∀x)A[x, y] ⟨hyp via DThm⟩
2) (∀x)A[x, c] ⟨aux. hyp. related to 1; for constant c

not in the conclusion⟩
3) A[x, c] ⟨2 + Spec⟩
4) (∃y)A[x, y] ⟨3 + Dual Spec⟩
5) (∀x)(∃y)A[x, y] ⟨4 + Gen; OK, no free x in lines

1(DThm) and 2(aux. hyp)⟩

Worth Noting: The “Γ” here is {(∃y)(∀x)A[x, y]} thus we do
have Γ ⊢ (∃y)(∀x)A[x, y] as required by 6.2.14.

What I am invoking here is the trivial X ⊢ X that is verified by
the 1-line proof “1) X ⟨hyp⟩”.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

292 6. A Short Course on Predicate Logic

6.2.16� Example. Can I also prove the converse of the above? That
is

⊢ (∀x)(∃y)A[x, y]→ (∃y)(∀x)A[x, y] (1)

I will try.

By the DThm it suffices to prove (∀x)(∃y)A[x, y] ⊢ (∃y)(∀x)A[x, y]
instead.

1) (∀x)(∃y)A[x, y] ⟨hyp via DThm⟩
2) (∃y)A[x, y] ⟨1 + Spec⟩
3) A[x, c] ⟨aux. hyp. for 2; c not in the conclusion⟩
4) (∀x)A[x, c] ⟨3 + Gen; Stop! Forbidden!

Illegal “(∀x)”: I should treat the free x of
aux. hyp. on line 3 as a constant!⟩

Still, can anyone PROVE (1); even if I cannot?

A question like this, if you are to answer “NO”, must be resolved
by offering a counterexample.

That is, a special case of A for which I can clearly see that the claim
is false.

Here is one such:

(∀x)(∃y)
“the A”︷ ︸︸ ︷
x = y︸ ︷︷ ︸

t

→ (∃y)(∀x)
“the A”︷ ︸︸ ︷
x = y︸ ︷︷ ︸

f

(1)

□ �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 293

Here is another non-theorem. We have the axiom A → (∀x)A
if x is not free in A. Can we relax the restriction?

No. If we had ⊢ A → (∀x)A with no restrictions then look at the
special case

x = 0→ (∀x)x = 0 (2)

on N.
We already saw that this is not true for all x —not a theorem then!

In fact over N, (2) is false if I take x to be 0:

t︷ ︸︸ ︷
0 = 0→

f︷ ︸︸ ︷
(∀x)x = 0.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

294 6. A Short Course on Predicate Logic

6.2.17 Exercise. (Important “confusion remover”) One might be
confused by the act of adding the hypothesis A(c) whenever we have
(∃x)A(x).

Some lapse of judgement might construe this as an implication:

(∃x)A(x)→ A(c) (1)

This is false!! NOT a theorem!!

Working over the natural numbers, Prove by finding a very simple
A(x) and a specific appropriate constant c that (1) fails for this A and
c so it is NOT a theorem! □

6.2.18 Exercise. (Important “confusion remover” #2) Prove by
an EASY counterexample that (∃x)A[x]→ A[x] is not provable either.

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 295

� Another useful principle that can be proved, but we will not do so, is
that one can replace equivalents-by-equivalents. That is, if C is some
formula, and if I have

1. A ≡ B, via proof, or via assumption, and also

2. A is a subformula of C

then I can replace one (or more) occurrence(s) of A in C (as subfor-
mula(s)) by B and call the resulting formula C ′.

I will be guaranteed the conclusion C ≡ C ′.

That is, from A ≡ B, I can prove C ≡ C ′.

This principle is called the equivalence theorem. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

296 6. A Short Course on Predicate Logic

Let’s do a couple of ad hoc additional examples before we move to
the section on Induction.

6.2.19 Example. A→ B ⊢ (∀x)A→ (∀x)B.
By the DThm it suffices to prove A→ B, (∀x)A ⊢ (∀x)B instead.

1) A→ B ⟨hyp⟩
2) (∀x)A ⟨hyp from DThm⟩
3) A ⟨2 + Spec⟩
4) B ⟨1 + 3 + MP⟩
5) (∀x)B ⟨4 + Gen; OK as the DThm hyp. (line 2) has no free x⟩

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 297

6.2.20 Example. (Substitution Theorem) We have A[x] ⊢ A[t]
for any term t.

Indeed,

1) A[x] ⟨hyp⟩
2) (∀x)A[x] ⟨1 + Gen⟩
3) A[t] ⟨2 + Spec⟩

□

6.2.21 Example. We have A→ B ⊢ (∃x)A→ (∃x)B.
Proof via DThm, that is, prove

A→ B, (∃x)A ⊢ (∃x)B

instead.

1) A[x]→ B[x] ⟨hyp⟩
2) (∃x)A[x] ⟨hyp via DThm⟩
3) A[c] ⟨aux. hyp. for 2⟩
4) A[c]→ B[c] ⟨1 + 6.2.20; OK no free x in lines #2, 3⟩
5) B[c] ⟨3 + 4 + MP⟩
6) (∃x)B[x] ⟨5 + Dual Spec⟩

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

298 6. A Short Course on Predicate Logic

6.2.22 Example. READ ME! Refer to 6.2.2. Let us apply it to ¬A
for arbitrary A. We get

⊢ (∃x)¬A ≡ ¬(∀x)¬¬A (1)

Since A ≡ ¬¬A is a tautology, hence a theorem

Pause. Why “hence a theorem”?◀

we apply the equivalence theorem (p.295) and tautological implication‡

and obtain:
⊢ ¬(∀x)A ≡ (∃x)¬A (2)

Applying another tautological implication to (2) we move the left-
most ¬ just past the “≡” and get

⊢ (∀x)A ≡ ¬(∃x)¬A
which is of the same form as 6.2.2 with the roles of ∃ and ∀ reversed.

□

‡We have (1) and ⊢ ¬(∀x)¬¬A ≡ ¬(∀x)A as the lhs of the implication.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.2. Proofs and Theorems 299

6.2.23 Example. A ≡ B ⊢ (∀x)A ≡ (∀x)B.
True due to the equivalence theorem! “C” is “(∀x)A”. We replaced

(one occurrence of) A by B in C, and we have assumed as starting
point that A ≡ B. □

6.2.24 Exercise. Prove A ≡ B ⊢ (∀x)A ≡ (∀x)B without relying on
the equivalence theorem. Rather use 6.2.19 in your proof, remembering
the ping-pong tautology (6.2.10). □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

300 6. A Short Course on Predicate Logic

6.3. Induction

Mar. 31, 2023

In Remark 4.1.85 we concluded with a formulation —(2) on p.160—
of the minimal condition (MC) for any order < as (†) below:

Since any class A is given as A = {x : F [x]} for some F [x] we have

The statement “some order < has MC ” is captured by the state-
ment

For any “property”, that is, formula F [x], we have that the fol-
lowing is true

(∃a)F [a]→ (∃a)
(
F [a] ∧ ¬(∃y)

(
y < a ∧ F [y]

))
(†)

This specific “<” is a total order (satisfies trichotomy) and thus the
concepts minimal and minimum coincide as we know (4.1.83)

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Induction 301

We will prove that MC (†) is equivalent to the Principle of so-called
“Strong Induction” or “Course-of-Values Induction” —CVI— on N.

In the proof I will use three easy THEOREMS (they are tautologies,
hence axioms, hence theorems) as well as 6.2.2.

Theorem 1. ⊢ ¬A ∨B ≡ A→ B

Theorem 2. A→ B ≡ ¬B → ¬A (contrapositive).

Theorem 3. ¬(A ∨B) ≡ ¬A ∧ ¬B and also ¬(A ∧B) ≡ ¬A ∨ ¬B.

These are the well-known “de Morgan” equivalences.§.
The first intuitively says “A∨B is false iff both A and B

are false”. The second intuitively says “A∧B is false iff
at least one of A and B is false”.

Our proof below is written as a conjunctional ⇔-chain, written ver-
tically with annotation “⟨. . .⟩” to the right of each ⇔.

Such proofs are called Equational ([DS90, GS94, Tou08]).

§Often called “de Morgan Laws”.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

302 6. A Short Course on Predicate Logic

So let P [x] be an arbitrary “property” (formula!) of the variable x.

We start our “Equational proof” with (†) at the top of the chain,
but where we replaced the arbitrary “F” there with “¬P” here.

(∃a)¬P [a]→ (∃a)
(
¬P [a] ∧ ¬(∃y)

(
y < a ∧ ¬P [y]

))
⇔ ⟨using 6.2.2 and equiv. thm (p.295) removing double negations⟩
¬(∀a)P [a]→ ¬(∀a)¬

(
¬P [a] ∧ (∀y)¬

(
y < a ∧ ¬P [y]

))
⇔ ⟨contrapositive⟩
(∀a)¬

(
¬P [a] ∧ (∀y)¬

(
y < a ∧ ¬P [y]

))
→ (∀a)P [a]

⇔ ⟨two applications of de Morgan and equiv. thm⟩
(∀a)

(
P [a] ∨ ¬(∀y)

(
¬y < a ∨ P [y]

))
→ (∀a)P [a]

⇔ ⟨Theorem 1 above + equiv. thm (twice)⟩
(∀a)

(
(∀y)

(
y < a→ P [y]

)
→ P [a]︸ ︷︷ ︸

For any fixed a: If, for all y < a, P [y] is true, then I can prove P [a]

)
→ (∀a)P [a](‡)

We have proved that (†) —the least principle for N— of the previous
page is equivalent to (‡).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Induction 303

Apr. 3, 2023

(‡) embodies the Strong Induction or Course-of-Values Induction
(CVI) Principle:

To prove (∀a)P [a], where P is a property over N and a is a N-
variable, it suffices to do TWO steps:

1. Fix —but do not disclose— an a (a is arbitrary but fixed).

2. On the (blue) hypothesis regarding a fixed unspecified a (un-
derlined, line (‡); it is called Induction Hypothesis or I.H.) that
P [y] is true for all y < a, I must prove that so is P [a].

This last step is called the Induction Step, or I.S.

Hmm! All inductions have a “Basis”, typically at 0. Doesn’t this
one? It does!

In particular I get NO y < 0 —they do not exist— whose properties
I can connect with 0 and prove P (0) from such a connection; See how
such “connections” help in bullet 3, item 2 in 6.3.7.

So I go to truth tables and prove the “boundary case” I.H.→I.S.
DIRECTLY (at the “boundary” a = 0 there are no predecessors (of 0)
to help the argument as they do in bullet 3, item 2 in 6.3.7).

If (∀y)
(
y < 0→ P [y]

)︸ ︷︷ ︸
I.H. t

then P [0]︸︷︷︸
prove t directly

This IS the Basis!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

304 6. A Short Course on Predicate Logic

There is another simpler induction principle that we call, well, simple
induction:

P [0], P [x]→ P [x+ 1]

P [x]
(SI)

“(SI)” for Simple Induction. That is, to prove P [x] for all x (denom-
inator) do three things:

Step 1. Prove/verify P [0]

Step 2. Assume P [x] for fixed (“frozen”) x (unspecified!).

Step 3. prove P [x+ 1] for that same (previously frozen) x.

The assumption is the I.H. for simple induction.

The I.S. is the step that proves P [x+ 1].

� Note that what is described here is precisely an application of
the Deduction theorem towards proving “P [x] → P [x + 1]”,
that is, proving the implication for every given x. �

Step 4. If you have done Step 1. through Step 3. above, then you
have proved P [x] (for all x is implied!)

Is the principle (SI) correct? I.e., if I do all that the numerator of
(SI) asks me to do (equivalently, Steps 1. – 3.), then do I really get
that the denominator is true (for all x implied)? YES!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Induction 305

6.3.1 Theorem. (MC → SI) The validity of (SI) is a consequence of
MC (least principle) on N.

Proof. Suppose (SI) is not correct.

Then, for some property P [x], despite having completed Steps 1. –
3., P [x] is not true for all x!

Then,

let n ∈ N be smallest such that P [n] is false.

Now, n > 0 since I did verify the truth of P [0] (Step 1.).

Thus, n− 1 ≥ 0.

But then, when I proved “P [x] → P [x + 1] for all x (in N)” —in
Steps 2. and 3.— this includes proving

P [n− 1]→ P

[
smallest︷︸︸︷

n

]
︸ ︷︷ ︸

false

(4)

By the smallest-ness of n, P [n−1] is true, hence P [n] is true after all,
by (4).

� I have just contradicted that P [n] is false! �

(SI) works if MC does! □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

306 6. A Short Course on Predicate Logic

In fact, MC and SI are equivalent principles.

6.3.2 Theorem. (SI →MC) Conversely to the previous theorem (6.3.1),
if SI on N works, then N has MC.

Proof. By contradiction, I assume I have SI, but that MC fails.

So, there is a nonempty S ⊆ N that has no least element.

I will get a contradiction by showing that S
Def
= N− S is all of N

(hence S = ∅).

I apply SI to the property

P (x)
Def
≡ {0, 1, . . . , x} ⊆ S

1. Basis. P (0) says {0} ⊆ S which is equivalent to 0 ∈ S; true since
if 0 ∈ S that would contradict assumption on S.

2. Fix x and assume (I.H.) P (x) —i.e., {0, 1, . . . , x} ⊆ S.

3. P (x+ 1) says {0, 1, . . . , x, x+ 1} ⊆ S. To prove this, note:

By 2., we have {0, 1, . . . , x} ⊆ S so if x + 1 ∈ S instead, then it
would be smallest in S, contradicting hypothesis about S.

Thus I MUST have also {0, 1, . . . , x, x + 1} ⊆ S —and hence
P (x+ 1) is true.

By SI, I have P (x) true for all x, thus {0, 1, . . . , x} ⊆ S for all x.

In particular, x ∈ S for all x

But then S = ∅. A contradiction! □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Induction 307

Since we have CVI equivalent to MC we now have

6.3.3 Corollary. All three of CVI, SI and MC are equivalent princi-
ples over N.

� � Within set theory we can define —actually construct— each natural
number as a set: ∅ for “0”, and if we have defined/constructed as far
as “n”, then “n+ 1” is constructed as n ∪ {n}.

Thus the first few natural numbers “are”

∅, {∅}, {∅, {∅}}, . . .
We then can prove that the set of all of them —in modern literature

denoted by ω rather than N— satisfies MC (as we argued intuitively
sometime ago), and thus we have all three by the corollary above.

However the self-standing theory of numbers (without the help, or
even the concepts) of set theory —known as Peano arithmetic in short
PA— assumes SI as an axiom.

You can then prove via a modification of our proofs (which are sit-
uated within set theory) Corollary 6.3.3. � �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

308 6. A Short Course on Predicate Logic

6.3.1. Induction Practise

� To begin with, there are “properties” to prove that are valid for all n ≥ k
for some constant k > 0.

This is the domain where we have to stay in during the proof.

Thus for those the I.H. MUST “pick a fixed unspecified n ≥ k”.

The points n = 0, 1, . . . , k−1 are outside the domain so are “illegal”.

Thus the Basis of the induction must be for n = k.

As an example, the smallest n where n + 3 < 2n is true is n = 3
(verify!).

We can prove by induction

n+ 3 < 2n, for n ≥ 3

verifying as Basis the case n = 3.

Another example:

“n has a prime factor” is erratic for n < 2. For n = 1 it is false and
for n = 0 it is true (every number is a factor of zero).

So one must take as domain of truth of the quoted blue property
the set {n ∈ N : n ≥ 2}. 2 is the Basis. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Induction 309

6.3.4 Example. This is the “classical first example of induction use”
in the discrete math bibliography! Prove that

0 + 1 + 2 + . . .+ n =
n(n+ 1)

2
(1)

So, the property to prove is the statement (1).

One must learn to not have to rename the various “properties” that
we encounter as “P [n]”.

I will use SI. So let us do the Basis. Boundary case is n = 0. We
verify: lhs = 0. rhs = (0× 1)/2 = 0. Good!

Fix n and take the expression (1) as I.H.

Do the I.S. Prove:

0 + 1 + 2 + . . .+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2

Here it goes

0 + 1 + 2 + . . .+ n+ (n+ 1)
using I.H.

=
n(n+ 1)

2 + (n+ 1)
= (n+ 1)(n/2 + 1)

=
(n+ 1)(n+ 2)

2

□

I will write more concisely in the examples that follow.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

310 6. A Short Course on Predicate Logic

Apr. 5, 2023

6.3.5 Example. Same as above but doing away with the “0+”. Again,
I use SI.

1 + 2 + . . .+ n =
n(n+ 1)

2
(1)

• Basis. n = 1: (1) becomes 1 = (1× 2)/2. True.

• Take (1) as I.H. with fixed n.

• I.S.:

1 + 2 + . . .+ n+ (n+ 1)
using I.H.

=
n(n+ 1)

2 + (n+ 1)
= (n+ 1)(n/2 + 1)

=
(n+ 1)(n+ 2)

2

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Induction 311

6.3.6 Example. Prove

1 + 2 + 22 + . . .+ 2n = 2n+1 − 1 (1)

By SI.

• Basis. n = 0. lhs = 1 = 20 = 21 − 1 = rhs. True.

• As I.H. take (1) for fixed n. WHY fixed? See (SI) on p.304.

• I.S.

1 + 2 + 22 + . . .+ 2n + 2n+1using I.H.
= 2n+1 − 1 + 2n+1

= 2 · 2n+1 − 1
= 2n+2 − 1

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

312 6. A Short Course on Predicate Logic

6.3.7 Example. (Euclid) Every natural number n ≥ 2 has a prime
factor.

p is prime iff

(i) p > 1

AND

(ii) The only divisors of p are 1 and p

I do CVI (as you will see why!)

• Basis : For n = 2 we are done since 2 is a prime and 2 = 2× 1.†

• I.H. Fix an n and assume the claim for all k, such that 2 ≤ k < n.

• I.S.: Prove for n: Two subcases:

1. If n is prime, then OK! n divides n.

2. If not, then n = a× b, where a ≥ 2 and b ≥ 2. By I.H. —from
a < n— a has a prime factor, thus so does n = a · b. □

You see? Do you know many natural numbers n such that n − 1
divides n?! Only then an I.H. on n− 1 would be useful.

Only 2 has as factor 2− 1, so 2 = 2× 1 but this is our Basis and
has been handled directly (not looking at I.H.)

†You will recall that a number N ∋ n > 1 is a prime iff its only factors are 1 and n.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Induction 313

6.3.8 Example. (Euclid) Every natural number n ≥ 0 is expressible
base-10 as an expression

n = am10
m + am−110

m−1 + · · ·+ a110 + a0 (1)

where each ai satisfies 0 ≤ ai < 10 (2)

Proof by CVI again. You will see why.

• Basis. For n = 0 the expression “0” has the form of the rhs of (1)
and satisfies inequality (2).

• Fix an n > 0 and assume (I.H.) that if k < n, then k can be
expressed as in (1).

• For the I.S. express the n > 0 of the I.H. using Euclid’s theorem
(4.1.49) as

n = 10q + r

where 0 ≤ r < 10. By the I.H. —since q < n— let

q = bt10
t + bt−110

t−1 + · · ·+ b110 + b0

with 0 ≤ bj < 10.

NOTE. If we wanted to use SI instead of CVI (in theory possible
by Corollary 6.3.3) this particular analysis does NOT naturally
lead to SI since in n = 10q + r —with 0 ≤ r < 10— I cannot
expect that q = n− 1 to benefit from a “SI-type I.H.”

Then

n= 10q + r

= 10
(
bt10

t + bt−110
t−1 + · · ·+ b110 + b0

)
+ r

= bt10
t+1 + bt10

t + · · ·+ b110
2 + b010 + r

We see n has the right form since 0 ≤ r < 10. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

314 6. A Short Course on Predicate Logic

6.3.9 Example. An inequality. Let pn denote the n-th prime number,
for n ≥ 0. Thus p0 = 2, p1 = 3, p2 = 5, etc.

We prove that
pn ≤ 22

n

(1)

I use CVI on n. This is a bit of a rabbit out of a hat if you never
read Euclid’s proof that there are infinitely many primes.

• Basis p0 = 2 ≤ 22
0

= 21 = 2.

• Fix n > 0 and take (1) as I.H.

• The I.S.: I will work with the fixed n above and the expression
(product of primes, plus 1; this is inspired from Euclid’s proof
quoted above).

p0p1p2 · · · pn + 1

I have

p0p1p2 · · · pn + 1≤ 22
0

22
1

22
2 · · · 22n + 1 by I.H.

= 22
0+21+22+···+2n + 1 algebra

= 22
n+1−1 + 1 by 6.3.6

< 22
n+1−1 + 22

n+1−1 smallest n possible is n = 1
= 21 · 22n+1−1

= 22
n+1

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Induction 315

Now we have two cases on q = p0p1p2 · · · pn + 1

1. q is a prime. Because of the “ + 1” q is different from all pi in
the product, so q is pn+1 or pn+2 or pn+3 or . . .

Since the sequence of primes is strictly increasing, pn+1 is the
least that q can be.

Thus
pn+1 ≤ q = p0p1p2 · · · pn + 1 ≤ 22

n+1

in this case.

2. q is composite. By 6.3.7 some prime r divides q. Now, none of
the

p0, p1, p2, · · · , pn
divides q because of the “ + 1”.

Thus r is different from all of them, so it must be one of pn+1

or pn+2 or pn+3 or . . .

Thus,
pn+1 ≤ r < q = p0p1p2 · · · pn + 1 ≤ 22

n+1

Done! □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

316 6. A Short Course on Predicate Logic

6.3.10 Example. Let

b1 = 3, b2 = 6

bk = bk−1 + bk−2, for k ≥ 3

Prove by induction that bn is divisible by 3 for n ≥ 1. (Be careful to
distinguish between what is basis and what are cases arising from the
induction step!)

Proof. So the boundary condition is (from the underlined part above)
n = 1. This is the Basis.

1. Basis : For n = 1, I have b1 = 3 and this is divisible by 3. We are
good.

2. I.H. Fix n and assume claim for all 1 ≤ k < n.

3. I.S. Prove claim for the above fixed n. There are two cases, as
the I.H. is not useable for n = 2.

Why? Because it would require entries b0 and b1.

The red entry does not exist since the sequence starts with b1. So,

Case 1. n = 2. DIRECTLY. I am OK as b2 = 6; it is divisible
by 3.

Case 2. n > 2. Is bn divisible by 3? Well, bn = bn−1 + bn−2 in this
case. By I.H. (valid for all 1 ≤ k < n) I have that bn−1 = 3t
and bn−2 = 3r, for some integers t, r. Thus, bn = 3(t+ r).
Done! □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

6.3. Induction 317

Here are a few additional exercises for you to try —please do try!

6.3.11 Exercise.

1. Prove that 22n+1 + 32n+1 is divisible by 5 for all n ≥ 0.

2. Using induction prove that 13 + 23 + . . . + n3 =

[
n(n+ 1)

2

]2
, for

n ≥ 1.

3. Using induction prove that
∑n+1

i=1 i2i = n2n+2 + 2, for n ≥ 0.

4. Using induction prove that
√
n <

1√
1
+

1√
2
+ . . .+

1√
n
, for n ≥ 2.

5. Let

b0 = 1, b1 = 2, b3 = 3

bk = bk−1 + bk−2 + bk−3, for k ≥ 3

Prove by induction that bn ≤ 3n for n ≥ 0. (Once again, be careful
to distinguish between what is basis and what are cases arising
from the induction step!) □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

318 6. A Short Course on Predicate Logic

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Chapter 7

Inductively defined sets;
Structural induction

An example of an inductively defined set is the following.

Suppose you want to define by finite means, and define precisely,
the set of all “simple” arithmetical expressions that use the numbers
1, 2, 3, the operations + and ×, and round brackets.

Then you would define:

The set of said simple arithmetical expressions is the smallest set
(⊆-smallest) that

1. Contains each of 1, 2 and 3.

2. If it contains expressions E and E ′, then it also contains (E +E ′)
and (E × E ′).

Some folks would add a 3rd requirement “nothing else is in the set
unless so demonstrated using 1. 2. above” and they omit “smallest”.

Really?!

Notes on Discrete MATH (EECS1028)© G. Tourlakis

320 7. Inductively defined sets; Structural induction

How exactly would you so “demonstrate”?

Notes on Discrete MATH (EECS1028)© G. Tourlakis

321

In a recursive definition you ought to be able to make your recursive
calls and not have to trace back why the object you constructed exists!

We will prove in Theorem 7.2.5 that indeed there is an iterative
way to show that a particular simple arithmetic expression was formed
correctly by our recursion, but that defeats the beauty of recursion.

Besides, until we reach said theorem we don’t even know how to
prove that “nothing else is in the set unless “so demonstrated” (!!)
using 1. 2. above”.

WHAT does such a “demonstration” look like?

So it is nonsense to add such a statement in the bottom of the
definition as a (redundant) afterthought.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

322 7. Inductively defined sets; Structural induction

Before we get to the general definitions, let us finesse our construc-
tion and propose some terminology.

(a) First off, in step 1. above we say that 1, 2 and 3 are the initial
objects of our recursive/inductive definition.

(b) In step 2. we say that (E+E ′) is obtained by an operation (on strings)
that is available to us, depicted as a “blackbox” below, which we
named “+”.

E
−→
−→
E ′

+ −→ (E + E ′)

In words, the operation concatenates from left to right the strings

“(”, “E”, “+”, “E ′”, and “)”

Similar comments for the operation “×”.

(c) Both operations in this example are single-valued, that is, func-
tions.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

323

It is preferable to be slightly more general and allow operations
that are just relations but sets nevertheless, but not necessarily
functions.

Such an operation O(x1, . . . , xn, y) is n-ary —n inputs, x1, . . . , xn—
with output variable y.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

324 7. Inductively defined sets; Structural induction

7.0.1 Definition. (Closed Under) We say that a class of objects S
is closed under a relation (operation) —which could be a function—
O(x1, . . . , xn, y) meaning that for all input values x1, . . . , xn in S, all
the obtained values y are also in S. □

We are ready for the general definition:

7.0.2 Definition. Given a set of initial objects I and a set of opera-
tions —each one being a set— O = {O0, O1, O2, . . .}.

The object Cl(I,O) is called a closure of I under O —or the class
inductively defined by the pair (I,O)— and denotes the ⊆-smallest
class† S that satisfies

1. I ⊆ S.

2. S is closed under all operations in O, or simply, closed under O.

3. The “smallest” part means: Any class T that satisfies 1. and 2.
also satisfies S ⊆ T .

The set O may be infinite but is countable: That is, the numbering
i 7→ Oi is from N onto O. □

†Let’s say “class” until we learn that the closure is actually a set.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

325

Nice definition, but does Cl(I,O) exist given I and O? Yes. But
first,

7.0.3 Theorem. For any choice of I and O, if Cl(I,O) exists, then
it is unique.

Proof. Say the definition of Cl(I,O) ambiguously —i.e., may have
more than one value— leads to (or produces) two classes, S and T .

Then, letting S pose as closure, we get S ⊆ T from 7.0.2.

Then, letting T pose as closure, we get T ⊆ S, again from 7.0.2.
Thus S = T . □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

326 7. Inductively defined sets; Structural induction

7.0.4 Theorem. For any choice of I and O with the restrictions of
Definition 7.0.2 the class Cl(I,O) exists and is a set.

Proof. We have to check and note a few things.

1. By 4.1.5, for each Oi, ran(Oi) is a set.

2. The class F = {ran(Oi) : i = 0, 1, 2 . . .} is a set. This is so by Prin-
ciple 3, since I can index all members of F by assigning unique
indices from N to each of its members (and N is a set by Princi-
ple 0).

3. By 2. above and 2.4.17,
⋃

F is a set, and so is T = I ∪
⋃

F.

4. T contains I as a subset and is O-closed since any Oi-output —no
matter where the inputs come from— is in ran(Oi) ⊆

⋃
F.

5. The family of sets G = {S : I ⊆ S ∧ S is O-closed} contains the
set T as a member. Thus (cf. 2.4.18)

C
Def
=

(⋂
G
)
⊆ T

is a set.

Since all sets S in G contain I and are O-closed, so is C (Exercise!).

But C ⊆ S for all such sets S the way it (C) is defined.

So it is ⊆-smallest.

By Definition 7.0.2(3) we must be sure that C is also the smallest
among all CLASSES A that contain I and are O-closed:

Notes on Discrete MATH (EECS1028)© G. Tourlakis

327

So let A be such a class.

The SET A ∩ T —where T is that in the proof above— contains I
and is O-closed since each of T and A do (Exercise!) hence is in G.

Thus, by the last boxed statement above,

C ⊆ A ∩ T ⊆ A

Thus C satisfies 1–3 in 7.0.2 and hence C = Cl(I,O). □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

328 7. Inductively defined sets; Structural induction

7.1. Induction over a closure

7.1.1 Definition. Let a pair (I,O) be given as above.

We say that a property

P [x] propagates with O iff for each Oi(x1, . . . , xn, y) ∈ O, if when-
ever all the inputs in the xi satisfy P [x] (i.e., P [xi] is true for
each argument xi), then all output values returned by y —for said
inputs— satisfy P [y] as well.

We can also say that the property P [x] is preserved by O.

Recall that for each assignment of values to the inputs x1, . . . , xn we
may have more than one output values in y; for all such values P [y] is
true. □

7.1.2 Lemma. For all (I,O) and a property P [x], if the latter prop-
agates with O, then the class A = {x : P [x]} is closed under O (is
O-closed).

Proof. So let Oi(x1, . . . , xn, y) ∈ O. Let a1, . . . , an be all in A. Thus

P [ai], for all i = 1, . . . , n

By assumption, if Oi(a1, . . . , an, b), then P [b] is true, hence b ∈ A. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

7.1. Induction over a closure 329

7.1.3 Theorem. Let Cl(I,O) and a property P [x] be given. Suppose
we have done the following steps:

1. We showed that for each a ∈ I, P [a] is true.

2. We showed that P [x] propagates with O.

Then every a ∈ Cl(I,O) has property P [x].

� Naturally, the technique encapsulated by 1. and 2. of 7.1.3 is called
“induction over Cl(I,O)” or “structural induction” over Cl(I,O).

Note that for each Oi ∈ O the “propagation of property P [x]” will
take the form of an I.H. (assume the inputs of Oi have the property)
followed by an I.S. (then the outputs of Oi have the property): �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

330 7. Inductively defined sets; Structural induction

Proof. (of 7.1.3) Let us write

ADef
= {x : P [x]}

Thus, 1. in 7.1.3 translates to

I ⊆ A (∗)

2. in 7.1.3 yield
A is O-closed (∗∗)

Hence, by 7.0.2 (3) and (∗) and (∗∗),

Cl(I,O) ⊆ A

The last inclusion immediately translates to

“x ∈ Cl(I,O) implies P [x] is true” □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

7.1. Induction over a closure 331

7.1.4 Example. Let S = Cl(I,O) where I = {0} and O contains just
one operation, x+ 1 = y, where y is the output variable. That is,

n −→ x+ 1 = y −→ n+ 1 (1)

is our only operation. By induction over S, I can show S ⊆ N.

The “P [x]” is “x ∈ N”.

So P [0] is true. I verified the property for I. That the property
propagates with our operation is captured by (1) above (if n ∈ N, then
n+ 1 ∈ N). Done!

Can we show also N ⊆ Cl(I,O)? Yes:

In this direction I do SI over N on variable n.

The property, let’s call it Q[x], now is “x ∈ Cl(I,O)”.

For n = 0, n ∈ Cl(I,O) since 0 ∈ I ⊆ Cl(I,O) by 7.0.2.

Now, say (I.H.) n ∈ Cl(I,O). Since Cl(I,O) is closed under the
operation x+ 1 = y, we have n+ 1 ∈ Cl(I,O) by 7.0.2.

So,
Cl(I,O) = N □

� Thus the induction over a closure generalises SI. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

332 7. Inductively defined sets; Structural induction

7.2. Closure vs. definition by stages

We will see in this section that there is also a by-stages or by-steps way
to obtain Cl(I,O).

7.2.1 Definition. (Derivations) An (I,O)-derivation—or just deriva-
tion if we know which (I,O) we are talking about— is a finite sequence
of objects

d1, d2, d3, . . . , di, . . . , dn (1)

satisfying:
Each di is

1. A member of I,

or

2. For some j, one of the results of Oj(x1, . . . , xk, y) with inputs
a1, . . . , ak that are found in the derivation (1) to the left of di.

n is called the length of the derivation. Every di is called an (I,O)-
derived object, or just derived, if the (I,O) is understood. □

� Clearly, the concept of a derivation abstracts, thus generalises, the
concept of proof, while a derived object abstracts the concept of a
theorem. Initial objects abstract the concept of axiom. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

7.2. Closure vs. definition by stages 333

7.2.2 Example. For the (I,O) of 7.1.4, here are some derivations:

0

0, 0, 0

0, 1, 0, 1, 0, 1, 1, 1, 1, 0

Nothing says we cannot repeat a di in a derivation! Lastly here is an
“efficient” derivation with no redundant steps: 0, 1, 2, 3, 4, 5. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

334 7. Inductively defined sets; Structural induction

7.2.3 Proposition. If d1, d2, d3, . . . , di, . . . , dn, dn+1, . . . , dm is a (I,O)-
derivation, then so is d1, d2, d3, . . . , di, . . . , dn.

Proof. Each di is validated in a derivation either outright (i.e., is in I)
or by looking to the left!

What we may remove a “(red)tail” that is to the right of di, this
does not affect the validity of that entry. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

7.2. Closure vs. definition by stages 335

7.2.4 Proposition. If d1, d2, . . . , dn and e1, e2, . . . , em are (I,O)-de-
rivations, then so is d1, d2, . . . , dn, e1, e2, . . . , em.

Proof. Traversing d1, d2, . . . , dn and e1, e2, . . . , em in

d1, d2, . . . , dn, e1, e2, . . . , em

from left to right we validate each di and each ej giving precisely the
same validation reason as we would in each sequence d1, d2, . . . , dn and
e1, e2, . . . , em as standalone.

These reasons are local to each sequence. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

336 7. Inductively defined sets; Structural induction

April 4, 2022

An object x is called (I,O)-derived iff it appears in some (I,O)-
derivation.

By the “tail Lemma” (7.2.3) we can always assume that a derived
object appears at the end of an (I,O)-derivation as we can remove
the tail that follows it.

We next prove that defining a set S as a (I,O)-closure is equivalent
to defining S as the set of all (I,O)-derived objects.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

7.2. Closure vs. definition by stages 337

7.2.5 Theorem. For any initial sets of objects and operations on ob-
jects (I and O) we have that Cl(I,O) = {x : x is (I,O)-derived}.

Proof. Let us write D = {x : x is (I,O)-derived} and prove that
Cl(I,O) = D. We have two directions:

1. Cl(I,O) ⊆ D: By induction over Cl(I,O). The property to prove
is “x ∈ D”.

• Let x ∈ I. Then x is derived via the one-member derivation

x

So x ∈ D. Thus all x ∈ I have the property.

• The property “x ∈ D” propagates with each Ok(x⃗n, y) ∈ O:
So let each of the xi have a derivation . . . , xi . We show that
so does y.

Concatenating all these derivations we get a derivation (7.2.4)

. . . , x1 , . . . , . . . , xi , . . . , . . . , xn (1)

But then so is

. . . , x1 , . . . , . . . , xi , . . . , . . . , xn , y (2)

by 7.2.1, case 2. That is, y is derived, hence y ∈ D is proved
(I.S.).

Notes on Discrete MATH (EECS1028)© G. Tourlakis

338 7. Inductively defined sets; Structural induction

2. D ⊆ Cl(I,O): Let x ∈ D. This time we do good old-fashioned
CVI over N on the length n of a derivation of x, toward showing
that x ∈ Cl(I,O) —this is the “property of x” that we prove.

Basis. n = 1. The only way to have a 1-element derivation is that
x ∈ I.

Thus, x ∈ I ⊆ Cl(I,O) by 7.0.2.

I.H. Fix n and Assume the claim for x derived with length k < n
—i.e., such an x is in Cl(I,O).

I.S. Prove that the claim holds when x has a derivation of length n.

Consider such a derivation

a1, . . . ai, . . . , ak, . . . ,

an
∥
x

If x ∈ I, then we are done by the Basis.

Otherwise, say x is the result of an operation (relation) Or ∈ O,
applied on entries to the left of x, that is, say that Or(. . . , x) is
true —where we did not (have to) show the inputs.

By the I.H. the inputs of Or
∗ all are in Cl(I,O). Now, since this

closure is closed under Or(. . . , x), we have that the output x is in
Cl(I,O) too. □

∗They all have derivations of lengths < n since they are to the left of x.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

7.2. Closure vs. definition by stages 339

� So now we have two equivalent (7.2.5) approaches to defining induc-
tively defined sets S:

As S = Cl(I,O) or as S = {x : x is (I,O)-derived}.

The first approach is best when you want to prove properties of all
members of the set S. The second is best when you want to show
x ∈ S, for some specific x. �

Notes on Discrete MATH (EECS1028)© G. Tourlakis

340 7. Inductively defined sets; Structural induction

7.2.6 Example. Let A = {a, b}.

Let I = {λ}, let O consist of one operation R:

X −→ R −→ aXb (3)

We claim that Cl(I,O) = {anbn : n ≥ 0}, where for any string X,

Xn Def
= XX . . .X︸ ︷︷ ︸

n copies of X

If n = 0, “0 copies of X” means λ.

Let us write S = {anbn : n ≥ 0}.

1. For Cl(I,O) ⊆ S we do induction over the closure to prove that
any x ∈ Cl(I,O) satisfies x ∈ S (“the property”).

• Well, if x ∈ I then x = λ = a0b0. Done.

• The property propagates with R.

For example, say X = anbn ∈ S. Using (3) we see that the
output, aXb, is an+1bn+1 ∈ S. The property does propagate!
Done.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

7.2. Closure vs. definition by stages 341

2. For Cl(I,O) ⊇ S we could do induction over N on n in x = anbn

(arbitrary member of S) to prove that any x ∈ S satisfies x ∈
Cl(I,O) (“the property”).

But this would be proving again (!!) 7.2.5 rather than USING
it!

So will use 7.2.5:

Here is a derivation of x = anbn for each n ≥ 0, thus it is in
Cl(I,O) for any n ≥ 0.

λ = a0b0, a1b1, a2b2, a3b3, . . . ,

application of rule to aibi︷ ︸︸ ︷
ai+1bi+1 , . . . , anbn

Notes on Discrete MATH (EECS1028)© G. Tourlakis

342 7. Inductively defined sets; Structural induction

7.2.7 Example. “Can we show also N ⊆ Cl(I,O)? Yes” asks (and
answers) Example 7.1.4.

Unlike there let us show this here by a derivation, avoiding the SI
induction we did there:

To show n ∈ Cl({0}, {x 7→ x+ 1}).

Well, here is a derivation of n:

0, 1, 2, . . . ,

via Op i7→i+1︷︸︸︷
i+ 1 , . . . n

□

Notes on Discrete MATH (EECS1028)© G. Tourlakis

7.2. Closure vs. definition by stages 343

7.2.8 Example. Regarding the example of simple arithmetic expres-
sions (p.319) we prove that each such expression has equal numbers of
left and right brackets.

Here I = {1, 2, 3} and the two operations (single-valued) are

E
−→
−→
E ′

+ −→ (E + E ′) (1)

and

E

−→
−→
E ′

× −→ (E × E ′) (2)

Well, each of the members of I has the claimed property.

The property is preserved by each of (1) and (2). For example,

If E and E ′ have the property so does “(E + E ′)”

since we added just one left bracket and one right bracket to the al-
ready existing brackets of E and E ′.

Similarly for ×. □

Notes on Discrete MATH (EECS1028)© G. Tourlakis

344 7. Inductively defined sets; Structural induction

Notes on Discrete MATH (EECS1028)© G. Tourlakis

Bibliography

[Bou66] N. Bourbaki, Éléments de Mathématique; Théorie des En-
sembles, Hermann, Paris, 1966.

[Dav65] M. Davis, The undecidable, Raven Press, Hewlett, NY, 1965.

[DS90] Edsger W. Dijkstra and Carel S. Scholten, Predicate Calculus
and Program Semantics, Springer-Verlag, New York, 1990.

[End72] Herbert B. Enderton, A Mathematical Introduction to Logic,
Academic Press, New York, 1972.

[GS94] David Gries and Fred B. Schneider, A Logical Approach to
Discrete Math, Springer-Verlag, New York, 1994.

[Kle43] S.C. Kleene, Recursive predicates and quantifiers, Transac-
tions of the Amer. Math. Soc. 53 (1943), 41–73, [Also in
[Dav65], 255–287].

[Kur63] A.G. Kurosh, Lectures on General Algebra, Chelsea Publish-
ing Company, New York, 1963.

[Men87] Elliott Mendelson, Introduction to Mathematical Logic, 3rd
ed., Wadsworth & Brooks, Monterey, CA, 1987.

[Sho67] Joseph R. Shoenfield, Mathematical Logic, Addison-Wesley,
Reading, MA, 1967.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

346 BIBLIOGRAPHY

[Tou03a] G. Tourlakis, Lectures in Logic and Set Theory, Volume 1:
Mathematical Logic, Cambridge University Press, Cam-
bridge, 2003.

[Tou03b] , Lectures in Logic and Set Theory, Volume 2: Set
Theory, Cambridge University Press, Cambridge, 2003.

[Tou08] , Mathematical Logic, John Wiley & Sons, Hoboken,
NJ, 2008.

Notes on Discrete MATH (EECS1028)© G. Tourlakis

	Some Elementary Informal Set Theory
	Russell's ``Paradox''

	Safe Set Theory
	The ``real sets'' —Introduction to Stages
	What caused Russell's paradox
	Some useful sets
	Operations on classes and sets
	The powerset

	The Ordered Pair and Cartesian Products
	redThe Cartesian product

	Relations and functions
	Relations
	Transitive closure
	Equivalence relations
	Partial orders

	Functions
	Preliminaries
	Finite and Infinite Sets
	Diagonalisation and uncountable sets

	A Short Course on Predicate Logic
	Enriching our proofs to manipulate quantifiers
	Proofs and Theorems
	Induction
	Induction Practise

	Inductively defined sets; Structural induction
	Induction over a closure
	Closure vs. definition by stages

