
Chapter 1

Some Elementary Informal
Set Theory

Set theory is due to Georg Cantor. “Elementary” in the title above does not
apply to the body of his work, since he went into considerable technical depth
in this, his new theory. It applies however to our coverage as we are going to
restrict ourselves to elementary topics only.

Cantor made many technical mistakes in the process of developing set theory,
some of considerable consequence. The next section is about the easiest and
most fundamental of his mistakes.

How come he made mistakes? The reason is that his theory was not based
on axioms and rigid rules of reasoning —a state of affairs for a theory that we
loosely characterise as “informal”.

At the opposite end of informal we have the formal theories that are based
on axioms and logic and are thus “safer” to develop (they do not lead to obvious
contradictions).

One cannot fault Cantor for not using logic in arguing his theorems —that
process was not invented when he built his theory— but then, a fortiori, mathe-
matical logic was not invented in Euclid’s time either, and yet he did use axioms
that stated how his building blocks, points, lines and planes interacted and be-
haved!

Guess what: Euclidean Geometry leads to no contradictions.

The problem with Cantor’s set theory is that anything goes as to what
sets are and how they come about. He neglected to ask the most fundamental
question: “How are sets formed?”† He just sidestepped this and simply said
that a set is any collection. In fact he took the term “set” as just a synonym
for “collection”, “class”, “aggregate”, etc.

†It’s amazing how much trouble could be avoided if he had done so!
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2 1. Some Elementary Informal Set Theory

Failure to ask and answer this question leads to “trouble”, which is the
subject matter of the next section.

One can still do “safe” set theory —devoid of “trouble”, that is— within
an informal (non axiomatic) setting, but we have to ask and answer how sets
are built first and derive from our answer some principles that will guide (and
protect!) the theory’s development! We will do so.

1.1. Russell’s “Paradox”

Cantor’s näıve (this adjective is not derogatory but is synonymous in the litera-
ture with informal and non axiomatic) set theory was plagued by paradoxes, the
most famous of which (and the least “technical”) being pointed out by Bertrand
Russell and thus nicknamed “Russell’s paradox”.†

His theory is the theory of collections (i.e., sets) of objects, as we mentioned
above, terms that were neither defined nor how they were built.‡

This theory studies operations on sets, properties of sets, and aims to use set
theory as the foundation of all mathematics. Naturally, mathematicians “do”
set theory of mathematical object collections —not collections of birds and other
beasts. We have learnt some elementary aspects of set theory at high school.
We will learn more in this course.

1. Variables. Like any theory, informal or not, informal set theory —a
safe variety of which we will develop here— uses variables just as algebra
does. There is only one type of variable that varies over set and over
atomic objects too, the latter being objects that have no set structure.
For example integers. We use the names A,B,C, . . . and a, b, c, . . . for
such variables, sometimes with primes (e.g., A′′) or subscripts (e.g., x23),
or both (e.g., x′′′22, Y

′
42).

2. Notation. Sets given by listing. For example, {1, 2} is a set that contains
precisely the objects 1 and 2, while {1, {5, 6}} is a set that contains pre-
cisely the objects 1 and {5, 6}. The braces { and } are used to show the
collection/set by outright listing.

3. Notation. Sets given by “defining property”. But what if we cannot
(or will not) explicitly list all the members of a set? Then we may define

†From the Greek word “paradoxo” (παράδοξο) meaning against one’s belief or knowledge;
a contradiction.

‡This is not a problem in itself. Euclid too did not say what points and lines were; but
his axioms did characterise their nature and interrelationships: For example, he started from
these (among a few others) a priori truths (axioms): a unique line passes through two distinct
points; also, on any plane, a unique line l can be drawn parallel to another line k on the plane
if we want l to pass through a given point A that is not on k.

The point is:

� You cannot leave out both what the nature of your objects is and how they behave/interrelate
and get away with it! Euclid omitted the former but provided the latter, so all worked out. �
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1.1. Russell’s “Paradox” 3

what objects x get in the set/collection by having them to pass an entrance
requirement, P (x):

An object x gets in the set iff (if and only if ) P (x) is
true of said object.

Let us parse “iff”:

(a) The IF : So, IF P (x) is true, then x gets in the set (it passed the
“admission requirement”).

(b) The ONLY IF : So, IF x gets in the set, then the only way for this
to happen is for it to pass the “admission requirement”; that is, P (x)
is true.

In other words, “iff” (as we probably learnt in high school or some previ-
ous university course such as calculus) is the same thing as “is equivalent”:

“x is in the set” is equivalent to “P (x) is true”.

We denote the collection/set† defined by the entrance condition P (x) by

{x : P (x)} (1)

but also as
{x |P (x)} (1′)

reading it “the set of all x such that (this “such that” is the “:” or “|”)
P (x) is true [or holds]”

4. “x ∈ A” is the assertion that “object x is in the set A”. Of course, this
assertion may be true or false or “it depends”, just like the assertions of
algebra 2 = 2, 3 = 2 and x = y are so (respectively).

5. x /∈ A is the negation of the assertion x ∈ A.

6. Properties

• Sets are named by letters of the Latin alphabet (cf. Variables,
above). Naming is pervasive in mathematics as in, e.g., “let x = 5”
in algebra.

So we can write “let A = {1, 2}” and let “c = {1, {5, 6}}” to give
the names A and c to the two example sets above, ostensibly because
we are going to discuss these sets, and refer to them often, and it is
cumbersome to keep writing things like {1, {5, 6}}. Names are not
permanent ;‡ they are local to a discussion (argument).

†We have not yet reached Russell’s result, so keeping an open mind and humouring Cantor
we still allow ourselves to call said collection a “set”.

‡OK, there are exceptions: ∅ is the permanent name for the empty set —the set with
no elements at all— and for that set only; N is the permanent name of the set of all natural
numbers.
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4 1. Some Elementary Informal Set Theory

• Equality of sets (repetition and permutation do not matter!)

Two sets A and B are equal iff they have the same members. Thus
order and multiplicity do not matter! E.g., {1} = {1, 1, 1}, {1, 2, 1} =
{2, 1, 1, 1, 1, 2}.

• The fundamental equivalence pertaining to definition of sets by “defin-
ing property”: So, if we name the set in (1) above, S, that is, if we
say “let S = {x : P (x)}”, then “x ∈ S iff P (x) is true”

� By the way, we almost never say “is true” unless we want to shout
out this fact. We would say instead: “x ∈ S iff P (x)”.

Equipped with the knowledge of the previous bullet, we see that the
symbol {x : P (x)} defines a unique set/collection: Well, say A and
B are so defined, that is, A = {x : P (x)} and B = {x : P (x)}. Thus

x ∈ A
A={x:P (x)}

iff P (x)
B={x:P (x)}

iff x ∈ B

thus

x ∈ A iff x ∈ B

and thus A = B. �

Let us pursue, as Russell did, the point made in the last bullet above. Take
P (x) to be specifically the assertion x /∈ x. He then gave a name to

{x : x /∈ x}

say, R. But then, by the last bullet above,

x ∈ R iff x /∈ x (2)

If we now believe,† as Cantor, the father of set theory did not question and went
ahead with it, that every P (x) defines a set, then R is a set.

� What is wrong with that? �

Well, if R is a set then this object has the proper type to be plugged into
the variable of type “math object”, namely, x, throughout the equivalence (2)
above. But this yields the contradiction

R ∈ R iff R /∈ R (3)

This contradiction is called the Russell’s Paradox.

†Informal mathematics often relies on “I know so” or “I believe” or “it is ‘obviously’
true”. Some people call “proofs” like this —i.e., “proofs” without justification(s)— “proofs
by intimidation”. Nowadays, with the ubiquitousness of the qualifier “fake”, one could also
call them “fake proofs”.
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1.1. Russell’s “Paradox” 5

This and similar paradoxes motivated mathematicians to develop formal
symbolic logic and look to axiomatic set theory† as a means to avoid paradoxes
like the above.

Other mathematicians who did not care to use mathematical logic and ax-
iomatic theories found a way to do set theory informally, yet safely.

You see, they asked and answered “how are sets formed?”‡

Read on!

†There are many flavours or axiomatisations of set theory, the most frequently used being
the “ZF” set theory, due to Zermelo and Fraenkel.

‡Actually, axiomatic set theory —in particular, its axioms are— is built upon the answers
this group came up with. This story is told at an advanced level in [Tou03b].
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Chapter 2

Safe Set Theory

� So, some collections are not —technically— sets, as the Russell Paradox taught
us! How do we tell them apart? �

From now one we will deal with collections that may or may not be sets,
with a promise of learning how to create sets if we want to!

The modern literature uses the terminology “class” for any such collection
(and uses the term “collection” non technically and sparsely).

The above is captured by the following picture:

All Classes

All Sets

All Proper Classes
(nonSets)

2.0.1 Definition. (Classes and sets)
From now on we call all collections classes.

Definitions by defining property “Let A = {x : P (x)}” always define a class,
but as we saw, sometimes —e.g., if “P (x)” is specifically “x /∈ x”— that class
is not a set (Section 1.1). Classes that are not sets are called proper classes.
We will normally use what is known as “blackboard bold” notation and capital
latin letters to denote classes by names such as A,B,X. If we determine that
some class A is a set, we would rather write it as A, but we make an exception
for the following sets: Mathematicians use notation and results from set theory
in their everyday practice. We call the sets that mathematicians use the “real
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8 2. Safe Set Theory

sets” of our mathematical intuition, like the set of natural numbers, N (also
denoted by ω), integers Z, rationals Q and reals R. �

� In forming the class {x : P (x)} for any property P (x) we say that we apply
comprehension. It was the Frege/Cantor who believed (explicitly or implicitly)
that comprehension was safe —i.e., always produced a set. Russell proved that
it was not. �

It is known that set theory, using as primitives the notions of set, atom
(an object that is not sub-divisible; not a collection of objects), and the relation
belongs to (∈), is sufficiently strong to serve as the foundation of all mathematics.

Mathematicians use notation and results from set theory in their everyday
practice. We call the sets that mathematicians use the “real sets” of our math-
ematical intuition, like the set of natural numbers, N (also denoted by omega),
integers Z, rationals Q and reals R.

2.1. The “real sets”

So, how can we tell, or indeed guarantee, that a certain class is a set?
Russell proposed this “recovery” from his Paradox:

� Make sure that sets are built by stages, where at stage 0 all atoms are available.
Atoms are also called urelements in the literature from the German Urelemente,
which in analogy with the word “urtext” —meaning the earliest text— would
mean that they are the “earliest” mathematical objects. Witness that they are
available at stage 0! �

We may then collect atoms to form all sorts of “first level” sets. We may
proceed to collect any mix of atoms and first-level sets to build new collections
—second-level sets— and so on. Much of what set theory does is attempting to
remove the ambiguity from this “and so on”. See below, Principles 0–2.

Thus, at the beginning we have all the level-0, or type-0, objects available to
us. For example, atoms such as 1, 2, 13,

√
2 are available. At the next level we

can include any number of such atoms (from none at all, to all) to build a set,
that is, a new mathematical object. Allowing the usual notation, i.e., listing of
what is included within braces, we may cite a few examples of level-1 sets:

L1-1. {1}.

L1-2. {1, 1}.

L1-3. {1,
√

2}.

L1-4. {
√

2, 1}.

We already can identify a few level-2 objects, using what (we already know)
is available:

L2-1. {{
√

2, 1}}.

Notes on discrete mathematics; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.



2.1. The “real sets” 9

� Note how the level of nesting of { }-brackets matches the level or stage of the
formation of these objects! �

2.1.1 Definition. (Class and set equality) This definition applies to any classes,
hence, in particular, to any sets as well.

Two classes A and B are equal —written A = B— means

x ∈ A iff x ∈ B

That is, an object is in A iff it is also in B.
A is a subclass of B —written A ⊆ B— means that every element of the first

class occurs also in the second, or

If x ∈ A, then x ∈ B

If A is a set, then we say it is a subset of B.
If we have A ⊆ B but A 6= B, then we write A $ B (some of the literature

uses A ( B or even A ⊂ B nstead) and say that A is a proper subclass of B.
Caution. In the terminology “proper subclass” the “proper” refers to the

fact that A is not all of B. It does NOT say that A is not a set! It may be a
set and then we say that it is “proper subset” of B. �

� If n is an integer-valued variable, then what do you understand by “2n is even”?
The normal understanding is that “no matter what the value of n is, 2n is even”,
or “for all values of n, 2n is even”.

When we get into our logic topic in the course we will see that we can write
“for all values of n, 2n is even” with less English as “(∀n)(2n is even)”. So
“(∀n)” says “for all (values of) n”.

Mathematicians often prefer to have statements like “2n is even” with the
“for all” always implied.† You can write a whole math book without writing ∀
even once, and without overdoing the English. �

2.1.2 Remark. Since “iff” between two statements S1 and S2 means that we
have both directions

If S1, then S2

and
If S2, then S1

we have that “A = B” is the same as (equivalent to) “A ⊆ B and B ⊆ A”. �

2.1.3 Example. In the context of the “A = {x : P (x)}” notation we should re-
mark that notation-by-listing can be simulated by notation-by-defining-property:
For example, {a} = {x : x = a} —here “P (x)” is x = a.

†An exception occurs in Induction that we will study later, where you fix an n (but keep
it as a variable, not as 5 or 42) and assume the “induction hypothesis” P (n). But do not
worry about this now!
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10 2. Safe Set Theory

Also {A,B} = {x : x = A or x = B}. Let us verify the latter: Say x ∈ lhs.†

Then x = A or x = B. Thus x must be A or B. But then the entrance
requirement of the rhs‡ is met, so x ∈ rhs.

Conversely, say x ∈ rhs. Then the entrance requirement is met so we have
(at least) one of x = A or x = B. Trivially, in the first case x ∈ lhs and ditto
for the second case. �

We now postulate the principles of formation of sets!

Principle 0. Sets and atoms are the mathematical objects of our (safe) set
theory.

Sets are formed by stages. At stage 0 we acknowledge the presence of atoms.
They are given outright, they are not built.

At any stage Σ we may build a set, collecting together other mathematical
objects (sets or atoms) provided these (mathematical) objects we put into our
set were available at stages before Σ.

Principle 1. Every set is built at some stage.

Principle 2. If Σ is a stage of set construction, then there is a stage Φ after
it.

� Principle 2 makes clear that we have infinitely many stages of set formation in
our toolbox. �

2.1.4 Remark. If some set is definable (“buildable”) at some stage Σ, then it
is also definable at any later stage as well, as Principle 0 makes clear.

The informal set-formation-by-stages will guide us to build, safely, all the
sets we may need in order to do mathematics. �

2.2. What caused Russell’s paradox

How would the set-building-by-stages doctrine avoid Russell’s paradox?

� Recall that à la Cantor we get a paradox (contradiction) because we insisted to
believe that all classes are sets, that is, following Cantor we “believed” Russell’s
“R” was a set. �

Principles 0–2 allow us to know a priori that R is a proper class. No con-
tradiction!

How so?

†Left Hand Side.
‡Right Hand Side.
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2.3. Some useful sets 11

OK, is x ∈ x true or false? Is there any mathematical object x —say, A—
for which it is true?

A ∈ A? (1)

Well, for atom A, (1) is false since atoms have no set structure, that is, are
not collections of objects. An atom A cannot contain anything, in particular it
cannot contain A.

What if A is a set and A ∈ A? Then in order to build A, the set, we have
to wait until after its member, A is built (Principle 0). So, we need (the left)
A to be built before (the right) A in (1).

Absurd!

So (1) is false. A being arbitrary, we demonstrated that

x ∈ x is false

thus x /∈ x is true (forall x), therefore R of Section 1.1 is U, the universe of all
sets and atoms.

R = U

So? Well this U is “far too big” to be built as a set and we should never have
used {x : x /∈ x} so recklessly!

“Too Big” is bad in set theory; it intuitively means we ran out of stages after
we built all the members of the class! No stages left to build the class as a set!

The “intuition”, as always, is vague.
So here is why U is not a set. Well, if it is

• U ∈ U since the rhs contains all sets and we believe the lhs to be a set.

• but we just saw that the above is false if U is a set!

So U, aka R, is a proper class. Thus, the fact that R is not a set is neither
a surprise, nor paradoxical. It is just a proper class as we just have recognised.

2.3. Some useful sets

2.3.1 Example. (Pair) By Principle 0, if A and B are sets or atoms, then let
A be available at stage Σ and B at stage Σ′. Without loss of generality say Σ′

is not later than Σ. Let then pick a stage Σ′′ after Σ (Principle 2). This will be
be after both (cf. Principle 2) Σ,Σ′.

At stage Σ′′ we can build
{A,B} (1)

as a set (cf. Principle 0).
We call (1) the (unordered) pair set.

Pause. Why “unordered”? See 2.1.1.J �
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12 2. Safe Set Theory

We have just proved a theorem above:

2.3.2 Theorem. If A,B are sets or atoms, then {A,B} is a set.

2.3.3 Exercise. Without referring to stages in your proof, prove that if A is a
set or atom, then {A} is a set. �

2.3.4� Remark. A very short digression into Boolean Logic —for now.
It will be convenient —but not necessary; we are doing fine so far— to use truth
tables to handle many simple situations that we will encounter where “logical
connectives” such as “not”, “and”, “or”, “implies” and “is equivalent” enter
into our arguments.

We will put on record here how to compute things such as “S1 and S2”,
“S1 implies S2”, etc., where S1 and S2 stand for two arbitrary statements of
mathematics. In the process we will introduce the mathematical symbols for
“and”, “implies”, etc.

The symbol translation table from English to symbol is:

NOT ¬
AND ∧
OR ∨

IMPLIES (IF. . . ,THEN) →
IS EQUIVALENT ≡

The truth table below has a simple reading. For all possible truth values
—true/false, for short t/f— of the “simpler” statements S1 and S2 we indicate
the computed truth value of the compound (or “more complex)” statement that
we obtain when we apply one or the other Boolean connective of the previous
table.

S1 S2 ¬S1 S1 ∧ S2 S1 ∨ S2 S1 → S2 S1 ≡ S2 S2 → S1

f f t f f t t t
f t t f t t f f
t f f f t f f t
t t f t t t t t

Comment. All the computations of truth values satisfy our intuition, ex-
cept perhapsthat for “→”: ¬ flips the truth value as it should, ∧ is eminently
consistent with common sense, ∨ is the “inclusive or” of the mathematician,
and ≡ is just equality on the set {f , t}, as it should be.

The “problem” with → is that there is no causality from left to right. The
only “sane” entry is for t → f . The outcome should be false for a “bad impli-
cation” and so it is. But look at it this way:
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2.3. Some useful sets 13

• Looking at → also in the “red column” see how the given table for → is
eminently consistent with that for ≡. Intuitively ≡ is→ from left to right
AND → from right to left. It IS!

• This version of→ goes way back to Aristotle. It is the version used by the
vast majority of practising mathematicians and is nicknamed “material
implication”.

Practical considerations. Thus

1. if you want to demonstrate that S1 ∨S2 is true, for any component state-
ments S1, S2, then show that at least one of the S1 and S2 is true.

2. If you want to demonstrate that S1 ∧ S2 is true, then show that both of
the S1 and S2 are true.

Note, incidentally, the if we know that S1∧S2 is true, then the truth table
guarantees that each of S1 and S2 must be true.

3. If now you want to show the implication S1 → S2 is true, then the only
real work is to show that if we assume S1 is true, then S2 is true too.

If S1 is known to be false, then no work is required to prove the implication
because of the first two lines of the truth table!!

4. If you want to show S1 ≡ S2, then —because the last three columns show

that this is equivalent to (same truth values as)
(
S1 → S2

)
∧
(
S2 → S1

)
—

that is, you just prove each of the two implications S1 → S2 and S2 → S1

An important variant of → and ≡ Pay attention to this point
since almost everybody gets it wrong! In the literature and in the
interest of creating a usable shorthand many practitioners of mathematical
writing use notation

S1 → S2 → S3 (1)

attempting to convey the meaning

(S1 → S2) ∧ (S2 → S3) (2)

Alas, (2) is not the same as (1)! But what about a < b < c for a < b∧b <
c? That is wrong too!

Back to→-chains like (1) vs. chains like (2): Take S1 to be t (true), S2 to
be f and S3 to be t. Then (1) is true because in a chain using same Boolean
connective we put brackets from right to left : (1) is S1 → (S2 → S3) and
evaluates to t, while (2) evaluates clearly to false (f) since S1 → S2 = f
and S2 → S3 = t.
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14 2. Safe Set Theory

So we need a special symbol to denote (2) “economically”. We need a
conjunctional implies! Most people use =⇒ for that:

S1 =⇒ S2 =⇒ S3 (3)

that means, by definition, (2) above.

Similarly,
S1 ≡ S2 ≡ S3 (4)

is NOT conjunctional. It is not two equivalences —two statements—
connected by an implied “∧”, rather it says

S1 ≡ (S2 ≡ S3)

Now if S1 = f , S2 = f and S3 = t, then (4) evaluates as t but the
conjunctional version

(S1 ≡ S2) ∧ (S2 ≡ S3) (5)

evaluates as f since the second side of ∧ is f .

So how do we denote (5) correctly without repeating the consecutive S2’s
and omitting the implied “∧”? This way:

S1 ⇐⇒ S2 ⇐⇒ S3 (4)

By definition, “⇐⇒” is conjunctional: It applies to two statements —
Si and Si+1— only and implies an ∧ before the adjoining next similar
equivalence. � �

2.3.5 Theorem. (The subclass theorem) Let A ⊆ B (B a set). Then A is
a set.

Proof. Well, B being a set there is a stage Σ where it is built (Principle 1). By
Principle 0, all members of B are available or built before stage Σ.

But by A ⊆ B, all the members of A are among those of B.
Hey! By Principle 0 we can build A at stage Σ, so it is a set. �
Some corollaries are useful:

2.3.6 Corollary. (Modified comprehension I) If for all x we have

P (x)→ x ∈ A (1)

for some set A, then B = {x : P (x)} is a set.

Proof. I will show that B ⊆ A, that is,

x ∈ B→ x ∈ A

Indeed (see 3 under Practical considerations in 2.3.4), let x ∈ B. Then P (x)
is true, hence x ∈ A by (1). Now invoke 2.3.5. �
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2.3.7 Corollary. (Modified comprehension II) If A is a set, then so is
B = {x : x ∈ A ∧ P (x)} for any property P (x).

Proof. The defining property here is “x ∈ A ∧ P (x)”. This implies x ∈ A —by
2 in 2.3.4— that is, we have

(x ∈ A ∧ P (x))→ x ∈ A

Now invoke 2.3.6. �

2.3.8� Remark. (The empty set) The class E = {x : x 6= x} has no members
at all; it is empty. Why? Because

x ∈ E ≡ x 6= x

but the condition x 6= x is always false, therefore so is the statement

x ∈ E (1)

Is the class E a set?

Well, take A = {1}. This is a set as the atom 1 is given at stage 0, and thus
we can construct the set A at stage 1.

Note that, by (1) and 3 in 2.3.4 we have that

x ∈ E→ x ∈ {1}

is true (for all x). That is, E ⊆ {1}.

By 2.3.5, E is a set.

But is it unique so we can justify the use of the definite article “the”? Yes.
The specification of the empty set is a class with no members. So if D is another
empty set, then we will have x ∈ D always false. But then

x ∈ E ≡ x ∈ D (both sides of ≡ are false)

and we have E = D by 2.1.1.

The unique empty set is denoted by the symbol ∅ in the literature. � �

2.4. Operations on classes and sets

The reader probably has seen before (perhaps in calculus) the operations on
sets denoted by ∩,∪,− and others. We will look into them in this section.
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16 2. Safe Set Theory

2.4.1 Definition. (Intersection of two classes) We define for any classes A
and B

A ∩ BDef
=
{
x : x ∈ A ∧ x ∈ B

}
We call the operator ∩ intersection and the result A ∩ B the intersection of A
and B.

If A∩B = ∅—which happens precisely when the two classes have no common
elements— we call the classes disjoint.

It is meaningless to have ∩ operate on atoms.† �

We have the easy theorem below:

2.4.2 Theorem. If B is a set, as its notation suggests, then A ∩B is a set.

Proof. I will prove A ∩B ⊆ B which will rest the case by 2.3.5. So, I want

x ∈ A ∩B → x ∈ B

To this end, let then x ∈ A∩B (cf. 3 in 2.3.4). This says that x ∈ A∧ x ∈ B is
true, so x ∈ B is true. �

2.4.3 Corollary. For sets A and B, A ∩B is a set.

2.4.4 Definition. (Union of two classes) We define for any classes A and B

A ∪ BDef
=
{
x : x ∈ A ∨ x ∈ B

}
We call the operator ∪ union and the result A ∪ B the union of A and B.

It is meaningless to have ∪ operate on atoms. �

2.4.5 Theorem. For any sets A and B, A ∪B is a set.

Proof. By assumption say A is built at stage Σ while B is built at stage Σ′.
Without loss of generality (for short, “wlg”) say Σ is no later than Σ′, that is,
Σ ≤ Σ′.

By Principle 2 I can pick a state Σ′′ > Σ′, thus

Σ′′ > Σ′ (1)

and

Σ′′ > Σ (2)

Lets us pick examine any item x ∈ A ∪B:
I have two (not necessarily mutually exclusive) cases (by 2.4.5):

†The definition expects ∩ to operate on classes. As we know, atoms (by definition) have
no set/class structure thus no class and no set is an atom.
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2.4. Operations on classes and sets 17

• x ∈ A. Then x was available or built‡ at a stage < Σ,

hence, by (2), x is available before Σ′′ (3)

• x ∈ B. Then x was available or built at a stage < Σ′,

hence, by (1), x is available before Σ′′ (4)

In either case, (3) or (4), the arbitrary x from A ∪ B is built before Σ′′, so we
can collect all those x-values at stage Σ′′ in order to form a set : A ∪B. �

2.4.6 Definition. (Difference of two classes) We define for any classes A
and B

A− BDef
=
{
x : x ∈ A ∧ x /∈ B

}
We call the operator − difference and the result A− B the difference of A and
B, in that order.

It is meaningless to have − operate on atoms. �

2.4.7 Theorem. For any set A and class B, A− B is a set.

Proof. The reader is asked to verify that A−B ⊆ A. We are done by 2.3.5. �

� Notation. The definitions of ∩ and − suggest a shorter notation for the rhs
for A ∩ B and A− B. That is, respectively, it is common to write instead{

x ∈ A : x ∈ B
}

and {
x ∈ A : x /∈ B

}
�

2.4.8 Exercise. Demonstrate —using Definition 2.4.1— that for any A and B
we have A ∩ B = B ∩ A. �

2.4.9 Exercise. Demonstrate —using Definition 2.4.4— that for any A and B
we have A ∪ B = B ∪ A. �

2.4.10 Exercise. By picking two particular very small sets A and B show that
A−B = B −A is not true for all sets A and B.

Is it true of all classes? �

Let us generalise unions and intersections next. First a definition:

‡As x may be an atom, we allow the possibility that it was available with no building
involved, hence we said “available or built”. For A and B though we are told they are sets,
so they were built at some stage, by Principle 1!
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18 2. Safe Set Theory

2.4.11 Definition. (Family of sets) A class F is called a family of sets iff it
contains no atoms. The letter F is here used generically, and a family may be
given any name, usually capital. �

2.4.12 Example. Thus, ∅ is a family of sets; the empty family.
So are {{2}, {2, {3}}} and V, the latter given by

VDef
=
{
x : x is a set

}
BTW, as V contains all sets (but no atoms!) it is a proper class! Why? Well, if
it is a set, then it is one of the x-values that we are collecting, thus V ∈ V. But
we saw that this statement is false for sets!

Here are some classes that are not families: {1}, {2, {{2}}} and U, the latter
being the universe of all objects —sets and atoms— and equals Russell’s “R”
as we saw in Section 2.2. These all are disqualified as they contain atoms. �

2.4.13 Definition. (Intersection and union of families) Let F be a family
of sets. Then

(i) the symbol
⋂
F denotes the class that contains all the objects that are

common to all A ∈ F.

In symbols the definition reads:⋂
FDef=

{
x : for all A,A ∈ F→ x ∈ A

}
(1)

(ii) the symbol
⋃
F denotes the class that contains all the objects that are

found among the various A ∈ F. That is, imagine that the members of
each A ∈ F are “emptied” into a single —originally empty— container
{. . .}. The class we get this way is what we denote by

⋃
F.

In symbols the definition reads (and I think it is clearer):⋃
FDef=

{
x : for some A,A ∈ F ∧ x ∈ A

}
(2)

�

2.4.14 Example. Let F = {{1}, {1, {2}}. Then emptying all the contents of
the members of F is some (originally) empty container we get

{1, 1, {2}} (3)

This is
⋃
F.

Would we get the same answer from the mathematical definition (2)? Of
course:

1 is in some member of F, indeed in both of the members {1} and {1, {2}},
and in order to emphasise this I wrote two copies of 1 —it is empties/contributed
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2.4. Operations on classes and sets 19

twice. Then {2} is the member that only {1, {2}} of F contributes.

What is
⋂
F? Well, only 1 is common between the two sets —{1} and

{1, {2}}— that are in F. So,
⋂
F = {1}. �

2.4.15 Exercise.

1. Prove that
⋃{

A,B
}

= A ∪B.

2. Prove that
⋂{

A,B
}

= A ∩B.

Hint. In each of part 1. and 2. show that lhs ⊆ rhs and rhs ⊆ lhs. For that
analyse membership, i.e., “assume x ∈ lhs and prove x ∈ rhs”, and conversely
(cf. 2.1.1 and 2.1.2.) �

2.4.16 Theorem. If the set F is a family of sets, then
⋃
F is a set.

Proof. Let F be built at stage Σ. Now,

x ∈
⋃
F ≡ x ∈

some
↓
A ∈ F

Thus x is available or built before A which is built before stage Σ since that
is when F was built. x being arbitrary, all members of

⋃
F are available/built

before Σ, so we can build
⋃
F as a set at stage Σ. �

2.4.17 Theorem. If the class F 6= ∅ is a family of sets, then
⋂
F is a set.

Proof. By assumption there is some set in F. Fix one such and call it D.
First note that

x ∈
⋂

F→ x ∈ D (∗)

Why? Because (1) of Definition 2.4.13 says that

x ∈
⋂

F ≡ for all A ∈ F we have x ∈ A

Well, D is one of those “A” sets in F, so if x ∈
⋂

F then x ∈ D. We estab-
lished (∗) and thus we established ⋂

F ⊆ D

by 2.1.1. We are done by 2.3.5. �

2.4.18� Remark. What if F = ∅? Does it affect Theorem 2.4.17? Yes, badly!
In Definition 2.4.13 we read⋂

FDef=
{
x : for all A,A ∈ F→ x ∈ A

}
(∗∗)
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20 2. Safe Set Theory

However, as the hypothesis (i.e., lhs) of the implication in (∗∗) is false, the
implication itself is true. Thus the entrance condition “for all A,A ∈ F→ x ∈
A” is true for all x and thus allows ALL objects x to get into

⋂
F,

Thus
⋂
F = U, the universe of all objects which we saw (cf. Section 2.2 is a

proper class. � �

2.4.19 Exercise. What is
⋃
F if F = ∅? Set or proper class? Can you “com-

pute” which class exactly it is? �

2.4.20� Remark. (More notation)

Suppose the family of sets Q is a set of sets Ai, for i = 1, 2, . . . , n where
n ≥ 3.

Q = {A1, A2, . . . , An}

Then we have a few alternative notations for
⋂
Q:

(a)

A1 ∩A2 ∩ . . . ∩An

or, more elegantly,

(b)
n⋂
i=1

Ai

or also

(c) ⋂n

i=1
Ai

Similarly for
⋃
Q:

(i)

A1 ∪A2 ∪ . . . ∪An

or, more elegantly,

(ii)
n⋃
i=1

Ai

or also

(iii) ⋃n

i=1
Ai
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2.4. Operations on classes and sets 21

If the family has so many elements that all the natural numbers are need to
index the sets in the set family Q we will write

∞⋂
i=0

Ai

or ⋂∞
i=0

Ai

or ⋂
i≥0

Ai

or ⋂
i≥0

Ai

for
⋂
Q and

∞⋃
i=0

Ai

or ⋃∞
i=0

Ai

or ⋃
i≥0

Ai

or ⋃
i≥0

Ai

for
⋃
Q � �

2.4.21 Example. Thus, for example, A∪B∪C∪D can be seeing —just chang-
ing the notation— as A1 ∪A2 ∪A3 ∪A4, therefore it means,

⋃
{A1, A2, A3, A4},

or
⋃
{A,B,C,D}.

Same comment for ∩. �

Pause. How come for the case for n = 2 we proved† A ∪ B =
⋃
{A,B}

(2.4.15) but here we say (n ≥ 3) that something like the content of the previous
remark and example are notation (definitions)?

Well, we had independent definitions (and associated theorems re set status
for each, 2.4.5 and 2.4.16) for A∪B and

⋃
{A,B} so it makes sense to compare

the two definitions after the fact and see if we can prove that they say the same
thing. For n ≥ 3 we opted to NOT give a definition for A1 ∪ . . . ∪ An that is
independent of

⋃
{A1 ∪ . . . ∪ An}, rather we gave the definition of the former

in terms of the latter. No independent definitions, no theorem to compare the
two!J

†Well, you proved! Same thing :-)
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22 2. Safe Set Theory

2.5. The powerset

2.5.1 Definition. For any set A the symbol P(A) —pronounced the powerset
of A— is defined to be the class

P(A)
Def
=
{
x : x ⊆ A

}
Thus we collect all the subsets x of A to form P(A).

The literature most frequently uses the symbol 2A in place for of P(A). �

� (1) The term “powerset” is slightly premature, but it is apt. Under the condi-
tions of the definition —A a set— 2A is a set as we prove immediately below.

(2) We said “all the subsets x of A” in the definition. This is correct. As
we know from 2.3.5, if X ⊆ Y and Y is a set, then so is X. �

2.5.2 Theorem. For any set A, its powerset P(A) is a set.

Proof. Let A be built at stage Σ. Then each its members y are given or built
before Σ.

Thus, since every subset x of A is a set of y-values, every such subset x
can be built at stage Σ.

But then, just take any Σ′ > Σ. Since all x-values (such that x ⊆ A) are
built before Σ′, at stage Σ′ we can collect them all and build the set 2A. �

2.5.3 Example. Let A = {1, 2, 3}. Then

P(A) =
{
∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {3, 2}, {1, 2, 3}

}
Thus the powerset of A has 8 elements.

We will later see that if A has n elements, for any n ≥ 0, then 2A has 2n

elements. This observation is at the root of the notation “2A”. �

2.5.4 Remark. For any set A it is trivial (verify!) that we have ∅ ⊆ A and
A ⊆ A. Thus, for any A, {∅, A} ⊆ 2A. �
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2.6. The ordered pair and finite sequences 23

2.6. The ordered pair and finite sequences

To introduce the concepts of cartesian product —so that, in principle, plane
analytic geometry can be developed within set theory— we need an object
“(A,B)” that is like the set pair (2.3.1) in that it contains two objects, A and
B (A = B is a possibility), but in (A,B) order and length (here it is 2) matter!

We want (A,B) = (A′, B′) implies A = A′ and B = B′. Moreover,
(A,A) is not {A}! It is still an ordered pair but so happens that the
first and second component, as we call the members of the ordered
pair, are equal in this example.

� So, are we going to accept a new type of object in set theory? Not at all ! We
will build (A,B) so that it is a set! �

2.6.1 Definition. (Ordered pair) By definition, (A,B) is the abbreviation
(short name) given below:

(A,B)
Def
=
{
A, {A,B}

}
(1)

We call “(A,B)” an ordered pair, and A its first component, while B is its
second component. �

2.6.2� Remark.

1. Note that A 6= {A,B} and A 6= {A,A}, because in either case we would
otherwise get A ∈ A, which is false for sets or atoms A. Thus (A,B) does
contain exactly two members, or has length 2 : A and {A,B}.
Pause. We have not said in 2.6.1 that A and B are sets or atoms. So
what right do we have in the paragraph above to so declare?J

2. What about the desired property that

(A,B) = (X,Y )→ A = X ∧B = Y (2)

Well, assume the lhs of “→” in (2) and prove the rhs, “A = X∧B = Y ”.
From our truth table we know that we do the latter by proving each of
A = X and B = Y true (separately).

The lhs that we assume translates to{
A, {A,B}

}
=
{
X, {X,Y }

}
(3)

By the remark #1 above there are two distinct members in each of the
two sets that we equate in (3).

So since (3) is true (by assumption) we have (by definition of set equality)
one of:
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24 2. Safe Set Theory

(a) A = {X,Y } and {A,B} = X, that is, 1st listed element in lhs of
“=” equals the 2nd listed in rhs; and 2nd listed element in
lhs of “=” equals the 1st listed in rhs.

(b) A = X and {A,B} = {X,Y }.

Now case (a) above cannot hold, for it leads to A = {{A,B}, Y }. This in
turn leads to

{A,B} ∈ A

and thus the set {A,B} is built before of its member A, which contradicts
Principle 0.

Let’s then work with case (b).
We have

{A,B} = {A, Y } (4)

Well, all the members on the lhs must also be on the rhs. I note that A is.

• What if B is also equal to A? Then we have {B} = {A, Y } and thus
Y ∈ {B} (why?). Hence Y = B. We showed so far A = X (listed in case
(b)) and B = Y (proved here); great!

• Here B is not equal to A. But B must be in the rhs of (4), so the only
way is B = Y . All Done! � �

Worth noting as a theorem what we proved above:

2.6.3 Theorem. If (A,B) = (X,Y ), then A = X and B = Y .

But is (A,B) a set? (atom it is not, of course!) Yes!

2.6.4 Theorem. (A,B) is a set.

Proof. Now (A,B) =
{
A, {A,B}

}
. By 2.3.1, {A,B} is set. Applying 2.3.1 once

more,
{
A, {A,B}

}
is a set. �

2.6.5 Example. So, (1, 2) = {1, {1, 2}}, (1, 1) = {1, {1}}, and ({a}, {b}) =
{{a}, {{a}, {b}}}. �

2.6.6� Remark. We can extend the ordered pair to ordered triple, ordered
quadruple, and beyond!

We take this approach in these notes:

(A,B,C)
Def
=
(

(A,B), C
)

(1)

(A,B,C,D)
Def
=
(

(A,B,C), D
)

(2)
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2.6. The ordered pair and finite sequences 25

(A,B,C,D)
Def
=
(

(A,B,C), D
)

(3)

etc. So suppose we defined what an n-tuple is, for some fixed unspecified n, and
denote it by (A1, A2, . . . , An) for convenience. Then

(A1, A2, . . . , An, An+1)
Def
=
(

(A1, A2, . . . , An), An

)
(∗)

This is an “inductive” or “recursive” definition, defining a concept (n+1-tuple)
in terms of a smaller instance of itself, namely, in terms of the concept for an
n-tuple, and in terms of the case n = 2 that we dealt with by direct definition
(not in terms of the concept itself!) in 2.6.1.

Suffice it to say this “case of n + 1 in terms of case of n” provides just
shorthand notation to take the mystery out of the red “etc.” above. We con-
dense/codify infinitely many definitions (1), (2), (3), . . . into just two:

• 2.6.1

and

• (∗)

The reader has probably seen such recursive definitions before (likely in calculus
and/or high school).

The most frequent example that occurs is to define, for any natural number
n and any real number a > 0, what an means. One goes like this:

a0 = 1
an+1= a · an

The above condenses infinitely many definitions such as

a0= 1
a1= a · a0= a
a2= a · a1= a · a
a3= a · a2= a · a · a
a4= a · a3= a · a · a · a
...

into just two!
We will study inductive definitions and induction soon!

Before we exit this remark note that (A,B,C) = (A′, B′, C ′) implies A =
A′, B = B′, C = C ′ because it implies

C = C ′ and (A,B) = (A′, B′)

That is, (A,B,C) is an ordered triple (3-tuple).
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We can also prove that (A1, A2, . . . , An, An+1) is an ordered n + 1-tuple,
i.e.,

(A1, A2, . . . , An+1) = (A′1, A
′
2, . . . , A

′
n+1)→ A1 = A′1 ∧ . . . ∧An+1 = A′n+1

if we have followed the “etc.” all the way to the case of (A1, A2, . . . , An). We
will do the “etc.”-argument elegantly once we learn induction! � �

2.6.7 Definition. (Finite sequences) An n-tuple for n ≥ 1 is called a finite
sequence of length n, where we extend the concept to a one element sequence
—by definition— to be

(A)
Def
= A

�

� Note that now we can redefine all sequences of lengths n ≥ 1 using again (∗)
above, but this time with starting condition that of 2.6.7. Indeed, for n = 2 we
rediscover (A1, A2):

the “new” 2-tuple pair: (A1, A2)
by (∗)

=
(

(A1), A2

)
by 2.6.7 the “old”

=
(
A1, A2

)
The big red brackets are applications of the ordered pair defined in 2.6.1, just
as it was in the general definition (∗). �

2.7. The Cartesian product

We are ready to define classes of pairs.

2.7.1 Definition. (Cartesian product of classes) Let A and B be classes.
Then we define

A× BDef
=
{

(x, y) : x ∈ A ∧ y ∈ B
}

The definition requires both sides of × to be classes. It makes no sense if one
or both are atoms. �

2.7.2 Theorem. If A and B are sets, then so is A×B.

Proof. By 2.7.1 and 2.6.1

A×B=
{{
x, {x, y}

}
: x ∈ A ∧ y ∈ B

}
(1)

So, for each
{
x, {x, y}

}
∈ A × B we have x ∈ A and {x, y} ⊆ A ∪ B, or x ∈ A

and {x, y} ∈ 2A∪B . Thus
{
x, {x, y}

}
⊆ A∪2A∪B and hence (changing notation)

(x, y) ∈ 2A∪2A∪B
.

We have established that

A×B ⊆ 2A∪2A∪B

thus A×B is a set by 2.3.5, 2.4.5 and 2.5.2. �
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2.7.3 Definition. Mindful of the Remark 2.6.6 where
(

(A,B), C
)

,
(

(A,B,C), D
)

,

etc. were defined, we define here A1 × . . .×An for any n ≥ 3 as follows:

A×B × C Def
= (A×B)× C

A×B × C ×D Def
= (A×B × C)×D

...

A1 ×A2 × . . .×An ×An+1
Def
= (A1 ×A2 × . . .×An)×An+1

...

We may write
n×
i=1

Ai for A1 ×A2 × . . .×An

If A1 = . . . = An = B we may write Bn for A1 ×A2 × . . .×An. �

2.7.4 Remark. Thus, what we learnt in 2.7.3 is, in other words,

n×
i=1

Ai
Def
=
{

(x1, . . . , xn) : xi ∈ Ai, for i = 1, 2, . . . , n
}

and

Bn
Def
=
{

(x1, . . . , xn) : xi ∈ B
}

�

2.7.5 Theorem. If Ai, for i = 1, 2, . . . , n is a set, then so is
n×
i=1

Ai.

Proof. A×B is a set by 2.7.2. By 2.7.3, and in this order, we verify that so
is A×B × C and A×B × C ×D and . . . and A1 ×A2 × . . .×An and . . . �

� If we had inductive definitions available already, then Definition 2.7.3 would
simply read

A1 ×A2
Def
=
{

(x1, x2) : x1 ∈ A1 ∧ x2 ∈ A2

}
and, for n ≥ 2,

A1 ×A2 × . . .×An ×An+1
Def
= (A1 ×A2 × . . .×An)×An+1

Correspondingly, the proof of 2.7.5 would be far more elegant, via induction. �
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Chapter 3

Relations and functions

The topic of relations and functions is central in all mathematics and computing.
In the former, whether it is calculus, algebra or anything else, one deals with
relations (notably equivalence relations, order) and all sorts of functions while
in the latter one computes relations and functions, in that, one writes programs
that given an input to a relation they compute the response (true or false) or
given an input to a function they compute a response which is some object
(number, graph, tree, matrix, other) or nothing, in case there is no response
for said input (for example, there is no response to input “x, y” if what we are
computing is x

y but y = 0.
We are taking an “extensional” point of view in this course, as is customary

in set theory, of relations and functions, that is, we view them as sets of (input,
output) ordered pairs. It is also possible to take an intentional point of view,
especially in computer science and some specific areas of mathematics, viewing
relations and functions as methods to compute outputs from given inputs.

3.1. Relations

3.1.1 Definition. (Binary relation) A binary relation is a class R† of or-
dered pairs.

The statements (x, y) ∈ R, xRy and R(x, y) are equivalent. xRy is the
“infix” notation —imitating notation such as A ⊂ B, x < y, x = y and has
notational advantages. �

3.1.2� Remark. R contains just pairs (x, y), that is, just sets {x, {x, y}}, that
is, it is a family of sets. � �

3.1.3 Example. Examples of relations:

†I write “R” or “R” for a relation, generically, but P, Q, S are available to use as well. I
will avoid specific names such as <, ⊆ in a general discussion. These two are apt to bring in
in examples.
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(i) ∅

(ii) {(1, 1)}

(iii) {(1, 1), (1, 2)}

(iv) N2, that is {(x, y) : x ∈ N ∧ y ∈ N}. This is a set by the fact that N is
(Why?) and thus so is N× N by 2.7.2.

(v) < on N, that is {(x, y) : x < y∧x ∈ N∧y ∈ N}. This is a set since <⊆ N2.

(vi) ∈, that is,
{(x, y) : x ∈ y ∧ x ∈ U ∧ y ∈ V} (∗)

This is a proper class (nonSet). Why? Well, if ∈ is a set, then it is built
at some stage Σ.

Now examine the arbitrary (x, y) in ∈. This is {x, {x, y}} so it is built
before Σ, but then so is its member x (available before Σ). Thus we can
collect all such x into a set at stage Σ. But this “set” contains all x ∈ U
due to the middle conjunct in the entrance condition in (∗).† That is, this
“set” is U. This is absurd! �

� Here is another way to argue that the relation ∈ is not a set: If it is, so is
⋃
∈.

Any (x, y) ∈∈ is of the form {x, {x, y}}. Thus all x for which there is a y such
that x ∈ y are in

⋃
∈. As we said in the footnote, taking y = {x} makes clear

that “x ∈ y” does not restrict the x’s we can get. We get them all: thus they
form the proper class U. I argued U ⊆

⋃
∈, thus

⋃
∈ cannot be a set. So,

neither can ∈ (2.4.16). �

So, a binary relation R is a table of pairs:

input: x output: y

a b
a′ b′

...
...

u v
...

...

1. Thus one way to viewR is as a device that for inputs x, valued a, a′, . . . , u, . . .
one gets the outputs y, valued b, b′, . . . , v, . . . respectively. It is all right
that a given input may yield multiple outputs (e.g., case (iii) in the pre-
vious example).

†Hmm. Doesn’t the first conjunct “x ∈ y” reduce the number of x-values? No: For every
x out there take y = {x} thus the conjunct x ∈ y is fulfilled for all x-values, as I showed how
to find a y that works.
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2. Another point of view is to see both x and y as inputs and the outputs
are true or false (t or f). For example, (a, b) is in the table (that is, aRb)
hence if both a and b are ordred input values, then the relation outputs t.

Most of the time we will take the point of view in 1 above. This point of view
compels us to define domain and range of a relation R, that is, the class of all
inputs that cause an output and the set of all caused outputs respectively.

3.1.4 Definition. (Domain and range) For any relation R we define do-
main, in symbols “dom” by

dom(R)
Def
= {x : (∃y)xRy}

where we have introduced the notation “(∃y)” as short for “there exists some y
such that”, or “for some y,”

Range, in symbols “ran”, is defined also in the obvious way:

ran(R)
Def
= {x : (∃y)yRx} �

We settle the following, before other things:

3.1.5 Theorem. For a set relation R, both dom(R) and ran(R) are sets.

Proof. For domain we collect all the x such that xRy, for some y, that is, all
the x such that

{x, {x, y}} ∈ R (1)

for some y. Since R is a family of sets, we have that
⋃
R is a set. But then

each x in the set {x, {x, y}} in (1) is in
⋃
R. But the set of these x is dom(R)

(3.1.4). Thus dom(R) ⊆
⋃
R. This settles the domain case.

Let A be the set of all atoms in
⋃
R and define

S
Def
=
(⋃

R
)
−A

So, S is a set, and it contains just the {x, y} parts of all {x, {x, y}} ∈ R.
Then

⋃
S contains all the y. That is, ran(R) ⊆

⋃
S, and that settles the

range case. �

3.1.6 Definition. In practice we often have an a priori decision about what
are in principle “legal” inputs for a relation R, and where its outputs go. Thus
we have two classes, A and B for the class of legal inputs and possible outputs
respectively. Clearly we have R ⊆ A× B.

We call A and B left field and right field respectively, and instead of R ⊆ A×B
we often write

R : A→ B
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and also

A R−→B

pronounced “R is a relation from A to B”.

The term field —without left/right qualifiers— for R : A→ B refers to A∪B.

If A = B then we have

R : A→ A

but rather than pronouncing this as “R is a relation from A to A” we prefer †

to say “R is on A”. �

3.1.7� Remark. Trivially, for any R : A → B, we have dom(R) ⊆ A and
ran(R) ⊆ B (give a quick proof of each of these inclusions).

Also, for any relation P with no a priori specified left/right fields, P is a
relation from dom(A)→ ran(R). Naturally, we say that dom(P)∪ ran(P) is the
field of P. � �

3.1.8� Example. As an example, consider the divisibility relation on all integers
(their set denoted by Z) denoted by “|”:

x|y means x divides y with 0 remainder

thus, for x = 0 and all y, the division is illegal, therefore

The input x = 0 to the relation “ |” produces no output, in other
words, “for input x = 0 the relation is undefined.”

We walk away with two things from this example:

1. It does make sense for some relations to a priori choose left and right
fields, here

| : Z→ Z

You would not have divisibility on real numbers!

2. dom( | ) is the set of all inputs that produce some output. Thus, it is NOT
the case for all relations that their domain is the same as the left field
chosen! Note the case in this example! And forget the term “codomain”!
(Occurs in our text.) � �

3.1.9� Example. Next consider the relation < with left/right fields restricted
to N. Then dom(<) = N, but ran(<) $ N. Indeed, 0 ∈ N− ran(<). � �

Let us extract some terminology from the above examples:

†Both ways of saying it are correct.
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3.1.10 Definition. Given
R : A→ B

If dom(R) = A, then we call R total or totally defined. If dom(R) $ A, then we
say that R is nontotal.

If ran(R) = B, then we call R onto. If ran(R) $ B, then we say that R is not
onto. �

So, | above is nontotal, and < is not onto.

� In what follows we move away from the full generality of classes (possibly proper)
and restrict attention to relations that are sets. �

3.1.11 Example. Let A = {1, 2}.

• The relation {(1, 1)} on A is neither total nor onto.

• The relation {(1, 1), (1, 2)} on A is onto but not total.

• The relation {(1, 1), (2, 1)} on A is total but not onto.

• The relation {(1, 1), (2, 2)} on A is total and onto. �

3.1.12 Definition. The relation ∆A on the set A is given by

∆A
Def
= {(x, x) : x ∈ A}

We call it the diagonal (“∆” for “diagonal”) identity or relation on A.
Consistent with the second terminology, we may also use the symbol 1A for

this relation. �

3.1.13 Definition. A relation R (not a priori restricted to have predetermined
left or right fields) is

1. Transitive: Iff xRy ∧ yRz implies xRz.

2. Symmetric: Iff xRy implies yRx.

3. Antisymmetric: Iff xRy ∧ yRx implies x = y.

4. Irreflexive: Iff xRy implies x 6= y.

Now assume R is on a set A. Then we call it reflexive iff ∆A ⊆ R. �

3.1.14 Example.

(i) Transitive examples: ∅, {(1, 1)}, {(1, 2), (2, 3), (1, 3)}, <, ≤, =, N2.

(ii) Symmetric examples: ∅, {(1, 1)}, {(1, 2), (2, 1)}, =, N2.

(iii) Antisymmetric examples: ∅, {(1, 1)}, =, ≤, ⊆.
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(iv) Irreflexive examples: ∅, {(1, 2)}, <, $, the relation “6=” on N.

(v) Reflexive examples: 1A on A, {(1, 1)} on {1}, {(1, 2), (2, 1), (1, 1), (2, 2)}
on {1, 2}, = on N, ≤ on N. �

We can compose relations:

3.1.15 Definition. (Relational composition) Let R and S be (set) rela-
tions. Then, their composition, in that order, denoted by R ◦ S is defined
for all x and y by:

xR ◦ Sy
Def
≡ (∃z)

(
xRz ∧ zSy

)
It is customary to abuse notation and write “xRzSy” for “xRz ∧ zSy” just as
one writes x < y < z for x < y ∧ y < z. �

3.1.16 Example. Here is whence the emphasis “in that order” above. Say,
R = {(1, 2)} and S = {(2, 1)}. Thus, R ◦ S = {(1, 1)} while S ◦ R = {(2, 2)}.
Thus, R ◦ S 6= S ◦R in general. �

3.1.17� Example. For any R, we diagrammatically indicate xRy by

x
R−→ y

Thus, the situation where we have that xR ◦ Sy means, for some z, xRzSy is
depicted as:

� �

3.1.18 Theorem. The composition of two (set) relations R and S in that order
is also a set.

Proof. Trivially, R ◦ S ⊆ dom(R)× ran(S) since in

xRzSy, for some z

all the the x-values are in dom(R) and all the y-values are in ran(S). Moreover,
we proved in 3.1.5 that dom(R) and ran(S) are sets. Thus so is dom(R)×ran(S)
(2.7.2). �

3.1.19 Corollary. If we have R : A→ B and S : B → C, then R ◦S : A→ C.

Proof. This is a trivial modification of the argument above. �

Notes on discrete mathematics; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.



3.1. Relations 35

� The result of the corollary is depicted diagrammatically as

�

3.1.20 Theorem. (Associativity of composition) For any relations R,S and
T, we have

(R ◦ S) ◦ T = R ◦ (S ◦ T)

We state and prove this central result for any class relations.

Proof. We have two directions:
→: Fix x and y and let x(R ◦ S) ◦ Ty.
Then, for some z, we have x(R ◦ S)zTy and hence for some w, the above

becomes
xRwSzTy (1)

But wSzTy means wS ◦ Ty, hence we rewrite (1) as

xRw(S ◦ T)y

Finally, the above says xR ◦ (S ◦ T)y.
←: Fix x and y and let xR ◦ (S ◦ T)y.
Then, for some z, we have xRz(S ◦ T)y and hence for some u, the above

becomes
xRzSuTy (2)

But xRzSu means xR ◦ Su, hence we rewrite (2) as

x(R ◦ S)uTy

Finally, the above says x(R ◦ S) ◦ Ty. �
The following is almost unnecessary, but offered for emphasis:

3.1.21 Corollary. If R,S and T are (set) relations, all on some set A,† then
“R ◦ S ◦ T” has a meaning independent of how brackets are inserted.

� The corollary allows us to just omit brackets in a chain of compositions, even
longer that the above. It also leads to the definition of relational exponentiation,
below: �

†Recall that “R is on a set A” means R ⊆ A2, which is the same as R : A→ A.
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3.1.22 Definition. (Powers of a binary relation) LetR be a (set) relation.
We define Rn, for n > 0, as

R ◦R ◦ · · · ◦R︸ ︷︷ ︸
n R

(1)

Note that the resulting relation in (1) is independent of how brackets are in-
serted (3.1.21).

If moreover we have defined R to be on a set A, then we also define the 0-th
power: R0 stands for ∆A or 1A. �

3.1.23 Exercise. Let R be a relation on A. Then for all n ≥ 0, Rn is a set.
Hint. You do not need to do induction. A “and so on” argument will be all

right. �

3.1.24 Example. Let R = {(1, 2), (2, 3)}. What is R2?
Well, when can we have xR2y? Precisely if/when we can find x, y, z that

satisfy xRzRy. The values x = 1, y = 3 and z = 2 are the only ones that satisfy
xRzRy.

Thus 1R23, or (1, 3) ∈ R2. We conclude R2 = {(1, 3)} by the “only ones”
above. �

3.1.25 Exercise. Show that if for a a relation R we know that R2 ⊆ R, then
R is transitive and conversely. �

3.1.1. Transitive closure

3.1.26 Definition. (Transitive closure of R) A transitive closure of a rela-
tion R —if it exists— is the ⊆-smallest transitive T that contains R as a subset.

More precisely,

1. T is transitive, and R ⊆ T .

2. If S is also transitive and R ⊆ S, then T ⊆ S. This makes the term
“⊆-smallest” precise. �

Note that we hedged twice in the definition, because at this point we do not
know yet:

• If every relation has a transitive closure; hence the “if it exists”.

• We do not know if it is unique, hence the emphasised indefinite article
“A”.

3.1.27� Remark. Uniqueness can be settled immediately from the definition
above: Suppose T and T ′ fulfil Definition 3.1.26, that is,

1. R ⊆ T
and
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2. R ⊆ T ′

since both are closures. But now think of T as a closure and T ′ as the “S” of
3.1.26 (it includes R all right!)

Hence T ⊆ T ′.
Now reverse the role playing and think of T ′ as a closure, while T plays the

role of “S”. We get T ′ ⊆ T . Hence, T = T ′. � �

3.1.28 Definition. The unique transitive closure, if it exists, is denoted by
R+. �

3.1.29 Exercise. If R is transitive, then R+ exists. In fact, R+ = R. �

The above exercise is hardly exciting, but learning that R+ exists for every
R and also learning how to “compute” R+ is exciting. We do this next.

3.1.30 Lemma. Given a (set) relation R. Then
⋃∞
n=1R

n is a transitive (set)
relation.

Proof. We have two things to do.

1.
⋃∞
n=1R

n is a set.

2.
⋃∞
n=1R

n is a transitive relation.

Proof of 1. Note that all positive powers of R, Rn+1, for n ≥ 0, are sets. Indeed,
they all are subsets of the same set!

Here is why:

Firstly, R ⊆ dom(R)× ran(R) by Definition 3.1.4.

Let now n > 0: We have

Rn+1 =

n+1︷ ︸︸ ︷
R ◦R ◦ . . . ◦R =

n︷ ︸︸ ︷
R ◦R ◦ . . . ◦R ◦R = Rn ◦R

similarly, observing that

n+1︷ ︸︸ ︷
R ◦R ◦ . . . ◦R = R ◦

n︷ ︸︸ ︷
R ◦ . . . ◦R = R ◦Rn

we have Rn+1 = R ◦Rn. Thus, we established

Rn+1 = R ◦Rn (1)

and
Rn+1 = Rn ◦R (2)

Applying 3.1.18 to (1) we get

Rn+1 ⊆ dom(R)× . . . (1′)
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and applying 3.1.18 to (2) we get

Rn+1 ⊆ . . .× ran(R) (2′)

Thus
Rn+1 ⊆ dom(R)× ran(R)

for n ≥ 0.

So

X ∈ F = {Ri : i = 1, 2, 3, . . .} → X ⊆ dom(R)× ran(R) (3)

Thus,
∞⋃
i=1

Ri
2.4.20

=
⋃

F ⊆ dom(R)× ran(R)

because

x
⋃∞
i=1R

iy=⇒ (x, y) ∈
⋃∞
i=1R

i =⇒ (x, y) ∈ Ri, for some i

=⇒ (x, y) ∈ dom(R)× ran(R)

hence we are done by 2.3.5 since dom(R)× ran(R) is a set.

Proof of 2. Of course,
⋃∞
i=1R

i is a set (by part 1) relation since trivially it is a
set of ordered pairs.

Next, let

x

∞⋃
i=1

Ri y

∞⋃
i=1

Ri z

Thus for some n and m we have

xRn y Rm z

this says the same thing as

x

n︷ ︸︸ ︷
R ◦R ◦ · · ·R y

m︷ ︸︸ ︷
R ◦R ◦ · · ·R z

or

x

n︷ ︸︸ ︷
R ◦R ◦ · · ·R ◦

m︷ ︸︸ ︷
R ◦R ◦ · · ·R z

or

x

n+m︷ ︸︸ ︷
R ◦R ◦ · · ·R z

that is,

x

∞⋃
i=1

Ri z �
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3.1.31� Remark. Why all this work for Part 1 of the proof above? Why not
just use 2.4.20 right away? Because 2.4.20 offers only notation once we know
that

F = {A0, A1, A2, A3, . . .} (3)

is a set ! Cf. “Suppose the family of sets Q is a set of sets”, the opening state-
ment in the passage 2.4.20 on notation.

Here we do not know (yet) if every family of sets like (3) is indeed a set
—but in this case it turns out that we do not care because every member of
F = {Ri : i = 1, 2, 3, . . .} is included (as a subset) in dom(R) × ran(R) (a set),
which allows us to sidestep the issue!

Whether every family of sets like F in (3) is a set will be answered affir-
matively in 3.1.40. For now note that we cannot recklessly say that after any
sequence of construction by stages there is a stage after all those stages. Why?
Well, take all the objects in set theory. Each is given outright (atom; stage 0)
or is constructed at some stage (set). If we could prove there is a stage after all
these stages then we could also prove that U is a set, a claim we refuted with
two methods so far! � �

Since R ⊆
⋃∞
i=1R

i due to R = R1, all that remains to show is that
⋃∞
i=1R

i

is a transitive closure of R is to show that

3.1.32 Lemma. If R ⊆ S and S is transitive, then
⋃∞
i=1R

i ⊆ S.

Proof. I will just show that for all n ≥ 1, Rn ⊆ S. OK, R ⊆ S is our assumption,
thus R1 ⊆ S is true.

For R2 ⊆ S let xR2y, thus (for some z), xRzRy hence xSzSy. As S is
transitive, the latter gives xSy. Done.

For R3 ⊆ S let xR3y, thus (for some z), xR2zRy hence xSzSy. As S is
transitive, the latter gives xSy. Done.

You see the pattern: Pretend we proved up to n (fixed but unspecified)
and we want to prove for n+ 1 (using the same value, as in our pretense, for n).

So, we have Rn ⊆ S. (1)

Thus,

xRn+1y ⇐⇒ xRn◦Ry ⇐⇒ xRnzRy (some z )
(1)

=⇒xSzSy =⇒ xSy (S transitive)

�
We have proved:

3.1.33 Theorem. (The transitive closure exists) For any relation R, its
transitive closure R+ exists and is unique. We have that R+ =

⋃∞
i=1R

i.

An interesting corollary that will lend a computational flavour to 3.1.33 is
the following.
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3.1.34 Corollary. If R is on the set {a1, a2, . . . , an} where, for i = 1, . . . , n,
the ai are distinct, then R+ =

⋃n
i=1R

i.

Proof. By 3.1.33, all we have to do is prove

∞⋃
i=1

Ri ⊆
n⋃
i=1

Ri (1)

since the ⊇ part is obvious.
So let x

⋃∞
i=1R

iy. This means that

xRqy, for some q ≥ 1 (2)

Thus, I have two cases for (2):

Case 1. q ≤ n. Then x
⋃n
i=1R

iy since Rq ⊆
⋃n
i=1R

i, Rq being one of the “Ri”
with i in the 1 ≤ i ≤ n range.

Case 2. q > n. In this case I will show that there is also a k ≤ n such that
xRky, which sends me back to the “easy Case 1”.

Well, if there is one q > n that satisfies (2) there are probably more.
Let us pretend that our q is the smallest > n that gives us (2).

� Wait! Why is there a smallest q such that

xRqy and q > n ? (3)

Because among those “q” that fit (3)† imagine we fix attention to one
such.

Now, if it is not the smallest such, then go down to the next smaller
one that still satisfies (3), call it q′.

Now go down to the next smaller, q′′ > n, if q′ is not smallest.

Continue like this. Can I do this forever? That is, can we have the
following?

n < . . . < q(k)† < . . . < q′′′ < . . . < q′′ < q′ < q

If yes, then I will have an infinite “descending” chain of distinct num-
bers between q and n.

Absurd! �

Back to the proof. So let the q we are working with be the smallest
that satisfies (3). Then we have the configuration

xRz1Rz2Rz3 . . . ziRzi+1 . . . zrRzr+1 . . . zq−1Ry (4)

†There is at least one, else we would not be in Case 2.
†By “q(n)” I mean q with k primes.
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The above accounts for q copies of R as needed for

Rq =

q R︷ ︸︸ ︷
R ◦ . . . R

Now the sequence

z1, z2, z3 . . . zi, zi+1, . . . zr, zr+1, . . . , zq−1, y

in (4) above contains q > n members. As they all come from A, not
all are distinct. So let zi = zr (the zr could be as late in the sequence
as y, i.e., equal to y).

Now omit the boxed part in (4). We obtain

xRz1Rz2Rz3 . . . zr
‖
zi

Rzr+1 . . . zq−1Ry (5)

which contains at least one “R” less than the sequence (4) does —the
entry “ziRzi+1” (and everything else in the “. . .” part) was removed.
That is, (5) states

xRq
′
y

with q′ < q. Since the q in (3) was smallest > n, we must have q′ ≤ n
which sends us to Case 1 and we are done. �

3.1.2. Equivalence relations

Equivalence relations must be on some set A, since we require reflexivity. T hey
play a significant role in many branches of mathematics and even in computer
science. For example, the minimisation process of finite automata (a topic that
we will not cover) relies on the concept of equivalence relations.

3.1.35 Definition. A relation R on A is an equivalence relation, provided it is
all of

1. Reflexive

2. Symmetric

3. Transitive �

� An equivalence relation on A has the effect, intuitively, of “grouping” elements
that we view as interchangeable in their roles, or “equivalent”, into so-called (see
Definition 3.1.38 below) “equivalence classes” —kind of mathematical clubs!

Why is this intuition not applicable to arbitrary relations? There are a few
reasons:
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• First, not all relations are symmetric, so if element a of A starts up a
“club” of “peers” with respect to a (non symmetric) relation R, then a
will welcome b in the group as soon as aRb holds. Now since, conceivably,
bRa may be false, b would not welcome a in the club it belongs! The
two groups/clubs would be different! Now that is contrary to the intuitive
meaning of “club membership” (equivalence) according to which we would
like a and b to be indistinguishable, hence club-mates.

So we have adopted symmetry in 3.1.35 for good reason. Is it enough?

• Do all symmetric relations “group” related elements in a way we would
intuitively call “equivalence”? NO.

Consider the symmetric relation 6= on A = {(1, 2), (2, 1)}. If it behaved
like club membership, then a 6= b and b 6= c would imply that all three a
and c belong to the same “club” as b is. In particular, from 1 6= 2 and
2 6= 1 we expect 1 6= 1 (and 2 6= 2), which we do NOT have. “6=” is not
transitive.

1 = 1 says do not put 1 in the same club as 1; they are not peers (to be
peers requires 1 6= 1). But this is contrary to intuition as it says that 1
must be clubless.

The problem is that 6= is not transitive.

So we have adopted transitivity in Definition 3.1.35 for good reason!

• This hinges on the previous bullet:

What do we need reflexivity for? Well, without it we would have “clubless”
elements (of A), i.e., elements which belong to no clubs at all, and this is
undesirable intuitively.

For example, R = {(1, 2), (2, 1), (1, 1), (2, 2)} is symmetric and transitive
on A = {1, 2, 3}, but is not reflexive ((3, 3) is missing). We have exactly
one club, {1, 2}, and 3 belongs to no club.

We fix this by adding (3, 3) to R —making it reflexive— so that 3 belongs
to the club {3}. �

3.1.36 Example. The following are equivalence relations

• {(1, 1)} on A = {1}.

• = (or 1A or ∆A) on A.

• Let A = {1, 2, 3}. Then R = {(1, 2), (1, 3), (2, 3), (2, 1), (3, 1), (3, 2), (1, 1),
(2, 2), (3, 3)} is an equivalence relation on A.

• N2 is an equivalence relation on N. �

Here is a longish, more sophisticated example, that is central in number
theory. We will have another instalment of it after a few definitions and results.
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3.1.37� Example. (Congruences) Fix an m ≥ 2. We define the relation≡mon
Z by

x ≡m y iff m | (x− y)

Recall that “|” is the “divides with zero remainder” relation. We verify the
required properties for ≡m to be an equivalence relation.

A notation that is very widespread in the literature is to split the symbol
“≡m” into two and write

x ≡ y (mod m) instead of x ≡m y

“x ≡ y (mod m)” and x ≡m y are read “x is congruent to y modulo m (or just
‘mod m’)”. Thus “≡m” is the congruence (mod m) short symbol, while “≡ . . .
(mod m)” is the long two-piece symbol. We will be using the short symbol.

1. Reflexivity: Indeed, m | (x− x), hence x ≡m x.

2. Symmetry: Clearly, if m | (x− y), then m | (y− x). I translate: If x ≡m y,
then y ≡m x.

3. Transitivity: Let m | (x− y) and m | (y − z). The first says that, for some
k, x− y = km. Similarly the second says, for some n, y − z = nm. Thus,
adding these two equations I get x− z = (k + n)m, that is, m | (x− z). I
translate: If x ≡m y and y ≡m z, then also x ≡m z. � �

3.1.38 Definition. (Equivalence classes) Given an equivalence relation R
on A. The equivalence class of an element x ∈ A is {y ∈ A : xRy}. We use the
symbol [x]R, or just [x] if R is understood, for the equivalence class.

3.1.39 Remark. Suppose an equivalence relation R on A is given.
By reflexivity, xRx, for any x. Thus x ∈ [x]R, hence all equivalence classes

are nonempty. �

� Be careful to distinguish the brackets {. . .} from these [. . .]. It is NOT a priori
obvious that x ∈ [x]R until you look at the definition 3.1.38! [x]R 6= {x}!! �

The symbol A/R denotes the quotient class of A with respect to R, that is,

A/R
Def
= {[x]P : x ∈ A}

�

This is the time to introduce “Principle 3”† of set formation.

3.1.40� Remark. (Principle 3) Suppose that the class family of sets F is in-
dexed by some (or all) members of a set A. Then F is a set.

Being indexed by (some) members of a set A means that, for every X ∈ F,
we have attached to it as “label(s)” (often depicted as a subscript/superscript)

†This is the last Principle, I promise!
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some member(s) of A.

We must ensure that once a label is used it is NOT used again for another
(or the same) X ∈ F.

Thus, if F = {A,B,C}, then {A1, B13,19,0, C42} is a valid labelling with
members from N.†

{A1,13, B13, C19} is not correctly labelled (same label twice), the labelling
of {A1,42, B13, C} is also invalid (C was not labelled): We can label a set of F
with many labels, but we may NOT use the same label twice to label two (or
the same) sets of F and may NOT leave any set of F unlabelled.

Note that in 3.1.38 we have labelled every X ∈ A/R by a member of A by
virtue of the fact that any X is an [a]R We can use a or any (or all) x ∈ [a]R to
label X.

Two things:

1. The presence of a valid (correct) labelling from a set A ensures that the
labelled class family is a set as it has no more members than the set of
labels (I can spend many —or even all— of available labels on one set of
F, but I may not reuse a label, so I have at least as many labels as there
are members in F.

Thus F is as “small” as a set, and thus a set itself. Some people call
Principle 3 the size limitation doctrine.‡

2. Why can’t I use the Principles 0–2 to argue that F, labelled by A, is a
set? Well, because these principles are notorious in not telling me when a
stage exists after infinitely many stages of construction that I might have
if, say, I were to build one set for each natural number:

A0, A1, . . . , An, . . .

Say the nature of each Ai is such that after each Ai+1 is built at stage
Σi+1 that is astronomically later than the stage Σi at which Ai was built.

Thus we get an infinite sequence of stages, wildly apart! How can I justify
—just from Principles 0-2— the existence of a stage Σ that is after all the
Σi, in order to build the class {A0, A1, . . . , An, . . . , } as a set?

� �

We can now state the obvious:

3.1.41 Theorem. A/R is a set for any set A and equivalence relation R on A.

†B has three labels attached to it.
‡Researchers on the foundations of set theory felt that paradoxes occurred in connection

with enormous classes.
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Proof. A provides labels for all members of A/R. Now invoke Principle 3. �

3.1.42 Lemma. Let P be an equivalence relation on A. Then [x] = [y] iff xPy
—where we have omitted the subscript P from the [. . .]-notation.

Proof. (→) part. By reflexivity, x ∈ [x] (3.1.39). The assumption then yields
x ∈ [y] and therefore yPx by 3.1.38. Symmetry gives us xPy now.

(←) part. Let z ∈ [x]. Then xPz. The assumption yields yRx (by symmetry),
thus, transitivity yields yPz. That is, z ∈ [y], proving

[x] ⊆ [y]

By swapping letters we have proved above that yPx implies [y] ⊆ [x]. Now
(by symmetry) our original assumption, namely xPy, implies yPx, hence also
[y] ⊆ [x]. All in all, [x] = [y]. �

3.1.43 Lemma. Let R be an equivalence relation on A. Then

(i) [x] 6= ∅, for all x ∈ A.

(ii) [x] ∩ [y] 6= ∅ implies [x] = [y], for all x, y in A.

(iii)
⋃
x∈A[x] = A.

Proof.

(i) 3.1.39.

(ii) Let z ∈ [x] ∩ [y]. Then xRz and yRz, therefore xRz and zRy (the latter
by symmetry) hence xRy (transitivity). Thus, [x] = [y] by Lemma 3.1.42.

(iii) The ⊆-part is obvious from [x] ⊆ A. The ⊇-part follows from
⋃
x∈A{x} =

A and {x} ⊆ [x]. �

The properties (i)–(iii) are characteristic of the notion of a partition of a
set.

3.1.44 Definition. (Partitions) Let F be a family of subsets of A. It is a
partition of A iff all of the following hold:

(i) For all X ∈ F we have that X 6= ∅.

(ii) If {X,Y } ⊆ F and X ∩ Y 6= ∅, then X = Y .

(iii)
⋃
F = A. �

3.1.45� Remark. Often a partition F is given as an indexed family of sets
denoted by (Fa)a∈I , where I is the indexing set.

Less informatively we may write (Fa)a∈I as

{Fa, Fb, Fc, . . .}

where the Fa are the X,Y, . . . of the definition above. � �
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There is a natural affinity between equivalence relations and partitions on a
set A. In fact,

3.1.46 Theorem. Given a partition F on a set A. This leads to the definition
of an equivalence relation P whose equivalence classes are precisely the sets of
the partition, that is F = A/P .

Proof. First we define P :

xPy
Def

iff (∃X ∈ F ){x, y} ⊆ X (1)

Observe that

(i) P is reflexive: Take any x ∈ A. By 3.1.44(iii), there is an X ∈ F such that
x ∈ X, hence {x, x} ⊆ X. Thus xPx.

(ii) P is, trivially, symmetric since there is no order in {x, y}.

(iii) P is transitive: Indeed, let xPyPz. Then {x, y} ⊆ X and {y, z} ⊆ Y for
some X,Y in F .

Thus, y ∈ X ∩ Y hence X = Y by 3.1.44(ii). Hence {x, z} ⊆ X, therefore
xPz.

So P is an equivalence relation. Let us compare its equivalence classes with the
various X ∈ F .

Now [x]P (denoted without the subscript P in the remaining proof) is

{y : xPy} (2)

Let us compare [x] with the unique X ∈ F that contains x —why unique? By
3.1.44(ii). Thus,

y ∈ [x]
(2)⇐⇒xPy

(1)⇐⇒x ∈ X ∧ y ∈ X x∈X is t⇐⇒ y ∈ X

Thus [x] = X. �

3.1.47 Example. (Another look at congruences) Euclid’s theorem for the
division of integers states:

If a ∈ Z and 0 < m ∈ Z, then there are unique q and r such that

a = mq + r and 0 ≤ r < m (1)

There are many proofs, but here is one: The set

T = {x : 0 ≤ x = a−mz, for some z}

is not empty. For example, if a > 0, then take z = 0 to obtain x = a > 0 in T .
If a = 0, then take z = 0 to obtain x = 0. Finally, if a < 0, then take z = −2|a|†
to obtain x = −|a|+ 2m|a| = |a|(2m− 1) > 0. Since m ≥ 1 we have 2m ≥ 2.

†Absolute value.
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Let then r be the smallest x ≥ 0 in T . If there is one x that works (as we
just showed), then possibly there are more. BUT we cannot have an infinite
descending sequence of nonnegative integers

. . . < x′′′ < x′′ < x′ < x

There are just x+ 1 numbers from 0 to x inclusive! So a smallest x that works
one exists.

The corresponding “z” to the smallest x = r let us call q. So we have

a = mq + r

Can r ≥ m? If so, them write r = k+m, where k = r−m ≥ 0 and k < r. I got

a = m(q + 1) + k

As k < r I have contradicted the minimality of r.

This proves that r < m (the r ≥ 0 is trivial; why?)

We have proved existence of at least one pair q and r that works for (1).
How about uniqueness? Well, the worst thing that can happen is to have two
representations (1). Here is another:

a = mq′ + r′ and 0 ≤ r′ < m (2)

As both r and r′ are < m, their “distance” (absolute difference) is also < m,
so from (1) and (2) we get

m|q − q′| = |r − r′| (3)

This cannot be unless q = q′ (in which case r = r′, therefore uniqueness is proved).
Wait: Why “it cannot be” if q 6= q′? Because then |q − q′| ≥ 1 thus the lhs

of “=” in (3) is ≥ m but the rhs is < m.

We now take a deep breath!

Now, back to congruences! The above was just a preamble!
Fix an m > 1 and consider the congruences x ≡m y. What are the equiva-

lence classes?
Better question is what representative members are convenient to use for

each such class? Given that a ≡m r by (1), and using Lemma 3.1.42 we have
[a]m = [r]m.

� r is a far better representative than a for the class [a]m as it is “normalised”. �

Thus, we have just m equivalence classes [0], [1], . . . , [m− 1].
Wait! Are they distinct? Yes! Since [i] = [j] is the same as i ≡m j (3.1.42)

and, since 0 < |i− j| < m, m cannot divide i− j with 0 remainder, we cannot
have [i] = [j].
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OK. How about missing some? We are not, for any a is uniquely expressible
as a = m · q + r, where 0 ≤ r < m. Since m | (a− r), we have a ≡m r, i.e., (by
3.1.38) a ∈ [r]. �

3.1.48 Example. (A practical example) Say, I chose m = 5. Where does
a = −110987 belong? I.e., in which [. . .]5 class out of [0]5, [1]5, [2]5, [3]5, [4]5?

Well, let’s do primary-school-learnt long division of −a divided by 5 and find
quotient q and remainder r. We find, in this case, q = 22197 and r = 2. These
satisfy

−a = 22197× 5 + 2

Thus,
a = −22197× 5− 2 (1)

(1) can be rephrased as
a ≡5 −2 (2)

But easily we check that −2 ≡5 3 (since −2 − 3 = 5). Thus, by transitivity of
≡5,

a ∈ [−2]5 = [3]5 �

3.1.49 Exercise. Can you now easily write the same a above as

a = Q× 5 +R, with 0 ≤ R < 5?

Show all your work. �
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3.1.3. Partial orders

This subsection introduces one of the most important kind of binary relations
in set theory and mathematics in general: The partial order relations.

We will find the following definitions and notation useful in this subsection:

3.1.50 Definition. (Converse or inverse relation of P) For any relation P,
the symbol P−1 stands for the converse or inverse relation of P and is defined
as

P−1 ={(x, y) : yPx} (1)

xP−1y iff yPx is an equivalence that says exactly what (1) does. �

3.1.51 Definition. (“(a)P” notation) For any relation P we write “(a)P” to
indicate the class —might fail to be a set— of all outputs of P on (caused by)
input a. That is,

(a)PDef= {y : aP y}

If (a)P = ∅, then P is undefined at a —that is, a /∈ dom(P). The underlined
statement is often denoted simply by “(a)P ↑” and is naturally read as “P is
undefined at a”.

If (a)P 6= ∅, then P is defined at a —that is, a ∈ dom(P). The underlined
statement is often denoted simply by “(a)P ↓” and is naturally read as “P is
defined at a”. �

3.1.52 Exercise. Give an example of a specific relation P and one specific
object (set or atom) a such that (a)P is a proper class. �

3.1.53� Remark. We note that for any P and a,

(a)P−1 = {y : aP−1y} = {y : yPa}

Thus,
(a)P−1 ↑ iff a /∈ ran(P)

and
(a)P−1 ↓ iff a ∈ ran(P)

� �

3.1.54 Definition. (Partial order) A relation P is called a partial order or
just an order, iff it is

(1) irreflexive (i.e., xPy → x 6= y for all x, y), and
(2) transitive.
It is emphasised that in the interest of generality —for much of this subsec-

tion (until we say otherwise)— P need not be a set.
Some people call this a strict order as it imitates the “<” on, say, the natural

numbers. �
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3.1.55� Remark. (1) We will normally use the symbol “<” in the abstract setting
to denote any unspecified order P, and it will be pronounced “less than”.

It is hoped that the context will not allow confusion with any concrete use
of the symbol < on numbers (say, on the reals, natural numbers, etc.).

(2) If the order < is a subclass of A × A —i.e., it is <: A → A— then we say
that < is an order on A.
(3) Clearly, for any order < and any class B, < ∩(B× B) is an order on B. � �

3.1.56 Exercise. How clearly? (re (3) above.) Give a simple, short proof. �

3.1.57 Example. The concrete “less than”, <, on N is an order, but ≤ is not
(it is not irreflexive). The “greater than” relation, >, on N is also an order, but
≥ is not. Of course, >=<−1.

In general, it is trivial to verify that P is an order iff P−1 is an order. Exercise!

�

3.1.58 Example. ∅ is an order. Since for any A, ∅ ⊆ A×A, ∅ is also an order
on A for the arbitrary A. �

3.1.59 Example. The relation ∈ is irreflexive by the well known A /∈ A, for
all A. It is not transitive though. For example, if a is a set (or atom), then
a ∈ {a} ∈ {{a}} but a /∈ {{a}}. So it is not an order.

Let M =
{
∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}}

}
. The relation ε =∈ ∩(M×M)

is transitive and irreflexive, hence it is an order (on M). Verify ! �

3.1.60 Example. ⊂ is an order, ⊆—failing irreflexivity— is not. �

3.1.61� Example. Consider the order ⊂ again. In this case we have none
of {∅} ⊂ {{∅}}, {{∅}} ⊂ {∅} or {{∅}} = {∅}. That is, {∅} and {{∅}} are
non comparable items. This justifies the qualification partial for orders in general
(Definition 3.1.66).

On the other hand, the “natural” < on N is such that one of x = y, x < y,
y < x always holds for any x, y. That is, all (unordered) pairs x, y of N are
comparable under <. This is a concrete example of a total order (see the “official
definition” below: 3.1.67).

While all orders are “partial”, some are total (< above) and others are
nontotal (⊂ above). � �

3.1.62 Definition. Let < be a partial order on A. We set

≤ Def
= ∆A∪ <

We pronounce≤ “less than or equal”. ∆A∪ > is denoted by≥ and is pronounced
“greater than or equal”.

Let us call ≤ a reflexive order. �
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� (1) In plain English, given < on A, we define x ≤ y to mean

x < y ∨
equality is ∆A︷ ︸︸ ︷
x = y

for all x, y in A.
(2) The definition of ≤ depends on A due to the presence of ∆A. There is no
such dependency on a “reference” class in the case of <.
(3) We remind ourselves once more here that the symbols < and ≤ —and their
pronunciations— do NOT imply that we are talking about the specific ones
on numbers. It is just a harmless (I hope) notational devise, but unless said
explicitly otherwise, “<” and “≤” are any orders. �

3.1.63 Lemma. For any <: A→ A, the associated relation ≤ on A is reflexive,
antisymmetric and transitive.

Proof. (1) Reflexivity is trivial.

(2) For antisymmetry, let x ≤ y and y ≤ x. If x = y then we are done,
so assume the remaining case x 6= y (i.e., (x, y) /∈ ∆A). Then the hypothesis
becomes x < y and y < x, therefore x < x by transitivity, contradicting the
irreflexivity of <.

(3) As for transitivity let x ≤ y and y ≤ z.

(a) If x = z, then x ≤ z (see the �-remark after 3.1.62) and we are done.

(b) The remaining case is x 6= z. Now, if it is x = y or y = z (but not both
(why?)), then we are done again. So it remains to consider x < y and y < z.
By transitivity of < we get x < z, hence x ≤ z, since <⊆≤. �

3.1.64 Lemma. Let P on A be reflexive, antisymmetric and transitive.
Then P−∆A is an order on A.

Proof. Since
P−∆A ⊆ P (1)

it is clear that P −∆A is on A. It is also clear that it is irreflexive. We only
need verify that it is transitive.

So let
(x, y) and (y, z) be in P−∆A (2)

By (1) (or (2))
(x, y) and (y, z) are in P (3)

hence
(x, z) ∈ P

by transitivity of P.
Can (x, z) ∈ ∆A, i.e., can x = z? No, for antisymmetry of P and (3) would

imply x = y, i.e., (x, y) ∈∆A contrary to (2).
So, (x, z) ∈ P−∆A. �
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3.1.65� Remark. Often in the literature, but decreasingly so, it is the “reflex-
ive order” ≤: A → A that is defined as a “partial order” by the requirements
that it is reflexive, antisymmetric and transitive. Then < is obtained as in
Lemma 3.1.64, namely, as “≤ −∆A”. Lemmas 3.1.63 and 3.1.64 show that
the two approaches are interchangeable, but the “modern” approach of Defi-
nition 3.1.54 avoids the nuisance of having to tie the notion of order to some
particular “field” A (3.1.6).

For us “≤” is the derived notion defined in 3.1.62. � �

3.1.66 Definition. (PO Class) If < is an order on a class A, we call the
informal pair (A, <)† a partially ordered class, or PO class.

If < is an order on a set A, we call the pair (A,<) a partially ordered set or
PO set. Often, if the order < is understood as being on A or A, one says that
“A is a PO class” or “A is a PO set” respectively. �

3.1.67 Definition. (Linear order) A relation < on A is a total or linear order
on A iff it is

(1) An order, and
(2) For any x, y in A one of x = y, x < y, y < x holds —this is the

so-called “trichotomy” property.

If A is a class, then the informal pair (A, <) is a linearly ordered class —for
short, a LO class.

If A is a set, then the pair (A, <) is a linearly ordered set —for short, a LO
set.

One often calls just A a LO class or LO set (as the case warrants) when <
is understood from the context. �

3.1.68 Example. The standard <: N → N is a total order, hence (N, <) is a
LO set.

3.1.69 Definition. (Minimal and minimum elements) Let < be an order
and A some class.

We are not postulating that < is on A.

An element a ∈ A is a <-minimal element in A, or a <-minimal element of
A, iff ¬(∃x ∈ A)x < a —in words, there is nothing below a in A.

m ∈ A is a <-minimum element in A iff (∀x ∈ A)m ≤ x.

We also use the terminology minimal or minimum with respect to <, instead
of <-minimal or <-minimum.

†Formally, (A, <) is not an ordered pair since A may be a proper class and we do not
allow class members —e.g., in {A, {A, <}}— to be proper classes. We may think then of
“(A, <)” as informal notation that simply “ties” A and < together. Alternatively, if we are
really determined to have class pairs (we are not!), we can define pairing with proper classes
as components, for example as (A,B) =Def (A× {0}) ∪ (B× {1}). For our part we will have
no use for such formality, and will consider (A, <) in only the informal sense.
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If a ∈ A is >-minimal in A, that is ¬(∃x ∈ A)x > a, we call a a <-maximal
element in A. Similarly, a >-minimum element is called a <-maximum.

If the order < is understood, then the qualification “<-” is omitted. �

3.1.70� Remark. In particular, if a (∈ A) is not in the field dom(<) ∪ ran(<)
(cf. 3.1.6) of <, then a is both <-minimal and <-maximal in A. For example,
(∃x ∈ A)x < a is false in this case since if, for some x, we have x ∈ A and also
x < a, then a ∈ ran(<); impossible.

Because of the duality between the notions of minimal/maximal and mini-
mum/maximum, we will mostly deal with the <-notions whose results can be
trivially translated for the >-notions.

Note how the notation learnt from 3.1.51 and 3.1.50 and 3.1.53 can simplify

¬(∃x ∈ A)x < a (1)

(1) says that no x is in both A and (a) >.†

That is, a is <-minimal in A iff

A ∩ (a) >= ∅ (2)

� �

3.1.71� Example. 0 is minimal, also minimum, in N with respect to the natural
ordering.

In P(N), ∅ is both ⊂-minimal and ⊂-minimum. On the other hand, all of
{0}, {1}, {2} are ⊂-minimal in P(N)−{∅} but none are ⊂-minimum in that set.

Observe from this last example that minimal elements in a class are not
unique. � �

3.1.72 Remark. (Hasse diagrams) There is a neat pictorial way to depict
orders on finite sets known as “Hasse diagrams”. To do so one creates a so-called
“graph” of the finite PO set (A,<) where A = {a1, a2, . . . , an}.

How? The graph consists of n nodes —which are drawn as points— each
labeled by one ai. The graph also contains 0 or more arrows that connect nodes.
These arrows are called edges.

When we depict an arbitrary R on a finite set like A we draw one arrow
(edge) from ai to aj iff the two relate: aiRaj .

In Hasse diagrams for PO sets (A,<) we are more selective: We say that b
covers a iff a < b, but there is no c such that a < c < b. In a Hasse diagram we
will

1. draw an edge from ai to aj iff aj covers ai.

2. by convention we will draw b higher than a on the page if b covers a.

†(a) >= {x : a > x} = {x : x < a} (3.1.53).
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3. given the convention above, using “arrow-heads” is superfluous: our edges
are plain line segments.

So, let us have A = {1, 2, 3} and <= {(1, 2), (1, 3), (2, 3)}.

1

2

3

The above has a minimum (1) and a maximum (3) and is clearly a linear order.
A slightly more complex one is this (A,<), where A = {1, 2, 3, 4} and <=

{(1, 2), (4, 2), (2, 3), (1, 3), (4, 3)}.

1

2

3

4

This one has a maximum (3), two minimal elements (1 and 4) but no minimum,
and is not a linear order: 1 and 4 are not comparable. �

3.1.73 Lemma. Given an order < and a class A.
(1) If m is a minimum in A, then it is also minimal.
(2) If m is a minimum in A, then it is unique.

Proof. (1) Let m be minimum in A. Then

m ≤ x, that is, m = x ∨m < x (i)

for all x ∈ A. Now, prove that there is no x ∈ A such that x < m.

OK, let us go by contradiction:
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Let
A 3 a < m (ii)

By (i) I also have
m = a ∨m < a (iii)

Now, by irreflexivity, (ii) rules out a = m. So, (iii) nets m < a. (ii) and (iii)
and transitivity yield a < a; contradiction (< is irreflexive). Done.

(2) Let m and n both be minima in A. Then m ≤ n (with m posing as
minimum) and n ≤ m (now n is so posing), hence m = n by antisymmetry
(Lemma 3.1.63). �

3.1.74� Example. Let m be <-minimal in A.

Let us attempt to “show” that it is also <-minimum (this is, of course,
doomed to fail due to 3.1.71 and 3.1.73(2) —but the “faulty proof” below is
interesting):

By 3.1.69 we have that there is no x in A such that x < m.

Another way to say this is:

For all x ∈ A, I have the negation of “x < m”, that is, I have ¬x < m. (1)

But from “our previous math” (high school? university? Netflix?) ¬x < m
is equivalent to m ≤ x.

Thus (1) says (∀x ∈ A)m ≤ x, in other words, m is the minimum in A.

Do you believe this? (Don’t!) If the order is not total, then I can fail to
have all three of x < m, x = m,m < x and thus ¬m < x and x < m ∨ x = m
are NOT equivalent. See the counterexample to such expectation in 3.1.61 and
also 3.1.71. � �

3.1.75 Lemma. If < is a linear order on A, then every minimal element is
also minimum.

Proof. The “false proof” of the previous example is valid under the present
circumstances. �

The following type of relation has fundamental importance for set theory,
and mathematics in general.

3.1.76 Definition. 1. An order < satisfies the minimal condition, for short
it has MC, iff every nonempty A has <-minimal elements.

2. If a total order <: B→ B has MC, then it is called a well-ordering† on (or
of) the class B.

†The term “well-ordering” is ungrammatical, but it is the terminology established in the
literature!
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3. If (B, <) is a LO class (or set) with MC, then it is a well-ordered class (or
set), or WO class (or WO set).

�

3.1.77� Remark.
What Definition 3.1.76 says in case 1. is —see (2) in 3.1.70— “if, for some

fixed order < the following statement

∅ 6= A→ (∃a ∈ A)A ∩ (a) >= ∅ (1)

is provable in set theory, for any A, then we say that < has MC ”.
The following observation is very important for future reference:
If A is given via a defining property F (x), as

ADef
= {x : F (x)}

then (1) translates —in terms of F (x)— into

(∃a)F (a)→ (∃a)
(
F (a) ∧ ¬(∃y)

(
y < a ∧ F (y)

))
(2)

Conversely, for each formula F (x) we get a class A = {x : F (x)} and thus —if
A has MC with respect to <— we may express this fact as in (2) above.
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3.2. Functions

At last! We consider here a special case of relations that we know them as
“functions”. Many of you know already that a function is a relation with some
special properties.

Let’s make this official:

3.2.1 Definition. A function R is a single-valued relation. That is, whenever
we have both xRy and xRz, we will also have y = z.

It is traditional to use, generically, lower case letters from among f, g, h, k
to denote functions but this is by no means a requirement. �

� Another way of putting it, using the notation from 3.1.51, is: A relation R is a
function iff (a)R is either empty or contains exactly one element. �

3.2.2 Example. The empty set is a relation of course, the empty set of pairs.
It is also a function since

(x, y) ∈ ∅ ∧ (x, z) ∈ ∅ → y = z

vacuously, by virtue of the left hand side of → being false. �

We now turn to notation and concepts specific to functions.

3.2.3 Definition. (Function-specific notations) Let f be a function. First
off, the concepts of domain, range, and —in case of a function f : A → B—
total and onto are inherited from that of relations without change. Even the
notations “aRb” and “(a, b) ∈ R” transfer over to functions. And now we have
an annoying difference in notation:

It is f(a) that normally denotes the set {y : afy} in the literature, NOT
(a)f (compare with 3.1.51). “Normally” allows some to differ: Notably, [Kur63]
writes “af” for functions and relations, omitting even the brackets around a.

The reason for the preferred notation “f(a)” for functions will become more
obvious once we consider composition of functions.

� Can I use “(a)f” for a relation f regardless of whether it is also a function?
YES! But once I proved (or I was told) that it is a function I ought to prefer to
write f(a). �

If b is such that afb or (a, b) ∈ f and f is a function, then seeing that b is
unique we have f(a) = {b}.

� However we will write
f(a) = b

That is,
f(a) = b︸ ︷︷ ︸

functional notation

iff (a)f = {b}︸ ︷︷ ︸
relational notation

�
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The notation “(a)R ↓” meaning a ∈ dom(R) is inherited by functions but
for the flipping of the “(a)” part. Thus

Inherited from 3.1.51, f(a) ↓ iff a ∈ dom(f), pronounced “f is defined at a”.

and, similarly to the notation (a)R ↑, we have

Inherited from 3.1.51, f(a) ↑ iff a /∈ dom(f), pronounced “f is UN defined at a”.

The set of all outputs of a function, when the inputs come from a particular
set X, is called the image of X under f and is denoted by f [X]. Thus,

f [X]
Def
= {f(x) : x ∈ X} (1)

� Note that careless notation (e.g., in our text) like f(X) will not do. This means
the input IS X. If I want the inputs to be from inside X I must change the
round brackets notation; I did. �

Pause. So far we have been giving definitions regarding functions of one
variable. Or have we?J

Not really: We have already said that the multiple-input case is subsumed
by our notation. If f : A → B and A is a set of n-tuples, then f is a function
of “n-variables”, essentially. The binary relation that is the alias of f contains

pairs like
(
(~xn), xn+1

)
. However, we usually abuse the notation f

(
(~xn)

)
and

write instead f(~xn), omitting the brackets of the n-tuple (~xn).

The inverse image of a set Y under a function is useful as well, that is,
the set of all inputs that generate f -outputs exclusively in Y . It is denoted by
f−1[Y ] and is defined as

f−1[Y ]
Def
= {x : f(x) ∈ Y } (2)

�

3.2.4� Remark. Regarding, say, the definition of f [X]:

What if f(a) ↑? How do you “collect” an undefined value into a set?

Well, you don’t. Both (1) and (2) have a rendering that is independent of the
notation “f(a)”.

Never forget that a function is no mystery; it is a relation and we have access
to relational notation. Thus,

f [X] = {y : (∃x ∈ X)xfy} (1′)

f−1[Y ] = {x : (∃y ∈ Y )xfy} (2′)

� �
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3.2.5 Example. Thus, f [{a}] = {f(x) : x ∈ {a}} = {f(x) : x = a} = {f(a)}.

Let now g = {〈1, 2〉, 〈{1, 2}, 2〉, 〈2, 7〉}, clearly a function. Thus, g({1, 2}) =
2, but g[{1, 2}] = {2, 7}. Also, g(5) ↑ and thus g[{5}] = ∅.

On the other hand, g−1[{2, 7}] = {1, {1, 2}, 2} and g−1[{2}] = {1, {1, 2}},
while g−1[{8}] = ∅ since no input causes output 8. �

When f(a) ↓, then f(a) = f(a) as is naturally expected. What about when
f(a) ↑? This begs a more general question that we settle as follows:

3.2.6� Remark. This is the first (and probably last) time that we will view an
(m + n + 1)-ary relation R(z1, . . . , zm, x, y1, . . . , yn) as a function with input
values entered into all the variables z1, . . . , zm, x, y1, . . . , yn and output values
belonging to the set {t, f}.

Such a relation, as we explained when we introduced relations, is always
total, no matter what the input. That is, any input a1, . . . , am, b, c1, . . . , cn
either appears in the table of the relation, or it does not. In other words,
R(a1, . . . , am, b, c1, . . . , cn) is precisely one of true or false; there is no “maybe”
or “I do not know”.

Given such an (m+ n+ 1)-ary relation, a function f , and an input u for f ,

when is R(z1, . . . , zm, f(u), y1, . . . , yn) true, for any given z1, . . . , zm, u, y1, . . . , yn?

Well, what we are saying in the notation (in blue) above is that if f(u) = w, for
some w, then R(z1, . . . , zm, w, y1, . . . , yn) is true.

Thus,

R(z1, . . . , zm, f(u), y1,. . . , yn) iff

(∃w)
(
w = f(u) ∧R(z1, . . . , zm, w, y1, . . . , yn)

)
(3)

Note that the part “for some w, w = f(u)” in (3) entails that f(u) ↓, so
that if no such w exists [the case where f(u) ↑], then the rhs of (3) is false; not
undefined!

This convention is prevalent in the modern literature (cf. [Hin78, p.9]). Con-
trast with the convention in [Kle43], where, for example, an expression like
f(a) = g(b) [and even f(a) = b] is allowed to be undefined! � �

3.2.7 Example. Thus, applying the above twice, where our “R” is x = y, we
get that f(a) = g(b) means (∃u)(∃w)(u = f(a) ∧ w = g(b) ∧ u = w) which
simplifies to (∃u)(u = f(a) ∧ u = g(b)). In particular, f(a) = g(b) entails that
f(a) ↓ and g(b) ↓ as we noted above.

Furthermore, using x 6= y as R we get that f(a) 6= g(b) means (∃u)(∃w)(u =
f(a) ∧ w = g(b) ∧ u 6= w). Again, if f(a) 6= g(b) is true, its meaning implies
f(a) ↓ and g(b) ↓. �
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3.2.8 Example. Let g = {〈1, 2〉, 〈{1, 2}, 2〉, 〈2, 7〉}. Then, g(1) = g({1, 2}) and
g(1) 6= g(2). �

3.2.9 Definition. A function f is 1-1 if for all x and y, f(x) = f(y) implies
x = y. �

� Note that f(x) = f(y) implies that f(x) ↓ and f(y) ↓ (3.2.6). �

3.2.10 Example. {〈1, 1〉} and {〈1, 1〉, 〈2, 7〉} are 1-1. {〈1, 0〉, 〈2, 0〉} is not. ∅
is 1-1 vacuously. �

3.2.11 Exercise. Prove that if f is a 1-1 function, then the relation converse
f−1 is a function (that is, single-valued). �

3.2.12 Definition. (1-1 Correspondence) A function f : A→ B is called a
1-1 correspondence iff it is all three: 1-1, total and onto.

Often we say that A and B are in 1-1 correspondence writing A ∼ B, often
omitting mention of the function that is the 1-1 correspondence. �

The terminology is derived from the fact that every element of A is paired
with precisely one element of B and vice versa.

3.2.13 Exercise. Show that ∼ is a symmetric and transitive relation on sets.

�

3.2.14� Remark. Composition of functions is inherited from the composition
of relations. Thus, f ◦ g for two functions still means

x f ◦ g y iff, for some z, x f z g y (1)

In particular,
f ◦ g is also a function. Indeed, if we have

x f ◦ g y and x f ◦ g y′

then
for some z, x f z g y (1)

and
for some w, x f w g y′ (2)

As f is a function, (1) and (2) give z = w. In turn, this (g is a function too!)
gives y = y′. � �

The notation (as in 3.1.51) “(a)f” for relations is awkward when applied to
functions —awkward but correct— where we prefer to use “f(a)” instead. The
awkwardness manifests itself when we compose functions: In something like

x→ f → z → g → y
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that represents (1) above, note that f acts first. Its result z = f(x) is then

inputed to g —that is, we do g(z) = g
(
f(x)

)
to obtain output y. Thus the first

acting function f is “called” first with argument x and then g is called with
argument f(x). “Everyday math” notation places the two calls as in the red
type above: The first call to the right of the 2nd call —order reversal vis a vis
relational notation!

So, set theory heeds these observations and defines:

3.2.15 Definition. (Composition of functions; Notation) We just learnt
(3.2.14) that the composition of two functions produces a function. The present
definition is about notation only.

Let f : A→ B and g : B → C be two functions. The relation f ◦ g : A→ C,
their relational composition is given in 3.1.15.

For composition of functions, we have the alternative —so-called functional
notation for composition: “gf” for “f ◦ g”; note the order reversal and the
absence of “◦”, the composition symbol. In particular we write (gf)(a) for
(a)(f ◦ g) —cf. 3.2.3. Thus

a(gf)y
Def⇐⇒ a f ◦ g y ⇐⇒ (∃z)(afz ∧ z g y)

also

a(gf)y
Def⇐⇒ a f ◦ g y Def 3.1.51⇐⇒ (a)(f ◦ g) = {y}

In particular, we have that (a)(f ◦g) of 3.1.51 is the same as (gf)(a) = g
(
f(a)

)
as seen through the “computation”

(a)(f ◦ g) =3.2.14{y}⇐⇒ for some z, a f z ∧ z g y
⇐⇒3.2.3 for some z, f(a) = z ∧ g(z) = y

⇐⇒subst. z by f(a) g
(
f(x)

)
= y (1)

Conclusion:

(gf)(a)
blue type above

= (a)(f ◦ g)
(1)
= g
(
f(x)

)
Thus the “reversal” gf = f◦g now makes sense! So does (gf)(a) = g

(
f(a)

)
.

�

3.2.16 Theorem. Functional composition is associative, that is, (gf)h = g(fh).

Proof. Exercise!
Hint. Note that by, 3.2.15, (gf)h = h ◦ (f ◦ g). Take it from here. �

3.2.17 Example. The identity relation on a set A is a function since (a)1A is
the singleton {x}. �

The following interesting result connects the notions of ontoness and 1-1ness
with the “algebra” of composition.
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3.2.18 Theorem. Let f : A→ B and g : B → A be functions. If

(gf) = 1A (1)

then g is onto while f is total and 1-1.

� We say that g is a left inverse of f and f is a right inverse of g. “A” because
these are not in general unique! Stay tuned on this! �

Proof. About g: Our goal, ontoness, means that, for each x ∈ A, I can “solve
the equation g(y) = x for y”. Indeed I can: By definition of 1A,

g
(
f(x)

)
3.2.15

= (gf)(x)
(1)
= 1A(x) = x

So to solve, take y = f(x).
About f : As seen above, x = g(f(x)), for each x ∈ A. Since this is the

same as “x f ◦ g, x is true”, there must be a z such that x f z and z g x. The
first of these says f(x) = z and therefore f(x) ↓. This settles totalness.

For the 1-1ness, let f(a) = f(b). Applying g to both sides we get g(f(a)) =
g(f(b)). But this says a = b, by (gf) = 1A, and we are done. �

3.2.19� Example. The above is as much as can be proved. For example, say
A = {1, 2} and B = {3, 4, 5, 6}. Let f : A→ B be {〈1, 4〉, 〈2, 3〉} and g : B → A
be {〈4, 1〉, 〈3, 2〉, 〈6, 1〉}, or in friendlier notation

f(1)= 4
f(2)= 3

and
g(3)= 2
g(4)= 1
g(5)↑
g(6)= 1

Clearly, (gf) = 1A holds, but note:
(1) f is not onto.
(2) g is neither 1-1 nor total. � �

3.2.20� Example. With A = {1, 2}, B = {3, 4, 5, 6} and f : A → B and
g : B → A as in the previous example, consider also the functions f̃ and g̃ given
by

f̃(1)= 6
f̃(2)= 3

and
g̃(3)= 2
g̃(4)= 1
g̃(5)↑
g̃(6)= 2
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Clearly, (g̃f) = 1A and (gf̃) = 1A hold, but note:

(1) f 6= f̃ .
(2) g 6= g̃.
Thus, neither left nor right inverses need to be unique. The article “a” in

the definition of said inverses was well-chosen. � �

The following two partial converses of 3.2.18 are useful.

3.2.21 Theorem. Let f : A → B be total and 1-1. Then there is an onto
g : B → A such that (gf) = 1A.

Proof. Consider the converse relation (3.1.50) of f —that is, the relation f−1—
and call it g:

x g y
Def

iff y f x (1)

By Exercise 3.2.11, g : B → A is a (possibly nontotal) function so we can write
(1) as g(x) = y iff f(y) = x, from which, substituting f(y) for x in g(x) we get
g(f(x)) = x, for all x ∈ A, that is gf = 1A, hence g is onto by 3.2.18. We got
both statements that we needed to prove. �

3.2.22� Remark. By (1) above, dom(g) = {x : (∃y)g(x) = y} = {x : (∃y)f(y) =
x} = ran(f). � �

3.2.23 Theorem. Let f : A → B be onto. Then there is a total and 1-1
g : B → A such that (fg) = 1B.

Proof. By assumption, ∅ 6= f−1[{b}] ⊆ A, for all b ∈ B. To define g(b) choose
one c ∈ f−1[{b}] and set g(b) = c. Since f(c) = b, we get f(g(b)) = b for all
b ∈ B, and hence g is 1-1 and total by 3.2.18. �
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3.3. Finite and Infinite Sets

Broadly speaking (that is, with very little detail contained in what I will say
next) we have sets that are finite —intuitively meaning that we can count all
their elements in a finite amount of time (but see the �-remark 3.3.3 below)—
and those that are not, naturally called infinite!

What is a mathematical way to say all this?
Any counting process of the elements of a finite set A will have us say out

loud —every time we pick or point at an element of A— “0th”, “1st”, “2nd”,
etc., and, once we reach and pick the last element of the set, we finally pronounce
“nth”, for some appropriate n that we reached in our counting (Again, see 3.3.3.)

Thus, mathematically, we are pairing each member of the set with a member
from {0, . . . , n}.

So we propose,

3.3.1 Definition. (Finite and infinite sets) A set A is finite iff it is either
empty, or is in 1-1 correspondence with {x ∈ N : x ≤ n}. This “normalized”
small set of natural numbers we usually denote by {0, 1, 2, . . . , n}.

If a set is not finite, then it is infinite. �

3.3.2 Example. For any n, {0, . . . , n} is finite since, trivially, {0, . . . , n} ∼
{0, . . . , n} using the identity (∆) function on the set {0, . . . , n}. �

3.3.3� Remark. One must be careful when one attempts to explain finiteness
via counting by a human.

For example, Achilles† could count infinitely many objects by constantly
accelerating his counting process as follows:

He procrastinated for a full second, and then counted the first element. Then,
he counted the second object exactly after 1/2 a second from the first. Then
he got to the third element 1/22 seconds after the previous, . . . , he counted the
n th item at exactly 1/2n−1 seconds after the previous, and so on forever.

Hmm! It was not “forever”, was it? After a total of 2 seconds he was done!

You see (as you can easily verify from your calculus knowledge (limits)),‡

1 +
1

2
+

1

22
+ . . .+

1

2n−1
+ . . . =

1

1− 1/2
= 2

So “time” is not a good determinant of finiteness! � �

3.3.4 Theorem. If X ⊂ {0, . . . , n}, then there is no onto function f : X →
{0, . . . , n}.

� I am saying, no such f , whether total or not; totalness is immaterial. �

†OK, he was a demigod; but only “demi”.
‡1 + 1

2
+ 1

22
+ . . . + 1

2n−1 =
1−1/2n

1−1/2
. Now let n go to infinity at the limit.
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Proof. First off, the claim holds if X = ∅, since then any such f equals ∅ and
its range is empty.

Let us otherwise proceed by way of contradiction, and assume that the theo-
rem is wrong : That is, assume that it is possible to have such onto functions,
for some n and well chosen X.

Since I assume there are such n > 0 values, suppose then that the smallest
n that allows this to happen is, say, n0, and let X0 be a corresponding set “X”
that works, that is,

Assume that we have an onto f : X0 → {0, . . . , n0} (1)

Thus X0 6= ∅, by the preceding remark, and therefore n0 > 0, since otherwise
X0 = ∅.

Let us call H be the set of all x such that f(x) = n0, for short, H =
f−1({n0}). ∅ 6= H ⊆ X0; the 6= by ontoness.

Case 1. n0 ∈ H. Then removing all pairs (a, n0) from f —all these have a ∈
H— we get a new function f ′ : X0 −H → {0, 1, . . . , n0 − 1}, which is
still onto as we only removed inputs that cause output n0.

This contradicts minimality of n0 since n0 − 1 works too!

0

1

Case 2. n0 /∈ H.

If n0 /∈ X0, then we argue exactly as in Case 1 and we just remove the
base “H” of the cone (in the picture) from X0.

Otherwise, we have two subcases:

• f(n0) ↑. Then (almost) we act as in Case 1: The new “X0” is
(X0 −H)− {n0}, since if we leave n0 in, then the new “X0” will
not be a subset of {0, 1, . . . , n0 − 1}. We get a contradiction per
Case 1.
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• The picture below —that is, f(n0) = m for some m.

0

1

We simply transform the picture to the one below, “correcting” f
to have f(a) = m and f(n0) = n0, that is defining a new “f” that
we will call f ′ by

f ′ =
(
f − {(n0,m), (a, n0)}

)
∪ {(n0, n0), (a,m)}

0

1

We get a contradiction per Case 1. �

3.3.5 Corollary. (Pigeon-Hole Principle) If m < n, then {0, . . . ,m} 6∼
{0, . . . , n}.

Proof. If the conclusion fails then we have an onto f : {0, . . . ,m} → {0, . . . , n},
contradicting 3.3.4. �

� Important!

3.3.6 Theorem. If A is finite due to A ∼ {0, 1, 2, . . . n} then there is no justi-
fication of finiteness via another canonical set {0, 1, 2, . . .m} with n 6= m.

Proof. If {0, 1, 2, . . . n} ∼ A ∼ {0, 1, 2, . . .m}, then {0, 1, 2, . . . n} ∼ {0, 1, 2, . . .m}
by 3.2.13, hence n = m, otherwise we contradict 3.3.5. �
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3.3.7 Definition. Let A ∼ {0, . . . , n}. Since n is uniquely determined by A we
say that A has n+ 1 elements and write |A| = n+ 1. �

�

3.3.8 Corollary. There is no onto function from {0, . . . , n} to N.

� “For all n ∈ N, there is no. . . ” is, of course, implied. �

Proof. Fix an n. By way of contradiction, let g : {0, . . . , n} → N be onto. Let

Y
Def
= {x ≤ n : g(x) > n+ 1}

Now let

X
Def
= {0, . . . , n} − Y

and

g′
Def
= g − Y × N

� The “g−Y ×N” above is an easy way to say “remove all pairs from g that have
their first component in Y ”. �

Thus, g′ : X → {0, . . . , n, n + 1} is onto, contradicting 3.3.4 because X ⊆
{0, . . . , n} ⊂ {0, . . . , n, n+ 1}. �

3.3.9 Corollary. N is infinite.

Proof. By 3.3.1 the opposite case requires that there is an n and a function
f : {0, 1, 2, . . . , n} → N that is a 1-1 correspondence. Impossible, since any such
an f will fail to be onto. �

� Our mathematical definitions have led to what we hoped they would: That N
is infinite as we intuitively understand, notwithstanding Achilles’s accelerated
counting! �

N is a “canonical” infinite set that we can use to index the members of many
infinite sets. Sets that can be indexed using natural number indices

a0, a1, . . .

are called countable.
In the interest of technical flexibility, we do not insist that all members of

N be used as indices. We might enumerate with gaps:

b5, b9, b13, b42, . . .

Thus, informally, a set A is countable if it is empty or (in the opposite case) if
there is a way to index, hence enumerate, all its members in an array, utilizing
indices from N. Cf. 3.1.40.
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It is allowed to repeatedly list any element of A, so that finite sets are
countable. For example, the set {42}:

42, 42, 42,
42 forever︷︸︸︷. . .

We may think that the enumeration above is done by assigning to “42” all of
the members of N as indices, in other words, the enumeration is effected, for
example, by the constant function f : N → {42} given by f(n) = 42 for all
n ∈ N. This is consistent with our earlier definition of indexing (3.1.40).

Now, mathematically,

3.3.10 Definition. (Countable Sets) We call a set A countable if A = ∅, or
there is an onto function f : N → A. We do NOT require f to be total. This
means that some or many indices from N need not be used in the enumeration
If f(n) ↓, then we say that f(n) is the nth element of A in the enumeration f .
We often write fn instead of f(n) and then call n a “subscript” or “index”. �

� Thus a nonempty set is countable iff it is the range of some function that has
N as its left field.

BTW, since we allow f to be non total, the hedging “nonempty” is unnec-
essary: ∅ is the range of the empty function that has N as its left field. �

We said that the f that proves countability of a set A need not be total.
But such an f can always be “completed”, by adding pairs to it, to get an f ′

such that f ′ : N→ A is onto and total. Here is how:

3.3.11 Proposition. Let f : N→ A 6= ∅† be onto. Then we can extend f to f ′

so that f ′ : N→ A is onto and total.

Proof. Pick an a ∈ A —possible since A 6= ∅— and keep it fixed. Now, our
sought f ′ is given for all n ∈ N by cases as below:

f ′(n) =

{
f(n) if f(n) ↓
a if f(n) ↑

�
Some set theorists also define sets that can be enumerated using all the

elements of N as indices without repetitions.

3.3.12 Definition. (Enumerable or denumerable sets) A setA is enumer-
able iff A ∼ N. �

3.3.13� Example. Every enumerable set is countable, but the converse fails.
For example, {1} is countable but not enumerable due to 3.3.8. {2n : n ∈ N} is
enumerable, with f(n) = 2n effecting the 1-1 correspondence f : N→ {2n : n ∈
N}. � �

†Since we are constructing a total onto function to A we need to assume the case A 6= ∅
as we cannot put any outputs into ∅.
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3.3.14 Theorem. If A is an infinite subset of N, then A ∼ N.

Proof. We will build a 1-1 and total enumeration of A, presented in a finite
manner as a (pseudo) program below, which enumerates all the members of A
in strict ascending order and arranges them in an array

a(0), a(1), a(2), . . . (1)

n ← 0
while A 6= ∅
a(n) ← min A Comment. Inside the loop ∅ 6= A ⊆ N, hence min exists.
A ← A− {a(n)}
n ← n+ 1
end while

� Note that the sequence {a(0), a(1), . . . , a(m)} is strictly increasing for any m,
since a(0) is smallest inA, a(1) is smallest inA−{a(0)} and hence the next higher than
a(0) in A, etc. �

Will this loop ever exit? Say, yes, when it starts (but does not complete)
the k-th pass through the loop. Thus A became empty when we did A ←
A− {a(k − 1)} in the previous pass, that is A = {a(0), a(1), . . . , a(k − 1)} and
thus, since

a(0) < a91) < . . . < a(k − 1)

we have that the function f : {0, . . . , k − 1} → A given by

f = {(0, a(0)), (1, a(1)), . . . (k − 1, a(k − 1))}

is total, 1-1 and onto, thus, A ∼ {0, . . . , k − 1} contradicting that A is
infinite!

Thus, we never exit the loop!

Thus, by the remark in the � paragraph above, (1) enumerates A in strict
ascending order, that is,

if we define f : N→ A by f(n) = a(n), for all n

then f is 1-1 (by strict increasing property: distinct inputs cause distinct out-
puts), and is trivially total, and onto. Why the latter? Every a ∈ A is reached
in ascending order, and assigned an “n” from N. �

3.3.15 Theorem. Every infinite countable set is enumerable.

Proof. Let f : N → A be onto and total (cf. 3.3.11), where A is infinite. Let
g : A → N such that (fg) = 1A (3.2.23). Thus, if we let B = ran(g), we have
that g is onto B, and thus by 3.2.18 is also 1-1 and total. Thus it is a 1-1
correspondence g : A→ B, that is,

A ∼ B (1)
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B must be infinite, otherwise (3.3.1), for some n, B ∼ {0, . . . , n} and by (1) via
Exercise 3.2.13 we have A ∼ {0, . . . , n}, contradicting that A is infinite. Thus,
by 3.3.14, B ∼ N, hence (again, Exercise 3.2.13 and (1)) A ∼ N. That is, A is
enumerable. �

� So, if we can enumerate an infinite set at all, then we can enumerate it without
repetitions. �

We can linearise an infinite square matrix of elements in each location (i, j)
by devising a traversal that will go through each (i, j) entry once, and will not
miss any entry !

In the literature one often sees the method diagrammatically, see below,
where arrows clearly indicate the sequence of traversing, with the understanding
that we use the arrows by pick the first unused chain of arrows from left to right.

(0, 0) (0, 1) (0, 2) (0, 3) . . .
↗ ↗ ↗

(1, 0) (1, 1) (1, 2)
↗ ↗

(2, 0) (2, 1)
↗

(3, 0)
...

So the linearisation induces a 1-1 correspondence between N and the linearised
sequence of matrix entries, that is, it shows that N× N ∼ N. For short,

3.3.16 Theorem. The set N× N is countable. In fact, it is enumerable.

Is there a “mathematical” way to do this? Well, the above IS mathematical,
don’t get me wrong, but is given in outline. It is kind of an argument in
geometry, where we rely on drawings (figures).

Here are the algebraic details:
Proof. (of 3.3.16 with an algebraic argument). Let us call i+ j+ 1 the “weight”
of a pair (i, j). The weight is the number of elements in the group:

(i+ j, 0), (i+ j − 1, 1), (i+ j − 2, 2), . . . , (i, j), . . . , (0, i+ j)

Thus the diagrammatic enumeration proceeds by enumerating groups by in-
creasing weight

1, 2, 3, 4, 5, . . .

and in each group of weight k we enumerate in ascending order of the second
component.

Thus the (i, j) th entry occupies position j in its group —the first position
in the group being the 0 th, e.g., in the group of (3, 0) the first position is the
0 th— and this position globally is the number of elements in all groups before
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group i + j + 1, plus j. Thus the first available position for the first entry of
group (i, j) members is just after this many occupied positions:

1 + 2 + 3 + . . . (i+ j) =
(i+ j)(i+ j + 1)

2

That is,

global position of (i, j) is this:
(i+ j)(i+ j + 1)

2
+ j

The function f which for all i, j is given by

f(i, j) =
(i+ j)(i+ j + 1)

2
+ j

is the algebraic form of the above enumeration. �

� There is an easier way to show that N× N ∼ N without diagrams:
By the unique factorisation of numbers into products of primes (Euclid) the

function g : N×N→ N given for all m,n by g(m,n) = 2m3n is 1-1, since Euclid
proved that 2m3n = 2m

′
3n
′

implies m = m′ and n = n′. It is not onto as it
never outputs, say, 5, but ran(g) is an infinite subset of N (Exercise!).

Thus, trivially, N× N ∼ ran(g) ∼ N, the latter “∼” by 3.3.14. �

3.3.17 Exercise. If A and B are enumerable, so is A×B.
Hint. So, N ∼ A and N ∼ B. Can you show now that N× N ∼ A×B? �

With little additional effort one can generalise to the case of
n×
i=1

Ai. �

3.3.18 Remark.

1. Let us collect a few more remarks on countable sets here. Suppose now
that we start with a countable set A. Is every subset of A countable? Yes,
because the composition of onto functions is onto.

2. 3.3.19 Exercise. What does composition of onto functions have to do
with this? Well, if B ⊆ A then there is a natural onto function g : A →
B. Which one? Think “natural”! Get a natural total and 1-1 function
f : B → A and then use f to get g. �

3. As a special case, if A is countable, then so is A ∩ B for any B, since
A ∩B ⊆ A.

4. How about A ∪ B? If both A and B are countable, then so is A ∪ B.
Indeed, and without inventing a new technique, let

a0, a1, . . .

Notes on discrete mathematics; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.



72 3. Relations and functions

be an enumeration of A and

b0, b1, . . .

for B. Now form an infinite matrix with the A-enumeration as the 1st
row, while each remaining row is the same as the B-enumeration. Now
linearise this matrix!

Of course, we may alternatively adapt the unfolding technique to an infinite
matrix of just two rows. How?

5. 3.3.20 Exercise. Let A be enumerable and an enumeration of A

a0, a1, a2, . . . (1)

is given.

So, this is an enumeration without repetitions.

Use techniques we employed in this section to propose a new enumeration
in which every ai is listed infinitely many times (this is useful in some
applications of logic). �

3.4. Diagonalisation and uncountable sets

3.4.1 Example. Suppose we have a 3× 3 matrix

1 1 0
1 0 1
0 1 1

and we are asked: Find a sequence of three numbers, using only 0 or 1, that
does not fit as a row of the above matrix —i.e., is different from all rows.

Sure, you reply: Take 1 1 1. Or, take 0 0 0.
That is correct. But what if the matrix were big, say, 10350000× 10350000, or

even infinite?
Is there a finitely describable technique that can produce an “unfit” row for

any square matrix, even an infinite one? Yes, it is Cantor’s diagonal method or
technique.

He noticed that any row that fits in the matrix as the, say, i-th row, inter-
sects the main diagonal at the same spot that the i-th column does.

That is, at entry (i, i).

Thus if we take the main diagonal —a sequence that has the same length as
any row— and change every one of its entries, then it will not fit anywhere as
a row! Because no row can have an entry that is different than the entry at the
location where it intersects the main diagonal!
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This idea would give the answer 0 1 0 to our original question. While
1000 11 3 also follows the principle “change all the entries of the diagonal”
and works, we are constrained here to “use only 0 or 1” as entries. More
seriously, in a case of a very large or infinite matrix it is best to have a simple
technique that works even if we do not know much about the elements of the
matrix. Read on! �

3.4.2 Example. We have an infinite matrix of 0-1 entries. Can we produce an
infinite sequence of 0-1 entries that does not match any row in the matrix? Yes,
take the main diagonal and flip every entry (0 to 1; 1 to 0).

If we think that, yes, it fits as row i, then we get a contradiction:
Say the original row has an a as entry (i, i). But, by our construction, the

new row has an 1− a in as entry (i, i), so it will not fit as row i after all. So it
fits nowhere, i being arbitrary. �

3.4.3� Example. (Cantor) Let S denote the set of all infinite sequences of 0s
and 1s.

Pause. What is an infinite sequence? Our intuitive understanding of the
term is captured mathematically by the concept of a total function f with left
field (and hence domain) N. The n-th member of the sequence is f(n).J

Can we arrange all of S in an infinite matrix —one element per row? No,
since the preceding example shows that we would miss at least one infinite
sequence (i.e., we would fail to list it as a row), for a sequence of infinitely many
0s and/or 1s can be found, that does not match any row!

But arranging all members of S as an infinite matrix —one element per
row— is tantamount to saying that we can enumerate all the members of S
using members of N as indices.

So we cannot do that. S is not countable! � �

3.4.4 Definition. (Uncountable Sets) A set that is not countable is called
uncountable. �

So, an uncountable set is neither finite, nor enumerable. The first observa-
tion makes it infinite, the second makes it “more infinite” than the set of natural
numbers since it is not in 1-1 correspondence with N (else it would be enumer-
able, hence countable) nor with a subset of N: If the latter, our uncountable
set would be finite or enumerable (which is absurd) according as it is in 1-1
correspondence with a finite subset or an infinite subset (cf. 3.3.14 and Exercise
3.2.13).

Example 3.4.3 shows that uncountable sets exist. Here is a more interesting
one.

3.4.5� Example. (Cantor) The set of real numbers in the interval

(0, 1)
Def
= {x ∈ R : 0 < x < 1}
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is uncountable. This is done via an elaboration of the argument in 3.4.3.
Think of a member of (0, 1), in form, as an infinite sequence of numbers

from the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} prefixed with a dot; that is, think of the
number’s decimal notation.

Some numbers have representations that end in 0s after a certain point.
We call these representations finite. Every such number has also an “infinite
representation” since the non zero digit d immediately to the left of the infinite
tail of 0s can be converted to d−1, and the infinite tail into 9s, without changing
the value of the number.

Allow only infinite representations.

Assume now by way of contradiction that a listing of all members of (0, 1)
exists, listing them via their infinite representations

.a00a01a02a03a04 . . .

.a10a11a12a13a14 . . .

.a20a21a22a23a24 . . .

.a30a31a32a33a34 . . .
...

The argument from 3.4.3 can be easily modified to get a “row that does not
fit”, that is, a representation

.d0d1d2 · · ·

not in the listing.
Well, just let

di =

{
2 if aii = 0 ∨ aii = 1

1 otherwise

Clearly .d0d1d2 · · · does not fit in any row i as it differs from the expected digit
at the i-th decimal place: should be aii, but di 6= aii. It is, on the other hand,
an infinite decimal expansion, being devoid of zeros, and thus should be listed.
This contradiction settles the issue. � �

3.4.6 Example. (3.4.3 Revisited) Consider the set of all total functions from
N to {0, 1}. Is this countable?

Well, if there is an enumeration of these one-variable functions

f0, f1, f2, f3, . . . (1)

consider the function g : N → {0, 1} given by g(x) = 1 − fx(x). Clearly, this
must appear in the listing (1) since it has the correct left and right fields, and
is total.

Too bad! If g = fi then g(i) = fi(i). By definition, it is also 1 − fi(i). A
contradiction.

This is just version of 3.4.3; as already noted there, an infinite sequence of
0s and 1s is just a total function from N to {0, 1}. �
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The same argument as above shows that the set of all functions from N to
itself is uncountable. Taking g(x) = fx(x)+1 also works here to “systematically
change the diagonal” f0(0), f1(1), . . . since we are not constrained to keep the
function values in {0, 1}.

3.4.7� Remark. Worth Emphasizing. Here is how we constructed g: We
have a list of in principle available f -indices for g. We want to make sure that
none of them applies.

A convenient method to do that is to inspect each available index, i, and
using the diagonal method do this: Ensure that g differs from fi at input i, by
setting g(i) = 1− fi(i).
This ensures that g 6= fi; period. We say that we cancelled the index i as a
possible “f -index” of g.

Since the process is applied for each i, we have cancelled all possible indices
for g: For no i can we have g = fi. � �

3.4.8� Example. (Cantor) What about the set of all subsets of N —P(N) or
2N?

Cantor showed that this is uncountable as well: If not, we have an enumer-
ation of its members as

S0, S1, S2, . . . (1)

Define the set
D

Def
= {x ∈ N : x /∈ Sx} (2)

So, D ⊆ N, thus it must appear in the list (1) as an Si. But then i ∈ D iff i ∈ Si
by virtue of D = Si. However, also i ∈ D iff i /∈ Si by (2). This contradiction
establishes that a legitimate subset of N, namely D, is not an Si. That is, 2N

cannot be so enumerated; it is uncountable. � �

3.4.9� Example. (Characteristic functions) Let S ⊆ N. We can represent
S as an infinite 0/1 array:

array position . . . i . . . j . . .
array content . . . 0 . . . 1 . . .

. . . ↑ . . . ↑ . . .
means . . .i /∈ S. . .j ∈ S. . .

This array faithfully represents S —tells all we need to know about what S
contains— since it contains a “1” in location x iff x ∈ S; contains “0” otherwise.

The array viewed as a total function from N to {0, 1} is called the charac-
teristic function of S, denoted by cS :

cS(x) =

{
1 if x ∈ S
0 if x ∈ N− S

Note that there is a 1-1 correspondence, let’s call it F , between subsets of N and
the total 0-1-valued functions from N simply given by F (S) = cS . (Exercise!)
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Thus
{f : f : N→ {0, 1} and f is total} ∼ 2N

In particular, the concept of characteristic functions shows that Example 3.4.8
fits the diagonalization methodology. Indeed, the argument in 3.4.8 sets cD(x) =
1− cSx

(x), for all x, because

cD(x) = 1 iff x ∈ D iff x /∈ Sx iff cSx
(x) = 0 iff 1− cSx

(x) = 1

But then, the argument in 3.4.8 essentially applies the diagonal method to
the list of 0/1 functions cSx , for x = 0, 1, 2, . . ., to show that some 0/1 function,
namely, cD cannot be in the list. � �
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Chapter 4

A Tiny Bit of Informal
Logic

We have come somewhat proficient in using informal logic in our arguments
about aspects of discrete mathematics.

Although we have used quantifiers, ∃ and ∀ we did so mostly viewing them
as symbolic abbreviations of English texts about mathematics. In this chapter
we will expand our techniques in logic, extending them to include manipulation
of quantifiers including the versatile Induction —or mathematical induction—
technique used to prove properties of the natural numbers.

We know how to detect fallacious statements formulated in Boolean logic:
Simply show by a truth table that the statement is not a tautology. (talk about
tautological implication too)

We will show in the domain of quantifiers not only how to prove statements
that include quantifiers but also how to disprove false statements that happen
to include quantifiers.

4.1. Enriching our proofs to manipulate quan-
tifiers

Manipulation of quantifiers boils down to “how can I remove a quantifier from
the beginning of a formula?” and “how can I add a quantifier at the beginning
of a formula?” Once we learn this technique we will be able to reason within
mathematics with ease.

But first let us define once and for all what a mathematical proof looks like:
its correct, expected syntax or form.

We will need some concepts to begin with.

1. The alphabet and structure of formulas. Formulas are strings. The alpha-
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bet of symbols that we use contain, at a minimum,

=,¬,∧,∨,→,≡, (, ),∀,∃, object variables†

We finitely generate the infinite set of object variables using single letters,
if necessary with primes and/or subscripts: A, x, y′′, w′′′23, u501.

2. One normally works in a mathematical area of interest, or mathemat-
ical theory —such as Geometry, Set Theory, Number Theory, Algebra,
Calculus— where one needs additional symbols to write down formulas,
like

0, ∅,∈,⊂,
∫
, ◦,+,×

and many others.

3. Mathematicians as a rule get to recognise the formulas and terms in the
math areas of their interest without being necessarily taught the recursive
definition of the syntax of these. We will not give the syntax in these
notes either (but see [Tou08] if you want to know!). Thus one learns to be
content with getting to know formulas and terms by their behaviour and
through use, rather than by their exact definition of syntax.

• Terms are “function calls”, in the jargon of the computer savvy per-
son. These calls take math objects as inputs and return math objects
as outputs. Examples are: x + y, x × 3, 0 × x + 1 (one is told that
× is stronger than +, so, notwithstanding the bracket-parsimonious
notation “0 × x + 1”, we know it means “(0 × x) + 1”, so this call
returns 1, no matter what we plugged into x).

• Formulas are also function calls, but their output is restricted (by
their syntax that I will not define carefully!) to be one or the other of
the truth values true or false (t or f) but nothing else! Their input,
just as in the case for terms, is any math object. Examples are: 2 < 3
(t), (∀x)x = x (t), (∀x)x = 0 (f), (∃x)x = 0 (t), x = 0 neither true
nor false; answer depends on the input in x!

More: x = x (t) answer is independent of input; x = 0 → x = 0
(t) answer is independent of input; x = 0 → (∀x)x = 0 neither true
nor false; answer depends on input in x! The input variable is the
leftmost x; the other two are bound and unavailable to accept inputs.
See below.

• If an occurrence of formula variable is available for input it would
normally be called an occurrence as an input variable. Rather, such
occurrences are called free occurrences in the literature.

At the expense of writing style, “occurrence” occurred no less than
four times in the short passage above. The aim is emphasis: It is not a
variable x that is free or bound in a formula, but it is the occurrences

†That is, variables that denote objects such as numbers, arrays, matrices, sets, trees, etc.
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of said variable that we are speaking of, as the immediately preceding
example makes clear.

4. In (∀x)x = 0 the variable x is non input, it is “bound” we say. Just like
this: Σ4

i=1i, which means 1 + 2 + 3 + 4 and “i” is not available for input:
Something like Σ4

3=13 is nonsense! Similar comment for ∃.

5. We call ∀,∃,¬,∧,∨,→,≡ the “logical connectives”, the last 5 of them be-
ing called Boolean connectives. People avoid cluttering notation with a lot
of brackets by agreeing that the first 3 have the same “strength” or “pri-
ority”; the highest. The remaining connectives have priorities decreasing
as we walk to the right.

Thus, if A and B are (denote) formulas, then ¬A∨B means (¬A)∨B; ¬
wins the claim for A. If we want (∀x) to apply to the entire A → B we
must write (∀x)(A→ B).

What about A → B → C and A ≡ B ≡ C? Brackets are implied from
right to left : A → (B → C) and A ≡ (B ≡ C). And this? (∃y)(∀x)¬A.

Brackets are implied, again, from right to left :
(

(∃y)
(
(∀x)(¬A)

))
.

BTW, the part where a ∀x or ∃x acts —the “(. . .)” in (∀x)(. . .) and
(∃x)(. . .)— is called their scope.

6. Boolean deconstruction. A formula like (∀x)A → B can be decon-
structed Boolean-wise into (∀x)A and B. If I knew more about B —say,
it is x = 3→ x = 7, then I can deconstruct further.

So, now I have got

(∀x)A, x = 3, x = 7

The last two have NO Boolean structure so deconstructing stops with
them. How about (∀x)A? This cannot be deconstructed either, even if A
had Boolean structure! Such structure is locked up in the scope of (∀x).

We call the formulas where deconstruction stops “prime”. A prime for-
mula is one with no Boolean structure, e.g., x < 8, or one of the form
(∀x)A (A is the scope) or (∃x)A (A is the scope).

Every formula is either prime or can be deconstructed into prime compo-
nents.

4.1.1� Remark. (Tautologies) A formula A is a tautology iff it is true due to
its Boolean structure, according to truth tables (2.3.4) no matter what the
values of its prime formulas into which it is deconstructed are assumed to be.
Assumed to be: We do NOT compute the intrinsic truth value of a prime
formula when we check whether A is a tautology or not.

For example, x = x is a prime formula and thus its assumed value could be
ANY of t or f . Thus it is NOT a tautology, even though, intrinsically IS true,
no matter what the value of x. � �
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4.1.2 Example.

1. (∀x)A is not a tautology as it has two possible truth values (being a prime
formula) in principle.

2. x = 0→ x = 0 is a tautology. Which are its prime (sub) formulas? �

3. (∀x)x = 0 → x = 0 is not a tautology. I repeat (once): To determine
tautologyhood we DO NOT evaluate prime formulas; we just consider
each of the two scenarios, t or f , for each prime formula and use truth
tables to compute the overall truth value.

� If we DID evaluate (∀x)x = 0 we would see that (say over the natural
numbers, or reals, or complex numbers) it is false.† So the implication is
true! But we DON’T do that! Not true as a Boolean formula!

� So, how do we show that (∀x)A is true (if it is)? Well, in easy cases we try to
see if A is true for all values of x. That failing, we will use a proof (see 4.1.9).

Similarly for (∃x)A. To show it is true (if it is) we try to see if A is true
for some value of x. Often we just guess one such value that works, say c, and
verify the truth of A when x = c. That failing, we will use a proof. �

4.1.3 Definition. (Tautological implication)
We say that the formulas A1, A2, . . . , An tautologically imply a formula B

—in symbols A1, A2, . . . , An |=taut B— meaning

“the truth of A1 ∧A2 ∧ . . . ∧An implies the truth of B”

that is, that
A1 ∧A2 ∧ . . . ∧An → B is a tautology

�

4.1.4� Remark. Note that we do NOT care to check, or even state, what hap-
pens if A1 ∧A2 ∧ . . . ∧An is false.

The implication in blue type is true regardless of the truth value of B

So, a tautological implication A1, A2, . . . , An |=taut B says that B is true
provided we proved (or accepted) that the lhs of |=taut is true.

|=taut propagates truth from left to right. � �

4.1.5 Example. Here are some easy and some involved tautological implica-
tions. They can all be verified using truth tables, either building the tables in
full, or taking shortcuts.

†If we are doing our mathematics restricted to the set {0}, then, in this “theory” the
formula IS true!
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1. A |=taut A

2. A |=taut A ∨B

3. A |=taut B → A

4. A,¬A |=taut B —any B. Because I do work only if A ∧ ¬A is true! See
above.

5. f |=taut B —any B. Because I do work only if lhs is true! See above.

6. Is this a valid tautological implication? B,A→ B |=taut A, where A and
B are distinct.

No, for if A is false and B is true, then the lhs is true, but the rhs is false!

7. Is this a valid tautological implication? A,A→ B |=taut B? Yes! Say
A = t and (A → B) = t. Then, from the truth table of →, it must be
B = t.

8. How about this? A,A ≡ B |=taut B? Yes! Verify!

9. How about this? A ∨B ≡ B |=taut A→ B? Yes! I verify:

First off, assume lhs of |=taut —that is, A ∨B ≡ B— is true.

Two cases:

• B = f . Then I need the lhs of ≡ to be true to satisfy the bolded
“assume”. So A = f as well and clearly the rhs of |=taut is true with
these values.

• B = t. Then I need not worry about A on the lhs. The rhs of |=taut

is true by truth table of →.

10. A ∧ (f ≡ A) |=taut B, for any B. Well, just note that the lhs of |=taut is f
so we need to do no work with B to conclude that the implication is valid.

11.
A→ B,C → B |=taut A ∨ C → B

This is nicknamed “proof by cases” for the obvious reasons. Verify this
tautological implication! �

The job of a mathematical proof is to start from established (previous
theorems) truths, or assumed truths (axioms) and unfailingly preserve truths
in all its steps as it is developed. Thus, it will have produced, in particular, a
truth at its very last step. A theorem.

What are our axioms, our starting assumptions, when we do proofs?

4.1.6 Definition. First off, in any proof that we will write in math there are
axioms that are independent of the type of math that we do, whether it is set
theory, number theory, algebra, calculus, etc.

Our logical axioms are
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1. All tautologies; these need no defence as “start-up truths”.

2. Formulas of the form (∀x)A[x]→ A[t], for any formula A, variable x and
“object” t.

This object can be as simple as a variable y (might be same as x), constant
c, or as complex as a “function call”, f(t1, t2, . . . , fn) where f accepts n-
inputs, and the inputs shown here are already available objects.

� Two comments: This is a bona fide start-up truth as its says “if A[x] is
true for all x-values,† then it is true also if we plug a specific value/object
into x”.

The other comment is that I write A[x] to indicate a variable of interest.
This may or may not occur in A, which may also have other variables that
it depends on. I would write A(x, y, z) —round brackets— if I knew that
x, y, z are all the variables on which A depends. �

3. Formulas of the form A[x] → (∀x)A[x], for any formula A where the
variable x does not occur in it. For example say A is 3 = 3. This
axiom says then, “if 3 = 3 is true, then so is (∀x)3 = 3”. Sure! 3 = 3 does
not depend on x. So saying “for all values of x we have 3 = 3” is the same
as saying just “we have 3 = 3”.

4. Formulas of the form A[t]→ (∃x)A[x], for any formula A, variable x and
“object t. This is a good start-up truth: It says that if we know that some
object plugged into x makes A[x] true, then it is correct to say “there is
some value x that makes A[x] true —in symbols (∃x)A[x].”

5. x = x is the identity axiom, no matter what “x” I use to express it. So,
y = y and w = w are also instances of the axiom.

6. x = y → y = x and x = y ∧ y = z → x = z are the equality axioms.

They can be expressed equally well using variables other than x and y
(e.g., u, v and w).

7. The ∃ vs. ∀ axiom. For any formula A, (∃x)A[x] ≡ ¬(∀x)¬A[x] is an
axiom. �

The “rules of proving”, or rules of inference. These are two up in front —you
will find I am grossly miscounting:

4.1.7 Definition. (Rules)

1. From A[x] I may infer (∀x)A[x]. Logicians write the up-in-front (“pri-
mary”) rules as fractions without words:

A[x]

(∀x)A[x]

this rule we call generalisation, or Gen for short.

†People usually say “for all x”, meaning for all values of x.

Notes on discrete mathematics; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.



4.1. Enriching our proofs to manipulate quantifiers 83

2. I may construct (and use) using any tautological implication that I verified,
say, this one

A1, A2, . . . , An |=taut B

the rule
A1, A2, . . . , An

B

Seeing readily that A,A→ B |=taut B, we have the rule

A,A→ B

B

This is a very popular rule, known as modus ponens, for short MP.

�

�

1. HOW do you use rules? See Definition 4.1.9 below. If in a proof you
are writing you have reached the numerator of a rule, then it is correct
to write next (or later) the denominator of the rule. We say that you
applied the rule.

2. The second “rule” above is a rule constructor. Any tautological implica-
tion we come up with is fair game: It leads to a valid rule since the name
of the game (in a proof) is preservation/propagation of truth.

This is NOT an invitation to learn and memorise infinitely many rules
(!) but is rather a license to build your own rules as you go, as long as
you bothered to verify the validity of the tautological implication they are
derived from.

3. Gen is a rule that indeed propagates truth: If A[x] is true, that means
that it is so for all values of x and all values of any other variables on
which A depends but I did not show in the [. . .] notation. But then so
is (∀x)A[x] true, as it says precisely the same thing: “A[x] is true, for all
values of x and all values of any other variables on which A depends but
I did not show in the [. . .] notation”.

The only difference between the two notations is that I added some nota-
tional emphasis in the second —(∀x).

For example, if I know that B has just two variables, u and v, I can write
it as B(u, v). Then

B(u, v) t iff (∀u)B(u, v) t iff (∀v)B(u, v) t iff (∀u)(∀v)B(u, v) t

4. Hmm. So is ∀x redundant? Yes, but only as a formula prefix. In something
like this

x = 0→ (∀x)x = 0 (1)
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it is NOT redundant!

Dropping ∀ we change the meaning of (1).

As is, (1) is not a true statement. For example, for x = 0 it is false.
However dropping ∀x, (1) changes to x = 0→ x = 0 which is a tautology;
always true.

5. The axioms in 4.1.6 are indispensable to do just logic; that is why we call
them logical axioms.

You also use them in all math reasoning no matter what type of math it
is. However, the latter has its own additional axioms! These are called
special, but most often “mathematical axioms”.

We are not going to list them. Why? Because every math branch, or
“theory” as we say, has different axioms!

�

4.1.8 Example. Here is a sample of axioms from math (theories):

1. Number theory for N:

• x < y ∨ x = y ∨ x > y (trichotomy)

• ¬x < 0 this axiom indicates that 0 is minimal in N. Adding the
previous one makes < a total order, so 0 is also minimum.

• Many others that we omit.

2. Euclidean geometry:

• From two distinct points passes one and only one line.

• (“Axiom of parallels”) From a point A off a line named k —both A
and k being on the same plane— passes a unique line on said plane
that is parallel to k.

• Many others that we omit.

3. Axiomatic set theory:

• For any set A,

(∃y)y ∈ A→ (∃x)
(
x ∈ A ∧ ¬(∃z)(z ∈ x ∧ z ∈ A)

)
This is the axiom of “foundation” from which one can prove things
like A ∈ A is always false.

It says that IF there is any element in A at all —this is the hy-
pothesis part “(∃y)y ∈ A”— THEN there is some element —this

is the part “(∃x)
(
x ∈ A”— below which, if you follow “∈” back-

wards from it, you will not find a z (“¬(∃z)”) that is both be-
low x along ∈ backwards, and also a member of A —this part is
“(z ∈ x ∧ z ∈ A)”.
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4. And a few others that we omit. �

So what is the shape of proofs?

4.1.9 Definition. (Proofs and theorems) A proof is a finite sequence of for-
mulas

F1, F2, . . . , Fi, . . . , Fn (1)

such that, for each i = 1, 2, . . . , n, Fi is obtained as ONE of:

1. It is an axiom from among the ones we listed in 4.1.6.

2. It is an axiom of the theory (area of Math) that we are working in.

3. It is a PREVIOUSLY proved theorem.

4. It is the result of “Gen” applied to a previous formula Fj . That is, Fi =
(∀x)Fj , for some x and j < i.

5. It is the result of “|=taut” applied to previous formulas Fjk , k = 1, 2, . . . ,m.
That is, Fj1 , Fj2 , Fj3 , . . . , Fjm |=taut Fi, and all jr for r = 1, 2, . . . ,m are
< i.

Such proofs are known as “Hilbert-style proofs”. We write them vertically,
ONE formula per line, every formula consecutively numbered, with annotation
to the right of formulas (the “why did I write this?”). Like this

1) F1 〈because〉
2) F2 〈because〉
...

...
...

n) Fn 〈because〉

Every Fn in (1) is called a theorem. Thus we define

A theorem is a formula that appears in a proof.

Often one writes ` A to symbolically say that A is a theorem. If we must
indicate that we worked in some specific theory, say ZFC (set theory), then we
may indicate this as

`ZFC A

If moreover we have had some “non-axiom assumptions” (read on to see when
this happens!) that form a set Σ, then we may indicate so by writing

Σ `ZFC A

�

� Why Σ for a set of (non-axiom) assumptions? Because we reserve upper
case latin letters for formulas. For sets of formulas we use a distinguish-
able capital letter, so, we chose distinguishable Greek capital letters, such as
Γ,Σ,∆,Φ,Θ,Ψ,Ω. Obviously, Greek capital letters like A,B,E,Z will not do! �
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4.1.10 Example. (New (derived) rules) A derived rule is one we were not
given —in 4.1.7— to bootstrap logic, but we can still prove they propagate
truth.

1. We have a new (derived) rule: (∀x)A[x] ` A[t].

This is called Specialisation, or Spec.

Aha! We used a non-axiom assumption here! I write a Hilbert proof
to show that A[t] is a theorem if (∀x)A[x] is a (non-axiom) hypothesis
(assumption) —shortened to “hyp”.

1) (∀x)A[x] 〈hyp〉
2) (∀x)A[x]→ A[t] 〈axiom〉
3) A[t] 〈1 + 2 + MP〉

2. Taking t to be x we have (∀x)A[x] ` A[x], simply written as (∀x)A ` A.

3. The Dual Spec derived rule: A[t] ` (∃x)A[x]. We prove it:

1) A[t] 〈hyp〉
2) A[t]→ (∃x)A[x] 〈axiom〉
3) (∃x)A[x] 〈1 + 2 + MP〉

Taking t to be x we have A[x] ` (∃x)A[x], simply written as A ` (∃x)A. �

There are two principles of proof that we state without proving them (see
[Tou08] if curious).

4.1.11� Remark. (Deduction theorem and proof by contradiction)

1. The deduction theorem (also known as “proof by assuming the antecedent”)
states, if

Γ, A ` B (1)

then also Γ ` A → B, provided that in the proof of (1), all free variables
of A were treated as constants: That is we neither used them to do a Gen,
nor substituted objects into them.

The notation “Γ, A” is standard for the more cumbersome Γ ∪ {A}.
In practice, this principle is applied to prove Γ ` A→ B, by doing instead
the “easier” (1). Why easier? We are helped by an extra hypothesis, A,
and the formula to prove, B, is less complex than A→ B.

2. Proof by contradiction. To prove Γ ` A is equivalent to proving the
“constant formula” f from hypothesis Γ,¬A.

3. Why the burden of the non-axiom hypotheses Γ? Because in applying the
deduction theorem we usually start with a task like “do ` A→ B → C →
D”.

So we go like this:
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• By DThm, it suffices to prove A ` B → C → D instead (here “Γ”was
∅).

• Again, by DThm, it suffices to prove A,B ` C → D instead (here
“Γ” was A).

• Again, by DThm, it suffices to prove A,B,C ` D instead (here “Γ”
was A,B).

� �

� � I referred you to [Tou08] for some things. However, the short intro here adopted
the so-called “strong generalisation”, which has the side-effect of making the
deduction theorem to hedge: In proving B from Γ, A one must ensure that no
variable of A was subject to generalisation or substitution. [Tou08] trades some
power of generalisation in order to get an easier to apply deduction theorem,
with no hedging.

So this is a choice on what we want to be “easy”, and what we want to “not
be so easy”. There are two options! � �

4.1.12 Remark. (Ping-Pong) For any formulas A and B, the formula —
where I am using way more brackets than I have to, ironically, to improve
readability—

(A ≡ B) ≡
(

(A→ B) ∧ (B → A)
)

is a tautology (draw up a truth table with one row for each of the possible values
of A and B and verify that the equivalence is always t).

Thus to prove the lhs of the ≡ suffices to prove the rhs:

...
...

1) (A→ B) ∧ (B → A) 〈suppose I proved this〉
2) (A ≡ B) ≡

(
(A→ B) ∧ (B → A)

)
〈axiom〉

3) A ≡ B 〈1 + 2 + tautological implication〉

In turn, to prove the rhs it suffices to prove each of A → B and B → A sepa-
rately. This last idea encapsulates the ping-pong approach to proving equiva-
lences.

Here are a few applications. �

4.1.13 Example. 1. Establish ` (∀x)(A ∧B) ≡ (∀x)A ∧ (∀x)B.

By ping-pong.

• Prove ` (∀x)(A ∧ B) → (∀x)A ∧ (∀x)B. By DThm suffices to do
(∀x)(A ∧B) ` (∀x)A ∧ (∀x)B instead.

1) (∀x)(A ∧B) 〈hyp〉
2) A ∧B 〈1 + Spec〉
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3) A 〈2 + tautological implication〉
4) B 〈2 + tautological implication〉
5) (∀x)A 〈3 + Gen; OK: x is not free in line 1〉
6) (∀x)B 〈4 + Gen; OK: x is not free in line 1〉
7) (∀x)A ∧ (∀x)B 〈5 + 6 + tautological implication〉

• Prove ` (∀x)A ∧ (∀x)B → (∀x)(A ∧ B). By DThm suffices to do
(∀x)A ∧ (∀x)B ` (∀x)(A ∧B) instead.

1) (∀x)A ∧ (∀x)B 〈hyp〉
2) (∀x)A 〈1 + tautological implication〉
3) (∀x)B 〈1 + tautological implication〉

Complete the above proof!

2. Prove ` (∀x)(∀y)A ≡ (∀y)(∀x)A. By ping-pong.

• Prove ` (∀x)(∀y)A→ (∀y)(∀x)A.

By DThm suffices to do (∀x)(∀y)A ` (∀y)(∀x)A instead.

1) (∀x)(∀y)A 〈hyp〉
2) (∀y)A 〈1 + Spec〉
3) A 〈2 + Spec〉
4) (∀x)A 〈3 + Gen; OK, no free x in line 1〉
5) (∀y)(∀x)A 〈4 + Gen; OK, no free y in line 1〉

• Prove ` (∀y)(∀x)A→ (∀x)(∀y)A.

Exercise! �

� We have seen how to add an (∃x) in front of a formula (4.1.10 3.).
How about removing an (∃x)-prefix? This is much more complex than re-

moving a (∀x)-prefix:
The technique can be proved to be correct (eg., [Tou03a]) but I will omit the

proof here as I did omit the proof of the deduction theorem technique and the
proof by contradiction technique. I could say “see [Tou03a] if you want to learn
the proof”, but this reference is too advanced for a first year course on discrete
math. So, why not look at [Tou08]? These two books have chosen incompatible
“generalisation” rules, which results to incompatible deduction theorem versions.

The proof of the technique of eliminating ∃-prefixes relies on the deduction theorem.

Technique of removing an ∃-prefix: Suppose I have that (∃x)A[x] is true —
either as an assumption or a theorem I proved earlier— and I want to
prove B.

Then I assume that —for some constant c that does not occur in B— A[c]
is true.

That is, I add A[c] for an unknown c NOT in B as a non-axiom hypothesis.
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People annotate this step in a proof as “aux. hyp. caused by (∃x)A[x].”

Now proceed to prove B using all that is known to you —that is, the axioms
of the theory T that you work in, perhaps some non-axiom hypotheses Γ, and
(∃x)A[x], and the non-axiom hypothesis A[c].

Do so by using all free (input-) variables of A[c] as constants in your proof!†

The technique of removing an ∃-prefix guarantees that you did better than

Γ, (∃x)A[x], A[c] `T B

that actually you achieved

Γ, (∃x)A[x] `T B

as if you never assumed nor used A[c]!
That is why they call it “auxiliary hypothesis”. Once it helps you prove B

it drops out; it does not stay around to get credit! �

4.1.14 Example. Prove ` (∃y)(∀x)A[x, y]→ (∀x)(∃y)A[x, y].
By the DThm it suffices to prove (∃y)(∀x)A[x, y] ` (∀x)(∃y)A[x, y] instead.

1) (∃y)(∀x)A[x, y] 〈hyp〉
2) (∀x)A[x, c] 〈aux. hyp. caused by 1; for some constant c not in the conclusion〉
3) A[x, c] 〈2 + Spec〉
4) (∃y)A[x, y] 〈3 + Dual Spec〉
5) (∀x)(∃y)A[x, y] 〈4 + Gen; OK, no free x in lines 1 and 2〉

�

4.1.15� Example. Can I also prove the converse of the above? That is `
(∀x)(∃y)A[x, y]→ (∃y)(∀x)A[x, y].

I will try.

By the DThm it suffices to prove (∀x)(∃y)A[x, y] ` (∃y)(∀x)A[x, y] instead.

1) (∀x)(∃y)A[x, y] 〈hyp〉
2) (∃y)A[x, y] 〈1 + spec〉
3) A[x, c] 〈aux. hyp. for 2; c not in the conclusion〉
4) (∀x)A[x, c] 〈3 + Gen; Hmmm!

Illegal: I should treat the free x of aux. hyp. as a constant!〉

Still, can anyone PROVE this even if I cannot?

†This is a side-effect of using the deduction theorem in the proof of correctness of the
technique.
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A question like this, if you are to answer “NO”, must be resolved by offering
a counterexample. That is, a special case of A for which I can clearly see that
the claim is not true.

Here is one such:

(∀x)(∃y)x = y → (∃y)(∀x)x = y (1)

Say we work in N. The lhs of → is true, but the rhs is false as it claims that
there is a number such that all numbers are equal to it. � �

� Another useful principle that can be proved, but we will not do so, is that one
can replace equivalents-by-equivalents. That is, if C is some formula, and if I
have

1. A ≡ B, via proof, or via assumption, and also

2. A is a subformula of C

then I can replace one (or more) occurrence(s) of A in C (as subformula(s)) by
B and call the resulting formula C ′, and be guaranteed the conclusion C ≡ C ′.
That is, from A ≡ B, I can prove C ≡ C ′.

This principle is called the equivalence theorem. �

Let’s do a couple of ad hoc additional examples before we move to the section
on Induction.

4.1.16 Example. A→ B ` (∀x)A→ (∀x)B.
By the DThm it suffices to prove A→ B, (∀x)A ` (∀x)B instead.

1) A→ B 〈hyp〉
2) (∀x)A 〈hyp〉
3) A 〈2 + Spec〉
4) B 〈1 + 3 + MP〉
5) (∀x)B 〈4 + Gen; OK as the DThm hyp. (line 2) has no free x〉

�

4.1.17 Example. Refer to 4.1.6(7). Let us apply it to ¬A for arbitrary A. We
get

` (∃x)¬A ≡ ¬(∀x)¬¬A (1)

Pause. Why “`”?J

Since A ≡ ¬¬A is a tautology, hence a theorem

Pause. Why “hence a theorem”?J

we apply the equivalence theorem above and tautological implication to obtain
from (1):

` (∃x)¬A ≡ ¬(∀x)A (2)
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Applying another tautological implication to (2) we get

` (∀x)A ≡ ¬(∃x)¬A

which is of the same form as 4.1.6(7) with the roles of ∃ and ∀ reversed. �

4.1.18 Example. A ≡ B ` (∀x)A ≡ (∀x)B.
True due to the equivalence theorem! “C” is “(∀x)A”. We replaced (one

occurrence of) A by B in C, and we have assumed as starting point that A ≡ B.

�

4.1.19 Exercise. Prove A ≡ B ` (∀x)A ≡ (∀x)B without relying on the
equivalence theorem. Rather use 4.1.16 in your proof, remembering the ping-
pong tautology (4.1.12). �
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4.2. Induction

In Remark 3.1.77 we concluded with a formulation of the minimal condition
(MC) for any order < as follows:

An order < on a class A has MC is captured by the statement

For any “property”, that is, formula F [x] —recall that this notation,
square brackets, indicates our interest in one among the, possibly
many, free variables of F— we have that the following is true

(∃a)F [a]→ (∃a)
(
F [a] ∧ ¬(∃y)

(
y < a ∧ F [y]

))
(1)

So let < be the standard order on N. We have used the fact that it is a total
order (satisfies trichotomy) and that every nonempty subset of N has a minimal
—hence unique minimum— element.

Pause. Why unique and minimum?J

So let us fix in the rest of this section < to be the “less than” order on N,
until we indicate otherwise.

Let us rewrite (1) for ¬P [x] where P [x] is arbitrary. We get the theorem

(∃x)¬P [x]→ (∃x)
(
¬P [x] ∧ ¬(∃y)

(
y < x ∧ ¬P [y]

))
(2)

Using the equivalence theorem (p.90) and the 7, we obtain from (2)

¬(∀x)P [x]→ ¬(∀x)¬
(
¬P [x] ∧ (∀y)¬

(
y < x ∧ ¬P [y]

))
and then (the tautology known as “contrapositive” is used) also

(∀x)¬
(
¬P [x] ∧ (∀y)¬

(
y < x ∧ ¬P [y]

))
→ (∀x)P [x]

Using the tautology
¬(A ∧B) ≡ ¬A ∨ ¬B

and the equivalence theorem, we transform the above to this theorem:

(∀x)
(
P [x] ∨ ¬(∀y)

(
¬y < x ∨ P [y]

))
→ (∀x)P [x]

Again, this time using the tautology

¬A ∨B ≡ A→ B

(twice) and the equivalence theorem, we transform the above to this theorem:

(∀x)
(

(∀y)
(
y < x→ P [y]

)
→ P [x]

)
→ (∀x)P [x] (3)
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(3) is the principle of strong induction, or complete induction, or course-of-values
induction that you probably encountered at school, and the above work shows
that it is equivalent to the least principle! (Clearly we can reverse all the steps
we took above as all were equivalences!)

Let us render (3) more recognisable: By applying MP (elaborate this!) I can
transform (3) in “rule of inference form”, indeed I will write it like a rule that
says, like all rules do, “if you proved my numerator, then my denominator is
also proved!”

(∀x)
(

(∀y)
(
y < x→ P [y]

)
→ P [x]

)
(∀z)P [z]

Dropping the ∀-prefix we have the rule in the form:

(∀y)
(
y < x→ P [y]

)
→ P [x]

P [z]
(CV I)

“(CVI)” for Course-of-Values Induction. (CVI) says

To prove P [x] (for all x is implied!) do as follows:

Step (a) Fix an arbitrary x-value. Now, assume (∀y)
(
y < x → P [y]

)
for

said x. We call the assumption Induction Hypothesis, for short,
I.H.

Step (b) Next prove P [x], for the same fixed unspecified x. This proof step
we call the Induction Step or I.S.

� Note that what is described by (a) and (b) is precisely an application
of the Deduction theorem towards proving “If, for all y < x, P [y] is
true, then P [x] is true”, that is, proving the implication on the
numerator of (CVI) for any given x. �

Step (c) If you have done Step (a) and Step (b) above, then you have proved
P [x] (for all x is implied!)

� Important.

• Step (a) above says “arbitrary x”.

So, I should not leave any x-value out of the proof!

But how do I prove the I.S. for x = 0? There is no I.H. to rely one (no
numbers below x = 0). No problem: The numerator implication in (CVI)
now reads

(∀y)
(
y < 0→ P [y]

)
→ P [0]

The lhs of “→” is true since y < 0 is false. Thus, to ensure the truth of
the implication I must prove P [0].

This step was hidden in Steps (a) – (b) above. It is called the Basis of
the induction!
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• The I.H. is usually stated in English: Assume P [y] (true), for all y < x.

�

Above we admitted much less than what we actually proved. N does not
have the monopoly of the CVI methodology in proofs! So let us shift gear
and have < indicate in the corollary below an arbitrary order with MC on an
arbitrary set A —not a set of numbers necessarily.

4.2.1 Corollary. If (A,<) is a POset with MC, then we can prove a property
P [x], for all x ∈ A, by doing precisely the steps of CVI:

1. Prove/verify P [a], for every <-minimal member of A. This is the Basis.

2. Fix an arbitrary b and assume P [x], for all x < b. This is the I.H.

3. Finally, do the I.S.: For the fixed b in 2. prove P [b] using 1. and 2.

Proof. Nothing changes in the derivation of the equivalence between MC and
CVI above. Just forget the opening line “So let < be the standard order on N.”!

The only change is in applying CVI in the general case is in the Basis step:
Instead of proving/verifying P [0] for the (unique) minimum element of N, we
prove/verify P [x] for all minimal elements of A, which may be infinitely many!

�

There is another simpler induction principle that we call it, well, simple
induction:

P [0], P [x]→ P [x+ 1]

P [x]
(SI)

“(SI)” for Simple Induction. That is, to prove P [x] for all x (denominator) do
three things:

Step 1. Prove/verify P [0]

Step 2. Assume P [x] for fixed (“frozen”) x (unspecified!).

Step 3. prove P [x+ 1] for that same x. The assumption is the I.H. for simple
induction. The I.S. is the step that proves P [x+ 1].

� Note that what is described here is precisely an application of the De-
duction theorem towards proving “P [x]→ P [x+ 1]”, that is, proving
the implication for any given x. �

Step 4. If you have done Step 1. through Step 3. above, then you have
proved P [x] (for all x is implied!)

Is the principle (SI) correct? I.e., if I do all that the numerator of (SI) asks me
to do (or Steps 1. – 3.), then do I really get that the denominator is true (for
all x implied)?
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4.2.2 Theorem. The validity of (SI) is a consequence of MC on N.

Proof. Suppose (SI) is not correct. Then, for some property P [x], despite having
completed Steps 1. – 3., yet, P [x] is not true for all x!

Well, if so, let n ∈ N be smallest such that P [n] is false. Now, n > 0 since
I did verify the truth of P [0] (Step 1.). Thus, n − 1 ≥ 0. But then, when I
proved “P [x]→ P [x+ 1] for all x (in N)” —in Steps 2. and 3.— this includes
proving the case

P [n− 1]→ P [n] (4)

But by the smallest-ness of n, P [n− 1] is true, hence P [n] is true by the truth
table of “→”. I have just got a contradiction! I conclude that no such smallest
n exists, i.e., P [x] is true (for all x ∈ N). (SI) works! �

� How do the simple and course-of-values induction relate? They are equivalent
tools! Here is why:

4.2.3 Theorem. From the validity of (SI) I can obtain the validity of (CVI).

Proof. Suppose that I have

verified the numerator of (CVI), for P [x], via Steps (a) and (b) p.93 (†)

but let me pretend that

I do not know if doing so guarantees the truth of the denominator, P [x] (‡)

Let me show that it does, by doing simple induction SI using a related prop-
erty, Q[x].

I define Q[x], for all x in N, by

Q[x]
Def
≡ P [0] ∧ P [1] ∧ . . . ∧ P [x] (5)

� Now, as we emphasised on p.92, “property” is colloquial for formula. But formu-
las do not have variable length! The length of Q[x] above increases or decreases
with the value of its input n. Well, (5) is also a colloquialism to keep things
intuitively clear! The mathematically correct definition of Q is the following,

Q[x]
Def
≡ (∀z)(z < x→ P [z]) (5′)

but now that the point has been made, I will continue using the form (5). �

So, my job is to show that

if for some property P [x] I proved the truth of the numerator of (CVI), then

it is guaranteed that P [x] is true, for all x (6)

I prove this by showing property Q[x] is true, for all x, using SI.

To this end I have to do
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SI 1) Verify Q[x] for x = 0 (Basis). But Q[0] —by (5)— is just P [0], which I
proved true as part of my due Basis for CVI (blue underlined if-clause
above).

SI 2) For x > 0, show,
Q[x− 1]→ Q[x] is true (7)

I argue that I already showed (7) by proving the CVI numerator:

• I proved
P [0] ∧ P [1] ∧ . . . ∧ P [x− 1]→ P [x]

• By tautological implication from the above I get also

P [0] ∧ P [1] ∧ . . . ∧ P [x− 1]→ P [0] ∧ P [1] ∧ . . . ∧ P [x− 1] ∧ P [x]

• But the above says Q[x− 1]→ Q[x] is true. This is (7).

By SI, I have proved Q[x] is true, for all x. But by (5), this trivially
implies that P [x] is true, for all x. I proved (6). �

4.2.4� Remark.

1. So, for N, MC, CVI and SI are all equivalent. We have already indicated
that MC and CVI are equivalent. The work on CVI vs. SI (4.2.3) and SI
vs. MC (4.2.2) is summarised as

MC =⇒ SI =⇒ CV I =⇒MC

which establishes the equivalence claim about all three.

2. When do I use CVI and when SI? SI is best to use when to prove P [x] (in
the I.S.) I only need to know P [x−1] is true. CVI is used when we need a
more flexible I.H. that P [n] is true for all n < x. See the examples below!

3. “0” is the boundary case if the claim we are proving is valid “for all n ∈ N”,
or simply put, “for n ≥ 0”. If the claim is “for all n ≥ a, P [n] is true” then
usually P [n] is meaningless for x < a and thus the Basis is for n = a. � �

4.2.5 Example. This is the “classical first example of induction use” in the
discrete math bibliography! Prove that

0 + 1 + 2 + . . .+ n =
n(n+ 1)

2
(1)

So, the property to prove is the entire expression (1). On must learn to not
have to rename the “properties to use” as “P [n]”.

I will use SI. So let us do the Basis. Boundary case is n = 0. We verify:
lhs = 0. rhs = (0.1)/2 = 0. Good!

Notes on discrete mathematics; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.



4.2. Induction 97

Fix n and tale the expression (1) as I.H.

Do the I.S. Prove:

0 + 1 + 2 + . . .+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2

Here it goes

0 + 1 + 2 + . . .+ n+ (n+ 1)
using I.H.

=
n(n+ 1)

2 + (n+ 1)

= (n+ 1)(n/2 + 1)

=
(n+ 1)(n+ 2)

2

�

I will write more concisely in the examples that follow.

4.2.6 Example. Same as above but doing away with the “0+”. Again, I use
SI.

1 + 2 + . . .+ n =
n(n+ 1)

2
(1)

• Basis. n = 1: (1) becomes 1 = (1.2)/2. True.

• Take (1) as I.H. with fixed n.

• I.S.:

1 + 2 + . . .+ n+ (n+ 1)
using I.H.

=
n(n+ 1)

2 + (n+ 1)

= (n+ 1)(n/2 + 1)

=
(n+ 1)(n+ 2)

2

�

4.2.7 Example. Prove

1 + 2 + 22 + . . . 2n = 2n+1 − 1 (1)

By SI.

• Basis. n = 0. 1 = 20 = 21 − 1. True.

• As I.H. take (1) for fixed n.

• I.S.

1 + 2 + 22 + . . .+ 2n + 2n+1using I.H.
= 2n+1 − 1 + 2n+1

= 2 · 2n+1 − 1
= 2n+2 − 1
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�

4.2.8 Example. An inequality! I prove that

n < 2n (1)

for all n ≥ 0.
I do SI on n.

• Basis. 0 < 20 = 1 is true.

• As I.H. fix n and assume (1).

• For the I.S. we have 2n+1 = 2n + 2n. By the I.H. 2n > n but also 2n ≥ 1.
Thus, adding these two inequalities I get

2n+1 = 2n + 2n > n+ 1

�

4.2.9 Example. (Euclid) Every natural number n ≥ 2 is expressible as a
product of primes.

� A “product” includes the trivial case of one factor. �

I do CVI (as you will see why!)

• Basis: For n = 2 we are done since 2 is a prime.†

• I.H. Fix an n and assume the claim for all k, such that 2 ≤ k < n.

• I.S.: Prove for n: Two subcases:

1. If n is prime, then nothing to prove! Done.

2. If not, then n = a · b, where a ≥ 2 and b ≥ 2. By I.H.‡ each of a and
b are products of primes, thus so is n = a · b. �

4.2.10 Example. (Euclid) Every natural number n ≥ 0 is expressible base-10
as an expression

n = am10m + am−110m−1 + · · ·+ a110 + a0 (1)

where each ai satisfies 0 ≤ ai < 10 (2)

Proof by CVI again. You will see why.

• Basis. For n = 0 the expression “0” has the form of the rhs of (1) and
satisfies inequality (2).

†You will recall that a number N 3 n > 1 is a prime iff its only factors are 1 and n.
‡You see? a and b cannot be both n − 1 to apply SI’s I.H. In fact, if n = (n − 1)2, then

n = n2 − 2n+ 1 or n2 − 3n+ 1 = 0. This equation has no natural number roots! So SI would
not help with its rigid I.H.
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• Fix an n > 0 and assume (I.H.) that if k < n, then k can be expressed as
in (1).

• For the I.S. express the n of the I.H. using Euclid’s theorem (3.1.47) as

n = 10q + r

where 0 ≤ r < 10. By the I.H. —since q < n— let

q = bt10t + bt−110t−1 + · · ·+ b110 + b0

with 0 ≤ bj < 10.

Then

n= 10q + r

n= 10
(
bt10t + bt−110t−1 + · · ·+ b110 + b0

)
+ r

n= bt10t+1 + bt10t + · · ·+ b1102 + b010 + r

We see n has the right form since 0 ≤ r < 10. �

4.2.11 Example. Another inequality. Let pn denote the n-th prime number,
for n ≥ 0. Thus p0 = 2, p1 = 3, p2 = 5, etc.

We prove that

pn ≤ 22n

(1)

I use CVI on n. This is a bit of a rabbit out of a hat if you never read
Euclid’s proof that there are infinitely many primes.

• Basis p0 = 2 ≤ 220

= 21 = 2.

• Fix n > 0 and take (1) as I.H.

• The I.S.: I will work with the fixed n above and the expression (product
of primes, plus 1; this is inspired from Euclid’s proof quoted above).

p0p1p2 · · · pn + 1

By the I.H. I have

p0p1p2 · · · pn + 1≤ 220

221

222 · · · 22n

+ 1 by I.H.
= 220+21+22+···+2n

+ 1 algebra
= 22n+1−1 + 1 by 4.2.7
= 22n+1−1 + 22n+1−1 smallest n possible is n = 1
= 21 · 22n+1−1

= 22n+1

Now we have two cases on q = p0p1p2 · · · pn + 1
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1. q is a prime. Because of the “ + 1” q is different from all pi in the
product, so q is pn+1 or pn+2 or pn+3 or . . .

Since the sequence of primes is strictly increasing, pn+1 is the least
that q can be.

Thus
pn+1 ≤ p0p1p2 · · · pn + 1 ≤ 22n

in this case.

2. q is composite. By 4.2.9 some prime r divides q. Now, none of the

p0, p1, p2, · · · , pn

divides q because of the “ + 1”. Thus r is different from all of them,
so it must be one of pn+1 or pn+2 or pn+3 or . . .

Thus,
pn+1 ≤ r < q = p0p1p2 · · · pn + 1 ≤ 22n

Done! �

4.2.12 Example. Let

b1 = 3, b2 = 6

bk = bk−1 + bk−2, for k ≥ 3

Prove by induction that bn is divisible by 3 for n ≥ 1. (Be careful to distinguish
between what is basis and what are cases arising from the induction step! As
you know, our text is careless about this.)
Proof. So the boundary condition is (from the underlined part above) n = 1.
This is the Basis.

1. Basis: For n = 1, I have a1 = 3 and this is divided by 3. We are good.

2. I.H. Fix n and assume claim for all k < n.

3. I.S. Prove claim for the above fixed n. There are two cases, as the I.H.
is not useable for n = 2. Why? Because it would require entries b0 and
b1. The red entry does not exist since the sequence starts with b1. So,

Case 1. n = 2. Then I am OK as b2 = 6; it is divisible by 3.

Case 2. n > 2. Is bn divisible by 3? Well, bn = bn−1 + bn−2 in this case.
By I.H. (valid for all k < n) I have that bn−1 = 3t and bn−2 = 3r,
for some integers t, r. Thus, bn = 3(t+ r). Done! �

Here are a few additional exercises for you to try —please do try!

4.2.13 Exercise.

1. Prove that 22n+1 + 32n+1 is divisible by 5 for all n ≥ 0.
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2. Using induction prove that 13 + 23 + . . .+ n3 =

[
n(n+ 1)

2

]2

, for n ≥ 1.

3. Using induction prove that
∑n+1
i=1 i2

i = n2n+2 + 2, for n ≥ 0.

4. Using induction prove that
√
n <

1√
1

+
1√
2

+ . . .+
1√
n

, for n ≥ 2.

5. Let

b0 = 1, b1 = 2, b3 = 3

bk = bk−1 + bk−2 + bk−3, for k ≥ 3

Prove by induction that bn ≤ 3n for n ≥ 0. (Once again, be careful to
distinguish between what is basis and what are cases arising from the
induction step!) �
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4.3. Inductive definitions

Inductive definitions are increasingly being renamed to “recursive definitions”
in the modern literature, thus using “recursive” for definitions, and “induction”
for proofs. I will not go out of my way to use this dichotomy of nomenclature.

4.3.1 Example.

a0 = 1
an+1= a · an

is an example of an inductive (recursive) definition of the non-negative integer
powers of a non zero number a. �

4.3.2 Example. Another example is the Fibonacci sequence,† given by

F0 = 0
F1 = 1

and for n ≥ 1
Fn+1= Fn + Fn−1

Unlike the function (sequence) a0, a1, a2, a3, . . ., for which we only need the value
at n to compute the value at n+ 1, the Fibonacci function needs two previous
values, at n− 1 and at n, to compute the value at n+ 1. �

This section looks at inductive/recursive definitions in general, but for functions
whose left field is N or Nn+1 for some fixed n.

4.3.3 Definition. We consider in this section a general recursive definition of
a function G : Nn+1 → A, for a given n ≥ 0 and set A.

This definition has the form (1) below.

Two total functions are given.

1. H : Nn → A, where A is some set. The typical call to H looks like H(b)
where b ∈ Nn. If n = 0, then we do not have any arguments for H. In
this case H is just a constant (i.e., a fixed element of A).

2. K : Nn+1 × 2A → A. The typical call to K looks like K(m,b, z) where
m ∈ N, b ∈ Nn and z is a subset of A. If n = 0 then we do not have the
argument b.

We will explore below whether the following definition (1) indeed yields a
function G : Nn+1 → A of arguments a and b where a ∈ N and b ∈ Nn.
If n = 0, then we do not have the argument b, rather we will have just
one argument in G: a ∈ N.

†The “sequence” F0, F0, F0, . . . is, of course, a total function from F : N→ N.
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G(a,b) = H(b)

G(a+ 1,b)= K
(
a,b,

{
G(0,b), G(1,b), . . . , G(a,b)

})
(1)

�

4.3.4� Remark. The notation of the set-argument{
G(0,b), G(1,b), . . . , G(a,b)

}
(2)

in (1) above is way less informative than the notation implies! Its members
—listed again in (2)— can be put in any order and there are no markings on
any of these members of A that will reveal the 1st argument of G (the position
of the call G(i,b) in the sequence as presented in (2)). So we should not read
(2) as if it conveys position!

Pause. Well, why not instead of using a set-argument write instead

K
(
a,b, G(0,b), G(1,b), . . . , G(a,b)

)
that is, have each call to G(i,b) explicitly “coded” in the function K? Because
I cannot have a variable number of arguments!J

This is no problem in practise. In any specific application of the definition
form (1) the structure ofK can be chosen/built so that it will “know and choose”
what recursive calls it needs to make —in which order and for which arguments—
to compute G(a+ 1,b).

For example, the specific use of principle (1) to the Fibonacci function def-
inition 4.3.2 has chosen that to compute Fn+1 it will always call just Fn and
Fn−1 from the entire “history at input n” —namely, {F0, F1, F2, . . . , Fn}— and
then return the sum of the call results.

So the notation (1) (via (2)) simply conveys —for the benefit of our two
theorems coming up below— that in general an inductive definition (1) might
call recursively as many as all the G(i,b) in (2) to compute G(a+ 1,b).

BTW, there are complicated inductive definitions such that the recursive
calls are not always at fixed (argument-)positions to the left of “a + 1”, unlike
the Fibonacci recursive definition that computes Fn+1, for any n ≥ 1, by always
calling the function recursively with arguments at precisely the numbers before
n + 1. These complicated cases will choose which G(i,b) from among the his-
tory (2) to call, depending on the value of a+ 1 � �

4.3.5 Lemma. Let n ≥ 1. If we define the order ≺ on Nn+1 by (a,b) ≺ (a′,b′)
iff a < a′ and b = b′, then ≺ is an order that has MC on Nn+1.

Proof.

1. ≺ is an order:

• Indeed, if (a,b) ≺ (a,b), then a < a which is absurd.

Notes on discrete mathematics; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.



104 4. A Tiny Bit of Informal Logic

• If (a,b) ≺ (a′,b′) ≺ (a′′,b′′), then b = b′ = b′′ and a < a′ < a′′.
Thus a < a′′ and hence (a,b) ≺ (a′′,b′′).

2. ≺ has MC: So let ∅ 6= A ⊆ Nn+1. Let a be <-minimum in S = {x :
(∃b)(x,b) ∈ A} ⊆ N.

Pause. Why is S 6= ∅?J

Let c be such that (a, c) ∈ A. This (a, c) is ≺-minimal in A. Otherwise
for some d, A 3 (d, c) ≺ (a, c). Hence d < a, but this is a contradiction
since d ∈ S (why?). �

� The minimal elements of ≺ are of the form (0,b), (0,b′), (0,b′′), . . ., which are
not comparable if they have distinct “b-parts”. Thus they are infinitely many. �

4.3.6 Lemma. Let (Y,<) be a POset with MC —where I use “<” generically,
not as the one on N.

Then, for any subset ∅ 6= B of Y , (B,<) is a POset with MC.

Proof. We show two things:

1. (B,<) is a POset.

< is irreflexive on Y , hence it is trivially so on any subset of Y . Transitivity
too is inherited from that of < on Y , since if x, y, z are in B and we have
x < y < z, then x, y, z are in Y and we still have x < y < z. Hence x < z
is true.

2. Let ∅ 6= S ⊆ B. Now S —viewed as a subset of Y— has a <-minimal
member m. We cannot have x < m with x ∈ S in (B,<) since then we
have x < m with x ∈ S in (Y,<). �

4.3.7 Theorem. If there is a function G : Nn+1 → A satisfying (1) of 4.3.3,
then it is unique.

Proof. Suppose we have two such functions, G and G′ that satisfy (1) for given
H and K. If G and G′ differ, then there is an argument (a,b) such that
G(a,b) 6= G′(a,b) then there is —by Lemma 4.3.5— a ≺-minimal such argu-
ment, say, (m, c), in the set T = {(a,b) : G(a,b) 6= G′(a,b)}. So

G(m, c) 6= G′(m, c) (∗)

Now, (m, c) is not ≺-minimal in Nn+1 since on such inputs we have G(0,d) =
H(d) = G′(0,d). Thus, in particular, m > 0.

But then, by (1) of 4.3.3, we compute each of G(m, c) and G′(m, c) by the
second equation as

K
(
m− 1, c, {G(0, c), G(1, c), . . . , G(m− 1, c)}

)
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since minimality of (m, c) in the set T entails

G(i, c) = G′(i, c), for i = 0, 1, . . .m− 1

Since K is single-valued (function!) we have G(m, c) = G′(m, c), contradict-
ing (∗). Thus T = ∅ and therefore G(a,b) = G′(a,b), for all (a,b) ∈ Nn+1. For
short, the functions G and G′ are the same. �

4.3.8 Theorem. There is a function G : Nn+1 → A satisfying (1) of 4.3.3.

Proof. The idea is simple: Build the function by stages as an infinite set of
building blocks. Each block is a restriction of G —that is, a partial table
for G— so that the domain of the restriction is an “initial segment” of Nn+1

determined by some point (“point” is synonymous to “element”) (m,b). Thus
the “general” segment is the set

S(m,b)
Def
= {(a,b) : (a,b) ≺ (m,b)} ∪ {(m,b)} (†)

The notation “S(m,b)” reflects “S” for segment, subscripted with the defining
point (m,b). Once you have all the building blocks, you put them together to
get the G you want.

Let us call G(m,b) the function (if it exists) from S(m,b) → A that satisfies (1)
of 4.3.3 if we replace the G there by G(m,b) everywhere.

� Why am I emphasising “the”? Because S(m,b) inherits MC from Nn. Cf. 4.3.6.
And then 4.3.7 applies to G(m,b) : S(m,b) → A as the proof of 4.3.7 applies
unchanged (just change Nn+1 and G to S(m,b) and G(m,b) respectively; all else
is the same in the proof).

We have one more important (for this proof) observation related to unique-

ness: If (x,b) ≺ (y,b), then G(x,b)(u,b) = G(y,b)(u,b), for all u ≤ x .†

Indeed, if G(x,b) and G(y,b) exist, then they both satisfy (1) of 4.3.3 on the
subset S(x,b) of S(y,b). �

Our next task is simply to show that for each (m,b) ∈ Nn+1,

the function G(m,b) : S(m,b) → A that satisfies (1) in 4.3.3 exists (‡)

where we changed Nn+1 and G into S(m,b) and G(m,b) respectively.

We do so constructively —that is, show how each G(m,b) : S(m,b) → A is
built— by CVI on the variable (m,b) along the order ≺ over Nn+1.

1. Basis: For any minimal (0,b),‡ we have S(0,b) = {(0,b)}. Thus, using
the first equation of (1) in 4.3.3, we set

G(0,b) =
{(

(0,b), H(b)
)}

§

†Here “≤” is, of course, the “less-than-or-equal” on N.
‡We remarked that the (0,b) for various b ∈ Nn are the ≺-minimal points in Nn+1.
§We still remember that a function is a set of pairs! This one has just one pair.
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106 4. A Tiny Bit of Informal Logic

2. I.H. Assume that for all (x,b) ≺ (m,b)† we have built G(x,b) : S(x,b) → A
all of which satisfy (the two equations of) (1) of 4.3.3.

In view of the boxed statement above, G(m,b) coincides with each G(x,b)

—for (x,b) ≺ (m,b)— on the latter’s domain. Thus I need only add one
input/output pair to

⋃
(x,b)≺(m,b)G(x,b) = G(m−1,b)

� Why is this last “=” correct? �

at input (m,b) to obtain G(m,b).

To do so I simply use (1) of 4.3.3, second equation. The I/O pair added
to obtain G(m,b) is(

(m− 1,b), K
(
m− 1,b, {G(m−1,b)(0,b), . . . , G(m−1,b)(m− 1,b)}

))
It is clear that on any input (u,b), whether the just constructed relation
G(m,b) “thinks” that it is G(x,b) or G(y,b) it will give the same output due
the boxed statement above. Thus, the relation G(x,b) is a function.

It is now time to put all the G(x,b) together to form G : Nn+1 → A. Just
define G by

G
Def
=

⋃
(x,b)∈Nn+1

G(x,b) (∗)

Observe regarding G:

1. As a relation it is total on the left field Nn+1 because it is defined on the
arbitrary (x,b) ∈ Nn+1 since G(x,b) : S(x,b) → A is.

2. ran(G) ⊆ A. Because it is so for each G(x,b) : S(x,b) → A.

3. G is single-valued, hence a function from Nn+1 to A, since the value
G(u,b) does not depend on which G(x,b) : S(x,b)→A we used to obtain
it as G(x,b)(u,b) (by boxed statement above).

Finally,

4. G satisfies (1) of 4.3.3 since by (∗), for any (x,b) ∈ Nn+1, G(x,b) =
G(x,b)(x,b), and G(x,b)(x,b) is constructed to obey the two equations
of (1) of 4.3.3, for all x ≥ 0 and b ∈ Nn. �

Let us see some examples:

4.3.9 Example. We know that 2n means

n 2s︷ ︸︸ ︷
2× 2× 2× . . .× 2

†Recall that for b 6= c, (x,b) and (y, c) are not comparable.
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But “. . .”, or “etc.”, is not MATH! That is why we gave at the outset of this
section the definition 4.3.1.

Applied to the case a = 2 we have

20 = 1
2n+1= 2× 2n (1)

We know from 4.3.8 and 4.3.7 that both (1) above and the definition in 4.3.1
define a unique function, each satisfying its defining equations.

For the function that for each n outputs 2n we can give an alternative defi-
nition that uses “+” rather than “×”:

20 = 1
2n+1= 2n + 2n �

4.3.10 Example. Let f : Nn+1 → N be given. How can I define
∑n
i=0 f(i,b)

—for any b ∈ Nn— other than by the sloppy

f(0,b) + f(1,b) + f(2,b) + . . .+ f(i,b) + . . .+ f(n,b)?

By induction/recursion, of course:∑0
i=0 = f(0,b)∑n+1
i=0 =

(∑n
i=0 f(i,b)

)
+ f(n+ 1,b) (1)

�

4.3.11 Example. Let f : Nn+1 → N be given. How can I define
∏n
i=0 f(i,b)

—for any b ∈ Nn— other than by the sloppy

f(0,b)× f(1,b)× f(2,b)× . . .× f(i,b)× . . .× f(n,b)?

By induction/recursion, of course:∏0
i=0 = f(0,b)∏n+1
i=0 =

(∏n
i=0 f(i,b)

)
+ f(n+ 1,b) (2)

Again, by 4.3.8 and 4.3.7, each of (1) and (2) define a unique function,
∑

and∏
that behaves as required. Really? For example, the first equation of (1) gives

us the one-term sum, f(0,b). It is correct. Assume (I.H. by simple induction
on n) that the term

∑n
i=0 f(i,b) correctly captures the sloppy

f(0,b) + f(1,b) + f(2,b) + . . .+ f(i,b) + . . .+ f(n,b)

that indicates the sum of the first n + 1 terms of the type f(i,b) for i =
0, 1, 2, . . . , n. But then, clearly the second equation of (1) correctly defines
the sum of the first n + 2 terms of the above type, by adding f(n + 1,b) to∑n
i=0 f(i,b). �
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108 4. A Tiny Bit of Informal Logic

4.3.12 Example. Here is a function with huge output! Define f : N→ N by

f(0) = 1
f(n+ 1)= 2f(n) (3)

What does f(n) look like in sloppy notation? Well,

f(0) = 1, f(1) = 2f(0) = 2, f(2) = 2f(1) = 22, f(3) = 2f(2) = 222

Hmm! Is the guess that f(n) is a ladder of n 2s? Yes! Let’s verify by induction:

1. Basis. f(0) = 1. A ladder of zero 2s. Correct.

2. I.H. Fix n and assume that

f(n) = 222·
··

2
 n 2s

A ladder of n 2s.

3. I.S. Thus f(n + 1) = 2f(n), so we put the ladder of n 2s of the I.H. as
the exponent of 2 —forming a ladder of n + 1 2s— to obtain f(n + 1).
Done! �

4.3.13 Example. (Fibonacci; a comment) This short example is to be clear,
as in the case of induction proofs, that the “Basis” case is for minimal elements
(compare with Exercise 4.2.13, case 5).

F0 = 0
F1 = 1

and for n ≥ 1
Fn+1= Fn + Fn−1

In the above “F1 = 1” is NOT a “Basis case” because 1 is not minimal in N!
(“F0 = 0” is the Basis case, corresponding to the first equation in (1) of 4.3.3).
So what is “F1 = 1”? It is a boundary case of the second equation in the general
Definition 4.3.3. This equation, in the Fibonacci case, can be rewritten as

Fn+1= if n = 0 then 1
else Fn + Fn−1 �
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Chapter 5

Inductively defined sets;
Structural induction

This chapter looks at a generalisation of the inductive definitions of the last
section. An example of an inductively defined set is the following.

Suppose you want to define by finite means, and define precisely, the set of
all “simple” arithmetical expressions that use the numbers 1, 2, 3, the operations
+ and ×, and round brackets. Then you would do it like this:

The set of said simple arithmetical expressions is the smallest set (⊆-smallest)
that

1. Contains each of 1, 2 and 3.

2. If it contains expressions E and E′, then it also contains (E + E′) and
(E × E′).

Some folks would add a 3rd requirement “nothing else is in the set unless so
demonstrated using 1. 2. above” and omit “smallest”. Really?

How exactly would you so “demonstrate”? In a recursive definition you
ought to be able to make your recursive calls and not have to trace back why
the object you constructed exists!

We will prove in Section 5.2.5 that indeed there is an iterative way to show
that a particular simple arithmetic expression was formed correctly by our re-
cursion, but that defeats the beauty of recursion. Besides, until we reach said
section we don’t know what “nothing else is in the set unless so demonstrated
using 1. 2. above” means or how to “use” 1. and 2. do it! So it is nonsense to stick
such a statement in the bottom of the definition as a (redundant) afterthought.

Before we get to the general definitions, let us finesse our construction and
propose some terminology.

(a) First off, in step 1. above we say that 1, 2 and 3 are the initial objects of our
recursive/inductive definition.
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110 5. Inductively defined sets; Structural induction

(b) In step 2. we say that (E+E′) is obtained by an operation (on strings) that
is available to us, depicted as a “blackbox” below, which we named “+”.

E
−→
−→
E′

+ −→ (E + E′)

In words, the operation concatenates from left to right the strings

“(”, “E”, “+”, “E′”, and “)”

Similar comments for the operation “×”.

(c) Both operations in this example are single-valued, that is, functions. It is
preferable to be slightly more general and allow operations that are just
relations, but not necessarily functions. Such an operation O(x1, . . . , xn, y)
is n-ary —n inputs, x1, . . . , xn— with output variable y.

(d) We say that a set of objects S is closed under a relation (operation) —it
could be a function— O(x1, . . . , xn, y) meaning that for all input values
x1, . . . , xn in S, all the obtained values y are also in S.

We are ready for the general definition:

5.0.1 Definition. Given a set of initial objects I and a set of operations O =
{O1, O2, O2, . . .}, the object Cl(I,O) is called the closure of I under O—or the
set inductively defined by the pair (I,O)— and denotes the ⊆-smallest class† S
that satisfies

1. I ⊆ S.

2. S is closed under all operations in O, or simply, closed under O.

3. The “smallest” part: Any class T that satisfies 1. and 2. also satisfies
S ⊆ T .

The set O may be infinite. Each operation Oi is a set. �

Nice definition, but does Cl(I,O) exist given I and O? Yes. But first,

5.0.2 Theorem. For any choice of I and O, if Cl(I,O) exists, then it is
unique.

Proof. Say S = Cl(I,O) = T . Then, letting S pose as closure, we get S ⊆ T
from 5.0.1. Then, letting T pose as closure, we get T ⊆ S, again from 5.0.1.
Thus S = T . �

†Let’s say “class” until we learn that it is actually a set.
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5.0.3 Theorem. For any choice of I and O with the restrictions of Definition
5.0.1 the set Cl(I,O) exists.

Proof. We have to check and note a few things.

1. By 3.1.5, for each Oi, ran(Oi) is a set.

2. The class F = {ran(Oi) : i = 1, 2, 3 . . .} is a set. This is so by Principle 2,
since I can index all members of F by assigning unique indices from N to
each of its members (and N is a set by Principle 0).

3. By 2. above and 2.4.16,
⋃
F is a set, and so is T = I ∪

⋃
F �

4. T contains I as a subset (by the way T was defined) and is O-closed since
any Oi-output —no matter where the inputs come from— is in ran(Oi) ⊆⋃
F .

5. The family G = {S : I ⊆ S & S is O-closed} contains the set T as a
member. Thus (cf. 2.4.17)

C
Def
=
(⋂

G
)
⊆ T

is a set. Since all sets S in G contain I and are O-closed, so is C. But
C ⊆ S for all such sets S the way it is defined. So it is ⊆-smallest.

Thus, C = Cl(I,O). We proved existence. �

5.1. Induction over a closure

5.1.1 Definition. Let a pair (I,O) be given as above.

We say that a property P [x] propagates with O iff for eachOi(x1, . . . , xn, y) ∈
O, if whenever all the inputs in the xi satisfy P [x] (i.e., P [xi] is true for each
argument xi), then all output values returned by y —for said inputs— satisfy
P [x] as well. Recall that for each assignment of values to the inputs x1, . . . , xn
we may have more than one output values in y; for all such values P [y] is true.

�

5.1.2 Lemma. For all (I,O) and a property P [x], if the latter propagates with
O, then the class A = {x : P [x]} is closed under O (is O-closed).

Proof. So let Oi(x1, . . . , xn, y) ∈ O. Let a1, . . . , an be all in A. Thus

P [ai], for all i = 1, . . . , n

By assumption, if Oi(a1, . . . , an, b), then P [b] is true, hence b ∈ A. �

5.1.3 Theorem. Let Cl(I,O) and a property P [x] be given. Suppose we have
done the following steps:
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1. We showed that for each a ∈ I, P [a] is true.

2. We showed that P [x] propagates O.

Then every a ∈ Cl(I,O) has property P [x].

� Naturally, the technique encapsulated by 1. and 2. of 5.1.3 is called “induction
over Cl(I,O)” or “structural induction” over Cl(I,O).

Note that for each Oi ∈ O the “propagation of property P [x]” will take the
form of an I.H. followed by an I.S.:

• Assume for the unspecified fixed inputs a1, . . . , an of Oi that all satisfy
P [x]. This is the I.H. for Oi.

• Then prove that any output b of Oi caused by said input also satisfies
the property.

�

Proof. (of 5.1.3) Let us write

ADef
= {x : P [x]}

Thus, 1. in 5.1.3 translates to
I ⊆ A (∗)

2. and 5.1.3 yield
A is O-closed (∗∗)

� If A were a set —a hypothesis we cannot make because of Russell’s paradox—
then (∗) and (∗∗) would immediately yield Cl(I,O) ⊆ A and we would be done.
So we have a tiny bit more work to do: �

By 5.0.3, item 4, the set T built for our I and O contains I and is O-closed.
Thus so is T ∩ A! Moreover the latter is a set, as we know (2.4.2). Hence, by
5.0.1,

Cl(I,O) ⊆ T ∩ A ⊆ A

The last implication immediately translates to

“x ∈ Cl(I,O) implies P [x] is true” �

5.1.4 Example. Let S = Cl(I,O) where I = {0} and O contains just one
operation, x+ 1 = y, where y is the output variable. That is,

n −→ x+ 1 = y −→ n+ 1 (1)

is our only operation. By induction over S, I can show S ⊆ N.
The “P [x]” is “x ∈ N”.
So P [0] is true. I verified the property for I. That the property propagates

with our operation is captured by (1) above (if n ∈ N, then n+ 1 ∈ N). Done!
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Can we show also N ⊆ Cl(I,O)? Yes: In this direction I do SI over N on
variable n. The property, let’s call it Q[x], now is “x ∈ Cl(I,O)”.

For n = 0, n ∈ Cl(I,O) since 0 ∈ I ⊆ Cl(I,O) by 5.0.1.
Now, say (I.H.) n ∈ Cl(I,O). Since Cl(I,O) is closed under the operation

x+ 1 = y, we have n+ 1 ∈ Cl(I,O) by 5.0.1.
So,

Cl(I,O) = N �

� Thus the induction over a closure generalises SI. �

5.2. Closure vs. definition by stages

We will see in this section that there is also a by-stages or by-steps way to obtain
Cl(I,O).

5.2.1 Definition. (Derivations) An (I,O)-derivation —or just derivation if
we know which (I,O) we are talking about— is a finite sequence of objects

d1, d2, d3, . . . , di, . . . , dn (1)

satisfying:
Each di is

1. A member of I,

or

2. For some j, one of the results of Oj(x1, . . . , xk, y) with inputs a1, . . . , ak
that are found in the derivation (1) to the left of di.

n is called the length of the derivation. Every di is called an (I,O)-derived
object, or just derived, if the (I,O) is understood. �

� Clearly, the concept of a derivation abstracts, thus generalises, the concept of
proof, while a derived object abstracts the concept of a theorem. �

5.2.2 Example. For the (I,O) of 5.1.4, here are some derivations:

0

0, 0, 0

0, 1, 0, 1, 0, 1, 1, 1, 1, 0

Nothing says we cannot repeat a di in a derivation! Lastly here is an “efficient”
derivation with no redundant steps: 0, 1, 2, 3, 4, 5. �

5.2.3 Proposition. If d1, d2, d3, . . . , di, . . . , dn, dn+1, . . . , dm is a (I,O)-deriva-
tion, then so is d1, d2, d3, . . . , di, . . . , dn.

Notes on discrete mathematics; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.



114 5. Inductively defined sets; Structural induction

Proof. Each di is validated in a derivation either outright (i.e., is in I) or by
looking to the left! What we may remove to the right of di does not affect the
validity of that entry. �

5.2.4 Proposition. If d1, d2, . . . , dn and e1, e2, . . . , em are (I,O)-derivations,
then so is d1, d2, . . . , dn, e1, e2, . . . , em.

Proof. Traversing d1, d2, . . . , dn and e1, e2, . . . , em in

d1, d2, . . . , dn, e1, e2, . . . , em

from left to right we validate each di and each ej giving precisely the same
validation reason as we would in each sequence d1, d2, . . . , dn and e1, e2, . . . , em
separately. These reasons are local to each sequence. �

We now prove that defining a set S as a (I,O)-closure is equivalent with
defining S as the set of all (I,O)-derived objects.

5.2.5 Theorem. For any initial sets of objects and operations on objects (I
and O) we have that Cl(I,O) = {x : x is (I,O)-derived}.

Proof. Let us write D = {x : x is (I,O)-derived} and prove that Cl(I,O) = D.
We have two directions:

1. Cl(I,O) ⊆ D: By induction over Cl(I,O). The property to prove is
“x ∈ D”.

• Let x ∈ I. Then x is derived via the one-member derivation

x

So x ∈ D. Thus all x ∈ I have the property.

• The property “x ∈ D” propagates with each Ok(~xn, y) ∈ O: So let
each of the xi have a derivation . . . , xi . We show that so does y.

Concatenating all these derivations we get a derivation (5.2.4)

. . . , x1 , . . . , . . . , xi , . . . , . . . , xn (1)

But then so is

. . . , x1 , . . . , . . . , xi , . . . , . . . , xn , y (2)

by 5.2.1, case 2. That is, y is derived, hence y ∈ D is proved (I.S.).

2. D ⊆ Cl(I,O): Let x ∈ D. This time we do good old-fashioned CVI over
N on the length n of a derivation of x, toward showing that x ∈ Cl(I,O)
—this is the “property of x” that we prove.

Basis. n = 1. The only way to have a 1-element derivation is that x ∈ I.

Thus, x ∈ I ⊆ Cl(I,O) by 5.0.1.
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I.H. Assume the claim for x derived with length k < n.

I.S. Prove that the claim holds when x has a derivation of length n.

Consider such a derivation

a1, . . . ai, . . . , ak, . . . ,

an
‖
x

If x ∈ I, then we are done by the Basis. Otherwise, say x is the result
of an operation (relation) Or ∈ O, applied on entries to the left of x, that
is, say that Or(. . . , x) is true —where we did not (have to) specify the
inputs.

By the I.H. the inputs of Or all are in Cl(I,O). Now, since this closure is
closed under Or(. . . , x), we have that the output x is in Cl(I,O) too. �

� So now we have two equivalent (5.2.5) approaches to defining inductively defined
sets S: As S = Cl(I,O) or as S = {x : x is (I,O)-derived}.

The first approach is best when you want to prove properties of all members
of the set S. The second is best when you want to show x ∈ S, for some specific
x. �

5.2.6 Example. Let A = {a, b}. We call A an “alphabet”.
Let I = {λ}, λ being (the name of) the empty string. Let us denote string

concatenations by putting the strings we want to concatenate next to each other.
E.g., concatenate aaa and bbbaa to obtain aaabbbaa. Also, if X denotes a string,
and so does Y , then XY denotes the concatenation of the strings (denoted by)
X and Y in that order. Similarly, Xa means the result of concatenating string
X with the (length-1) string a, in that order. The length of a string over A is
the number of occurrences in the string (with repetitions) of a and b.

We denote by A+ the set of all strings of non zero length formed using the
symbols a and b. A∗ is defined to be A+ ∪ {λ}. Let O consist of the operations
Oa and Ob:

X −→ Oa −→ Xa (1)

and

X −→ Ob −→ Xb (2)

We claim that Cl(I,O) = A∗.

1. For Cl(I,O) ⊆ A∗ we do induction over the closure to prove that any
x ∈ Cl(I,O) satisfies x ∈ A∗ (“the property”).

• Well, if x ∈ I then x = λ. But λ ∈ A∗.
• The property propagates with each of Oa and Ob. For example, if
X ∈ A∗, then since Xa is also a string over the alphabet A, we have
Xa ∈ A∗. Similarly for Ob. Done.
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116 5. Inductively defined sets; Structural induction

2. For Cl(I,O) ⊇ A∗ we do induction over N on n = |Y |—the length of Y—
to prove that any Y ∈ A∗ satisfies Y ∈ Cl(I,O) (“the property”).

• Basis. n = 0. Then Y = λ ∈ I ⊆ Cl(I,O). Done.

• I.H. Assume claim for fixed n.

• I.S. Prove for n + 1. If |Y | = n + 1 then Y = Xa or Y = X ′b for
some X or X ′ of length n. Say, it is Y = Xa. By I.H. X ∈ Cl(I,O).
But since Cl(I,O) is O-closed, we have Y = Xa ∈ Cl(I,O) by (1).
The Y = X ′b case is entirely similar. �

5.2.7 Example. Let A = {a, b} again.
Let I = {λ}, let O consist of one operation R:

X −→ R −→ aXb (3)

We claim that Cl(I,O) = {anbn : n ≥ 0}, where for any string X,

Xn Def= XX . . .X︸ ︷︷ ︸
n copies of X

If n = 0, “0 copies of X” means λ.

Let us write S = {anbn : n ≥ 0}.

1. For Cl(I,O) ⊆ S we do induction over the closure to prove that any
x ∈ Cl(I,O) satisfies x ∈ S (“the property”).

• Well, if x ∈ I then x = λ = a0b0. Done.

• The property propagates with each of R. For example, say x =
anbn ∈ S. Using (3) we see that the output, axb, is an+1bn+1 ∈ S.
The property does propagate! Done.

2. For Cl(I,O) ⊇ S we do induction over N on n of x = anbn (arbitrary
member of S) to prove that any x ∈ S satisfies x ∈ Cl(I,O) (“the prop-
erty”).

• Basis. n = 0. Then x = λ ∈ I ⊆ Cl(I,O). Done.

• I.H. Assume claim for fixed n.

• I.S. Prove for n + 1. Thus x = an+1bn+1 = aanbnb. By the I.H.,
anbn ∈ Cl(I,O). By (3) —recall that Cl(I,O) is O-closed— we get
the output aanbnb = an+1bn+1 ∈ Cl(I,O). �

5.2.8 Example. (Extended Binary Trees) This is a longish example with
some preliminary discussion up in front. We want to define the term known as
“Tree”. This term refers to a structure, which uses as building blocks —called
nodes— the members of the enumerable set below

A = {©0,©1,©2, . . . ;�0,�1,�2, . . .}
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Trees look something like this:

1 2 43

1

2 3

1 2 43

1

2 3

4 5

The qualifier “extended” is due to the presence of square nodes. We will not
define simple trees (they have round nodes only).

These nodes are made distinct by the use of subscripts. The symbols in the
set A are distinguished by their type, “round” vs. “square”, and within each type
by their natural number index. Thus, ©i 6=©j iff i 6= j, �i 6= �j iff i 6= j, and
©i 6= �j , for all i, j.

One feature in both of the above drawings is essential to note (blue type
below):

Circular or square nodes are connected by line segments. Walking in the
vertical direction from the top of the page towards the bottom, no nodes are
ever shared. In particular, in all the examples above where we have more
than one node, you will notice that the two sets of nodes that “hang below”
the top node (left and right of it) are disjoint . We need to include this
requirement in our definition.

But clearly these sets of notes have “geometric structure” (position: left/right;
and connections: via line segments)! They are not “flat” sets like {©5,�11}.

And yet, in the mathematical definition below we will need to state the
blue condition: the left and right, when you “forget” the lines and positions,
become disjoint flat sets. This observation is what imposes some complexity in
the definition, which defines the “structure” and the “flat” set that supports
the structure (the set of nodes in the tree) simultaneously.

We define an extended binary tree as a member of the inductively defined
set of E-Trees. It is intended that each e-tree of the inductively defined set of
all trees is an ordered pair :

(flat set of its nodes, geometric tree structure)

The “geometric tree structure” is mathematically given in a one-dimensional
depiction of the trees.
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118 5. Inductively defined sets; Structural induction

For example, the first tree in the figure above is linearly represented by((
�1,©2,�2

)
,©1,

(
�3,©3,�4

))
To appreciate the issue of “structure vs. flat set of nodes” let us first write the
above as ((

a, b, c
)
, d,
(
f, g, h

))
(2)

How easy is to obtain the flat set of nodes a–h? Easy via naked eye for very
small trees, hard for large ones.

� So, why not forget flat structure and just say “left and right parts of a tree must
be disjoint”? Because such parts are not sets (sets do not have “structure”, like
“edges”), and the term “disjoint” refers to sets. �

Here (2) is shorthand for something really complex, namely

(a, b, c) =
{
{a, {a, b}}, {a, c, {a, b}}

}
Suppose now that b = g, but all other letters (a, c, d, f, h) are distinct. Thus

(f, g, h) = (f, b, h) =
{
{f, {f, b}}, {f, h, {f, b}}

}
and hence

(
a, b, c

)
∩
(
f, g, h

)
= ∅ (t)

So test (t) does NOT give me the information I need before I build the tree
in (2). Apparently it is wrong to do so, as b = g.

I do need the information the flat set of nodes gives me, for the decision.
See definition below for the details!

Thus our definition below builds the flat set —called the support of the
tree— of nodes of a tree at the same time as it builds the structure of the tree.

5.2.9 Definition. We define the set of all extended trees —or just trees— ET ,
as Cl(I,O) where:

1. First, chose as the set of initial objects

I =
{

(∅,�0), (∅,�1), (∅,�2), . . .}

2. O has just one rule with a constraint on the input: If FX ∩ FY = ∅ and
©i /∈ FX ∪ FY , then

(FX , X) −→
©i −→

(FY , Y ) −→

 form tree −→
(
FX ∪ FY ∪ {©i}, (X,©i, Y )

)
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3. For each (S, T ) ∈ Cl(I,O) we say that T is an extended tree, and S is its
support , that is, the “flat” set nodes from the set A used to build T . We
indicate this relationship by

S = sup(T )†

If T = (X,©i, Y ), then we say that ©i is the root of T , while X is its
left and Y is its right subtree. �

Thus, some immediate examples of trees are

1 2 43

1

2 3

Indeed, using 5.2.5, the leftmost example is a tree since it is the right component
of the pair (∅,�1). The next tree is built via the derivation —written linearly,

(∅,�1), (∅,�2),
(

1, (�1,©2,�2)
)

The next derivation builds both the 2nd and 3rd trees:

(∅,�1), (∅,�2),
(

1, (�1,©2,�2)
)
, (∅,�3), (∅,�4),

(
1, (�3,©3,�4)

)
The 4th tree has this as a derivation:‡

(∅,�1), (∅,�2),
(

1, (�1,©2,�2)
)
,(∅,�3), (∅,�4),

(
1, (�3,©3,�4)

)
,(

3,
(

1, (�1,©2,�2)
)
,©1,

(
1, (�3,©3,�4)

))
The support of the 4th tree is the flat set {©1,©2,©3}. �

5.2.10 Example. (Trees —continued) Hmm! Seems like we are not includ-
ing square nodes in the support. See how the support of all nodes in I is ∅ for
each entry. Why so?

In the words of Knuth ([Knu73]) “trees is the most important nonlinear
structure arising in computing algorithms”. The extended tree is an abstraction
of trees that we implement with computer programs, where round nodes are the

†Caution: As for many other symbols, “sup” means something else in the context of
POsets. We will not get into this!

‡Derivations are not unique as is clear from Example 5.2.2.
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120 5. Inductively defined sets; Structural induction

only ones that can carry data. The lines are (implicitly) pointing downwards.
They are pointers, in computer jargon. For example, the topmost leftmost line
in the fourth tree above points to the node ©2. Practically it means that if
your program is processing node ©1, then it can transfer to and process node
©2 if it wishes. It knows the address of ©2. The pointer holds this address as
value.

Which brings me to square nodes! Together with the line planted on them,
they are notation for null pointers! They point nowhere. So square nodes can-
not hold information, that is why they do not contribute to the support of the tree.

The computer scientist calls round nodes “internal” and calls square nodes
“external”.

Finally, how do the lines —called edges— get inserted? We defined “root”
for trees, as well as “left subtree” and “right subtree”. So, to draw lines and
draw a tree that is given mathematically as (X,©r, Y ), we call recursively the
process that does it on (inputs) X and Y . Then add two more edges: One from
©r to the root of X and one from ©r to the root of Y .

How does the recursion terminate? Well, if your tree is just �j , then there
is nothing to draw. �j is the root. This is the basis of the recursive procedure:
do nothing. �

Here is something interesting about all extended trees:

5.2.11 Proposition. In any extended tree, the number of square nodes exceeds
by one the number of round nodes.

Proof. Induction over the set of all trees (5.2.9) Cl(I,O).

1. Basis. For any (∅,�i), the tree-part (structure-part) is just �i. One
square node, 0 round nodes. Done.

2. The property propagates with the only tree-builder operation:

(FX , X) −→
©i −→

(FY , Y ) −→

 form tree −→
(
FX ∪ FY ∪ {©i}, (X,©i, Y )

)
Indeed, suppose that X has φ internal (round) and ε external (square)
nodes. Let also Y have φ′ internal and ε′ external nodes.

The assumption on the input side is then (I.H.) that

φ+ 1 = ε (1)

and

φ′ + 1 = ε′ (2)
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The output side of the operation has the tree (X,©i, Y ). This has Φ =
φ+ φ′ + 1 internal nodes and E = ε+ ε′ external ones. Using (1) and (2)
we have

Φ = ε+ ε′ − 1 = E − 1

Seeing that this is the property we want to prove on the output side,
indeed the property propagates with the rule. Done. �
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Chapter 6

Recurrence relations
and their closed-form
solutions

In “divide and conquer” algorithms one usually ends up with a recurrence re-
lation that “defines” the “timing function”, T (n). For example, it might look
like

T (n) =

{
1 if n = 1

T (n/2) + 1 otherwise

In order to assess the “goodness” of the proposed algorithm by comparison
to either our expectations or to another algorithm, we need to know T (n) in
“closed” form in terms of known functions, for example, nr for r > 0, cn for
c > 1, logb n for some integer b > 1.

Often, a preliminary analysis need only worry about the “asymptotic be-
haviour” of the algorithm, i.e., the behaviour for large inputs (n is the input
size). “Big-O” notation is an excellent tool in this case, therefore the solution
of recurrences is often sought in such notation. On occasion one requires an
“exact” solution (this is much harder to achieve in general).

There is a big variety of recurrence relations and an equally big variety of
solution techniques. Some restricted cases are handled well by packages such
as Mathematica or Maple V . For the mathematical reasons that make the so-
lutions tick the best reference is perhaps Knuth et al. “Concrete Mathematics”
(Addison-Wesley).

In this chapter we restrict attention to simple classes of recurrences taken
from both the “additive” and “multiplicative” cases. These characterizations in
quotes refer to the manner of handling the argument of the recurrence. E.g.,
the recurrence above is multiplicative as the recursive call is to an argument
obtained by halving the original argument n. On the other hand, the Fibonacci
recurrence is additive.
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124 6. Recurrence relations and their closed-form solutions

6.1. Big-O, small-o, and the “other” ∼
This notation is due to the mathematician E. Landau and is in wide use in num-
ber theory, but also in computer science in the context of measuring (bounding
above) computational complexity of algorithms for all “very large inputs”.

6.1.1 Definition. Let f and g be two total functions of one variable, where
g(x) > 0, for all x. Then

1. f = O(g) —also written as f(x) = O(g(x))— read “f is big-oh g”, means
that there are positive constants C and K in N such that

x > K implies |f(x)| ≤ Cg(x)

2. f = o(g) —also written as f(x) = o(g(x))— read “f is small-oh g”, means
that

lim
x→∞

f(x)

g(x)
= 0

3. f ∼ g —also written as f(x) ∼ g(x)— read “f is of the same order as g”,
means that

lim
x→∞

f(x)

g(x)
= 1

�

� “∼” between two sets A and B, as in A ∼ B, means that there is a 1-1 corre-
spondence f : A → B. Obviously, the context will protect us from confusing
this ∼ with the one introduced just now, in 6.1.1.

Both definitions 2. and 3. require some elementary understanding of differ-
ential calculus. Case 2. says, intuitively, that as x gets extremely large, then
the fraction f(x)/g(x) gets extremely small, infinitesimally close to 0. Case 3.
says, intuitively, that as x gets extremely large, then the fraction f(x)/g(x) gets
infinitesimally close to 1; that is, the function outputs are infinitesimally close
to each other. �

6.1.2 Example.

1. x = O(x) since x ≤ 1 · x for x ≥ 0.

2. x ∼ x, since x/x = 1, and stays 1 as x gets very large.

3. x = o(x2) since x/x2 = 1/x which trivially goes to 0 as x goes to infinity.

4. 2x2 + 10001000x+ 10350000 = O(x2). Indeed

2x2 + 10001000x+ 10350000

3x2
= 2/3 + 10001000/x+ 10350000/x2 < 1
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for x > K for some well chosen K. Note that 10001000/x and 10350000/x2

will each be < 1/6 for all sufficiently large x-values: we will have 2/3 +
10001000/x+10350000/x2 < 2/3+1/6+1/6 = 1 for all such x-values. Thus
2x2 + 10001000x+ 10350000 < 3x2 for x > K as claimed.

In many words, in a polynomial, the order of magnitude is determined by
the highest power term. �

The last example motivates

6.1.3 Proposition. Suppose that f(x) ≥ 0 for all x > L, hence |f(x)| = f(x)
for all x > L. Now, if f(x) ∼ g(x), then f(x) = O(g(x)).

Proof. The assumption says that

lim
x→∞

f(x)

g(x)
= 1

From “calculus 1” (1st year differential calculus) we learn that this implies that
for some K, x > K entails ∣∣∣∣f(x)

g(x)
− 1

∣∣∣∣ < 1

hence

−1 <
f(x)

g(x)
− 1 < 1

therefore, x > max(K,L) implies f(x) < 2g(x). �

6.1.4 Proposition. Suppose that f(x) ≥ 0 for all x > L, hence |f(x)| = f(x)
for all x > L. Now, if f(x) = o(g(x)), then f(x) = O(g(x)).

Proof. The assumption says that

lim
x→∞

f(x)

g(x)
= 0

From calculus 1 we learn that this implies that for some K, x > K entails∣∣∣∣f(x)

g(x)

∣∣∣∣ < 1

hence

−1 <
f(x)

g(x)
< 1

therefore, x > max(K,L) implies f(x) < g(x). �
These two propositions add to our toolbox:

6.1.5 Example.
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1. lnx = o(xr) for any positive real r. Here “ln” stands for loge where e is
the Euler constant

2.7182818284590452353602874713526624977572470937 . . .

Seeing that both numerator and denominator

lim
x→∞

lnx

xr

go to ∞, we have here (if we do not do anything to mitigate) an impasse:
We have a “limit” that is indeterminate:

∞
∞

So, we will use “l’Hôpital’s rule” (the limit of the fraction is equal to the
limit of the fraction of the derivatives):

lim
x→∞

lnx

xr
= lim
x→∞

1/x

rxr−1
= lim
x→∞

1

rxr
= 0

2. lnx = O(log10(x)). In fact, you can go from one log-base to the other:

loge(x) =
log10(x)

log10(e)

The claim follows from 6.1.3 since trivially lnx ∼ log10(x)/ log10(e). For
that reason —and since multiplicative constants are hidden in big-O notation—
complexity- and algorithms-practitioners omit the base of the logarithm
and write things like O(log n) and O(n log n). �

6.2. Solving recurrences; the additive case

The general case here is of the form†

T0 = k
snTn= vnTn−1 + f(n) if n > 0

a recurrence defining the sequence Tn, or equivalently, the function T (n) (both
jargons and notations spell out the same thing), in terms of the known functions
(sequences) sn, vn, f(n).

For the general case see Knuth cited above. Here we will restrict attention
to the case sn = 1 for all n and vn = a (a constant) for all n.

Subcase 1. (a = 1) Solve

T0 = k
Tn= Tn−1 + f(n) if n > 0 (1)

†Note the “additivity” in the relation between indices/arguments: n vs. n− 1.
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From (1), Tn − Tn−1 = f(n), thus

n∑
i=1

(Ti − Ti−1) =

n∑
i=1

f(i)

the lower summation value dictated by the lowest valid value of i− 1 according
to (1).

6.2.1� Remark. The summation in the lhs above is called a “telescoping (finite)
series” because the terms T1, T2, . . . , Tn−1 appear both positively and negatively
and pairwise cancel. Thus the series “contracts” into Tn−T0 like a (hand held)
telescope. � �

Therefore
Tn= T0 +

∑n
i=1 f(i)

= k +
∑n
i=1 f(i) (2)

If we know how to get the sum in (2) in closed form, then we solved the problem!

6.2.2 Example. Solve

pn =

{
2 if n = 1

pn−1 + n otherwise
(3)

Here
n∑
i=2

(pi − pi−1) =

n∑
i=2

i

Note the lower bound of the summation: It is here 2, to allow for the lowest
i− 1 value possible. That is 1 according to 3, hence i = 2.

Thus,

pn = 2 +
(n+ 2)(n− 1)

2

(Where did I get the (n+ 2)(n− 1)/2 from?) The above answer is the same as
(verify!)

pn = 1 +
(n+ 1)n

2

obtained by writing

2 +

n∑
i=2

i = 1 +

n∑
i=1

i

Subcase 2. (a 6= 1) Solve

T0 = k
Tn= aTn−1 + f(n) if n > 0 (4)
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(4) is the same as
Tn
an

=
Tn−1

an−1
+
f(n)

an

To simplify notation, set

tn
Def
=
Tn
an

thus the recurrence (4) becomes

t0 = k

tn= tn−1 +
f(n)
an

if n > 0 (5)

By subcase 1, this yields

tn = k +

n∑
i=1

f(i)

ai

from which

Tn = kan + an
n∑
i=1

f(i)

ai
(6)

6.2.3 Example. As an illustration solve the recurrence below.

Tn =

{
1 if n = 1

2Tn−1 + 1 otherwise
(7)

To avoid trouble, note that the lowest term here is T1, hence its “translation”
to follow the above methodology will be “t1 = T1/2

1 = 1/2”. So, the right hand
side of (6) applied here will have “kan−1” instead of “kan” (Why?) and the
indexing in the summation will start at i = 2 (Why?)

Thus, by (6),

Tn= 2n(1/2) + 2n
∑n
i=2

1
2i

= 2n−1 + 2n( (2−1)n+1−1
2−1−1 − 1− 1

2 )

= 2n−1 + 2n(2− 2−n − 1− 1
2 )

= 2n − 1

In the end you will probably agree that it is easier to redo the work with (7)
directly, first translating it to

tn =

{
1/2 if n = 1

tn−1 + 1/2n if n > 1
(8)

rather than applying (6)!
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We immediately get from (8)

Tn = 2ntn = 2n
(

1/2 +

n∑
i=2

1/2i
)

= 2n
(

1/2 +
(2−1)n+1 − 1

2−1 − 1
− 1− 1/2

)
etc.

The red terms are subtracted as they are missing from our
∑

. The blue
formula used is for

n∑
i=0

1/2i �

6.3. Solving recurrences; the multiplicative case

Subcase 1.

T (n) =

{
k if n = 1

aT (n/b) + c if n > 1
(1)

were a, b are positive integer constants (b > 1) and k, c any constants. Re-
currences like (1) above arise in divide and conquer solutions to problems.
For example, binary search has timing governed by the above recurrence with
b = 2, a = c = k = 1.

� Why does (1) with the above-mentioned parameters —b = 2, a = c = k = 1—
capture the run time of binary search? First off, regarding “run time” let us be
specific: we mean number of comparisons.

OK, to do such a search on a sorted (ascending order, say) array of length n,
you first check the mid point (for a match with what you are searching for). If
you found what you want, exit. If not, you know (due to the ordering) whether
you should search the left half or the right half. So you call the procedure recur-
sively on an arrow of length about n/2. This decision and call took T (n/2) + 1
comparisons. This equals T (n). If the array has length 1, then you spend just
one comparison, T (1) = 1. �

We seek a general solution in big-O notation.
First convert to an “additive case” problem: To this end, seek a solution in

the restricted set {n ∈ N : n = bm for some m ∈ N}. Next, set

t(m) = T (bm) (2)

so that the recurrence becomes

t(m) =

{
k if m = 0

at(m− 1) + c if m > 0
(3)

hence, from the work in the previous section,

m∑
i=1

(
t(i)

ai
− t(i− 1)

ai−1
) = c

m∑
i=1

a−i
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therefore

t(m) = amk + cam

m if a = 1

a−1 (a−1)m − 1

a−1 − 1
if a 6= 1

or, more simply,

t(m) =

k + cm if a = 1

amk + c
am − 1

a− 1
if a 6= 1

Using O-notation, and going back to T we get:

T (bm) =

{
O(m) if a = 1

O(am) if a 6= 1
(4)

or, provided we remember that this solution relies on the assumption that n has
the form bm:

T (n) =

{
O(log n) if a = 1

O(alogb n) if a 6= 1
=

{
O(log n) if a = 1

O(nlogb a) if a 6= 1
(5)

� If a > b then we get slower than linear “run time” O(nlogb a). If on the other
hand b > a > 1 then we get a sublinear run time, since then logb a < 1. �

� � The symbol �� means “can be omitted with loss of continuity”.

Now an important observation. For functions T (n) that are increasing ,† i.e.,
T (i) ≤ T (j) if i < j the restriction of n to have form bm proves to be irrelevant
in obtaining the solution. The solution is still given by (5) for all n. Here’s
why:

In the general case, n satisfies

bm−1 < n ≤ bm for some m ≥ 0 (6)

Suppose now that a = 1 (upper case in (4)). We want to establish that
T (n) = O(log n) for the general n (of (6)). By monotonicity of T and the
second inequality of (6) we get

T (n)
by (6) right

≤ T (bm)
by (4)

= O(m)
by (6) left

= O(log n)

The last invocation of (6) above used the first inequality therein.

The case where a > 1 is handled similarly. Here we found an answer O(nr)
(where r = logb a > 0) provided n = bm (some m). Relax this proviso, and
assume (6).

Now

T (n)
by (6) right

≤ T (bm)
by (4)

= O(am) = O((bm)r)
Why?

= O((bm−1)r)
by (6) left

= O(nr)

where again the last invocation of (6) above used the first inequality therein. � �

†Such are the “complexity” or “timing” functions of algorithms.

Notes on discrete mathematics; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.



6.3. Solving recurrences; the multiplicative case 131

Subcase 2.

T (n) =

{
k if n = 1

aT (n/b) + cn if n > 1
(1′)

were a, b are positive integer constants (b > 1) and k, c any constants. Recur-
rences like (1′) above also occur in divide and conquer solutions to problems.
For example, two-way merge sort has timing governed by the above recurrence
with a = b = 2 and c = 1/2. Quicksort has average run time governed, essen-
tially, by the above with a = b = 2 and c = 1. Both lead to O(n log n) solutions.
Also, Karatsuba integer multiplication has a run time recurrence as above with
a = 3, b = 2.

� These examples are named for easy look up, in case the trigger your interest or
curiosity. It is not in the design of this course to expand on them. Merge Sort
and Quicksort you might see in a course on data structures (e.g., EECS 2011)
while Karatsuba’s “fast multiplication” of natural numbers might appear in a
course on algorithms like EECS 3101. �

Setting at first (our famous initial restriction on n) n = bm for some m ∈ N
and using (2) above we end up with a variation on (3):

t(m) =

{
k if m = 0

at(m− 1) + cbm if m > 0
(3′)

thus we need do
m∑
i=1

(
t(i)

ai
− t(i− 1)

ai−1
) = c

m∑
i=1

(b/a)i

therefore

t(m) = amk + cam

m if a = b

(b/a)
(b/a)m − 1

b/a− 1
if a 6= b

Using O-notation, and using cases according as to a < b or a > b we get:

t(m) =


O(bmm) if a = b

amO(1) = O(am) if b < a /* (b/a)m → 0 as m→∞ */

O(bm − am) = O(bm) if b > a

or, in terms of T and n, which is restricted to form bm (using same calculational
“tricks” as before):

T (n) =


O(n log n) if a = b

O(nlogb a) if b < a

O(n) if b > a

(4′)

� � The above solution is valid for any n without restriction, provided T is increas-
ing. The proof is as before, so we will not redo it (you may wish to check the
“new case” O(n log n) as an exercise).
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In terms of complexity of algorithms, the above solution says that in a divide
and conquer algorithm (governed by (1′)) we have the following cases:

• The total size of all subproblems we solve (recursively) is equal to the
original problem’s size. Then we have a O(n log n) algorithm (e.g., merge
sort).

• The total size of all subproblems we solve is more than the original prob-
lem’s size. Then we go worse than linear (logb a > 1 in this case). An
example is Karatsuba multiplication that runs in O(nlog2 3) time.

• The total size of all subproblems we solve is less than the original problem’s
size. Then we go in linear time (e.g., the problem of finding the k-th
smallest in a set of n elements).

� �

6.4. Generating Functions

We saw some simple cases of recurrence relations with additive and multiplica-
tive index structure (we reduced the latter to the former). Now we turn to a
wider class of additive index structure problems where our previous technique
of utilizing a “telescoping sum”

n∑
i=1

(t(i)− t(i− 1))

does not apply because the right hand side still refers to t(i) for some i < n.
Such is the case of the well known Fibonacci sequence Fn given by

Fn =


0 if n = 0

1 if n = 1

Fn−1 + Fn−1 if n > 1

The method of generating functions that solves this harder problem also solves
the previous problems we saw.

Here’s the method in outline. We will then embark on a number of fully
worked out examples.

Given a recurrence relation

tn = . . . tn−1 . . . tn−2 . . . tn−3 . . . (1)

with the appropriate “starting” (initial) conditions. We want tn in “closed form”
in terms of known functions. Here are the steps:
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1. Define a generating function of the sequence t0, t1, . . . , tn, . . .

G(z)=
∑∞
i=0 tiz

i

= t0 + t1z + t2z
2 + · · ·+ tnz

n + · · · (2)

(2) is a formal power series, where formal means that we only are inter-
ested in the form of the “infinite sum” and not in any issues of conver-
gence† (therefore “meaning”) of the sum. It is stressed that our disinterest
in convergence matters is not a simplifying convenience but it is due to
the fact that convergence issues are irrelevant to the problem at hand.

� In particular, we will never have to consider values of z or make substitu-
tions into z. �

2. Using the recurrence (1), find a closed form of G(z) as a function of z (this
can be done prior to knowing the tn in closed form!)

3. Expand the closed form G(z) back into a power series

G(z)=
∑∞
i=0 aiz

i

= a0 + a1z + a2z
2 + · · ·+ anz

n + · · · (3)

But now we do have the an’s in terms of known functions, because we
know G(z) in closed form! We only need to compare (2) and (3) and
proclaim

tn = an for n = 0, 1, . . .

The problem has been solved.

Steps 2. and 3. embody all the real work. We will illustrate by examples
how this is done in practice, but first we need some “tools”:

From here on we will put our ��in use to advise the reader of
what can be omitted.

The derivation of these formulas is trivial, but really long, so let us
concentrate on 2 or 3 “boxed” results —forgetting the arithmetic!—
that we will be employing!
These will be boxed and provided as aids in, e.g., an exam situation.

� � The Binomial Expansion. For our purposes we will be content with just one
tool, the “binomial expansion theorem” of calculus:

For any real m, (1 + z)m=
∑∞
r=0

(
m
r

)
zr

= · · ·+
(
m
r

)
zr + · · · (4)

†In Calculus one learns that power series converge in an interval like |z| < r for some real
r ≥ 0. The r = 0 case means the series diverges for all z.
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where for any r ∈ N and m ∈ R

(
m

r

)
def
=

1 if r = 0
m(m− 1) · · · (m− [r − 1])

r!
otherwise

(5)

The expansion (4) terminates with last term(
m

m

)
zm

by (5)
= zm

as the “binomial theorem of Algebra says, iff m is a positive integer. In all other
cases (4) is non-terminating (infinitely many terms). As we remarked before,
we will not be concerned with when (4) converges.

Note that (5) gives the familiar

(m
r
)
=
m(m− 1) · · · (m− [r − 1])

r!

=
m(m− 1) · · · (m− [r − 1])(m− r) · · · 2 · 1

r!(m− r)!
= m!
r!(m− r)!

whenm ∈ N. In all other cases we use (5) for ifm /∈ N, then “m!” is meaningless.

Let us record the very useful special case when m is a negative integer, −n
(n > 0).

(1 + z)−n= · · ·+ −n(−n−1)···(−n−[r−1])
r! zr + · · ·

= · · ·+ (−1)r n(n+1)···(n+[r−1])
r! zr + · · ·

= · · ·+ (−1)r (n+[r−1])···(n+1)n
r! zr + · · ·

= · · ·+ (−1)r
(
n+r−1

r

)
zr + · · · (6)

(1− z)−n = · · ·+
(
n+ r − 1

r

)
zr + · · · (7)

� �

Finally, let us record in “boxes” some important special cases of (6) and (7)

(1− z)−1 = 1
1− z= · · ·+

(
r
r

)
zr + · · ·

= · · ·+ zr + · · · (8)

The above is the familiar “converging geometric progression” (converging for
|z| < 1, that is, but this is the last time I’ll raise irrelevant convergence issues).
Two more special cases of (6) will be helpful:

(1− z)−2 = 1
(1−z)2 = · · ·+

(
r+1
r

)
zr + · · ·

= 1 + 2z + · · ·+ (r + 1)zr + · · · (9)
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and

(1− z)−3 = 1
(1−z)3 = · · ·+

(
r+2
r

)
zr + · · ·

= 1 + 3z + · · ·+ (r+2)(r+1)
2 zr + · · · (10)

�

6.4.1 Example. Solve the recurrence

a0 = 1
an= 2an−1 + 1 if n > 0 (i)

Write (i) as
an − 2an−1 = 1 (ii)

Next, form the generating function for an, and a “shifted” copy of it (multiplied
by 2z; z does the shifting) underneath it (this was “inspired” by (ii)):

G(z) = a0 + a1z + a2z
2 + · · · + anz

n + · · ·
2zG(z) = 2a0z + 2a1z

2 + · · · + 2an−1z
n + · · ·

Subtract the above term-by-term to get

G(z)(1− 2z)= 1 + z + z2 + z3 + · · ·
= 1

1− z

Hence

G(z) =
1

(1− 2z)(1− z)
(iii)

(iii) is G(z) in closed form. To expand it back to a (known) power series we
first use the “partial fractions” method (familiar to students of calculus) to write
G(z) as the sum of two fractions with linear denominators. I.e., find constants
A and B such that (iv) below is true for all z:

1

(1− 2z)(1− z)
=

A

(1− 2z)
+

B

(1− z)

or
1 = A(1− z) +B(1− 2z)

Setting in turn z ← 1 and z ← 1/2 we find B = −1 and A = 2, hence

G(z)= 2
1− 2z −

1
1− z

= 2
(
· · · (2z)n · · ·

)
−
(
· · · zn · · ·

)
= · · · (2n+1 − 1)zn · · ·

Comparing this known expansion with the original power series above, we con-
clude that

an = 2n+1 − 1
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Of course, we solved this problem much more easily in Section 6.2. However
due to its simplicity it was worked out here again to illustrate this new method.
Normally, you apply the method of generating functions when there is no other
simpler way to do it.

6.4.2 Example. Solve

p1 = 2
pn= pn−1 + n if n > 1 (i)

Write (i) as
pn − pn−1 = n (ii)

Next, form the generating function for pn, and a “shifted” copy of it underneath
it (this was “inspired” by (ii)).
Note how this sequence starts with p1 (rather than p0). Correspondingly, the
constant term of the generating function is p1.

G(z) = p1 + p2z + p3z
2 + · · · + pn+1z

n + · · ·
zG(z) = p1z + p2z

2 + · · · + pnz
n + · · ·

Subtract the above term-by-term to get

G(z)(1− z)= 2 + 2z + 3z2 + 4z3 + · · ·+ (n+ 1)zn + · · ·
= 1 + 1

(1− z)2 by (9)

Hence

G(z)= 1
1−z + 1

(1−z)3

=
(
· · · zn · · ·

)
+
(
· · · (n+2)(n+1)

2 zn · · ·
)

by (10)

= · · ·
(

1 +
(n+ 2)(n+ 1)

2

)
zn · · ·

Comparing this known expansion with the original power series above, we con-
clude that

pn+1 = 1 +
(n+ 2)(n+ 1)

2
, the coefficient of zn

or

pn = 1 +
(n+ 1)n

2

6.4.3 Example. Here is one that cannot be handled by the techniques of Sec-
tion 6.2.

s0 = 1
s1 = 1
sn= 4sn−1 − 4sn−2 if n > 1 (i)

Write (i) as
sn − 4sn−1 + 4sn−2 = 0 (ii)
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to “inspire”

G(z) = s0 + s1z + s2z
2 + · · · + snz

n + · · ·
4zG(z) = 4s0z + 4s1z

2 + · · · + 4sn−1z
n + · · ·

4z2G(z) = 4s0z
2 + · · · + 4sn−2z

n + · · ·

By (ii),

G(z)(1− 4z + 4z2)= 1 + (1− 4)z
= 1− 3z

Since 1− 4z + 4z2 = (1− 2z)2 we get

G(z)= 1
(1−2z)2 − 3z 1

(1−2z)2

=
(
· · · (n+ 1)(2z)n · · ·

)
− 3z

(
· · · (n+ 1)(2z)n · · ·

)
=
(
· · ·
[
(n+ 1)2n − 3n2n−1

]
zn · · ·

)
Thus,

sn= (n+ 1)2n − 3n2n−1

= 2n−1(2n+ 2− 3n)
= 2n(1− n/2)

6.4.4 Example. Here is another one that cannot be handled by the techniques
of Section 6.2.

s0 = 0
s1 = 8
sn= 2sn−1 + 3sn−2 if n > 1 (i)

Write (i) as
sn − 2sn−1 − 3sn−2 = 0 (ii)

Next,
G(z) = s0 + s1z + s2z

2 + · · · + snz
n + · · ·

2zG(z) = 2s0z + 2s1z
2 + · · · + 2sn−1z

n + · · ·
3z2G(z) = 3s0z

2 + · · · + 3sn−2z
n + · · ·

By (ii),
G(z)(1− 2z − 3z2) = 8z

The roots of 1− 2z − 3z2 = 0 are

z =
−2±

√
4 + 12

6
=
−2± 4

6
=

{
−1

1/3

hence 1− 2z − 3z2 = −3(z + 1)(z − 1/3) = (1− 3z)(1 + z), therefore

G(z) =
8z

(1− 3z)(1 + z)
=

A

1− 3z
+

B

1 + z
splitting into partial fractions
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By a calculation as in the previous example, A = 2 and B = −2, so

G(z)= 2
1−3z −

2
1+z

= 2
(
· · · (3z)n · · ·

)
− 2
(
· · · (−z)n · · ·

)
= (· · · [2 · 3n − 2(−1)n]zn · · · )

hence sn = 2 · 3n − 2(−1)n

6.4.5 Example. The Fibonacci recurrence.

F0 = 0
F1 = 1
Fn= Fn−1 + Fn−2 if n > 1 (i)

Write (i) as

Fn − Fn−1 − Fn−2 = 0 (ii)

Next,
G(z) = F0 + F1z + F2z

2 + · · · + Fnz
n + · · ·

zG(z) = F0z + F1z
2 + · · · + Fn−1z

n + · · ·
z2G(z) = F0z

2 + · · · + Fn−2z
n + · · ·

By (ii),

G(z)(1− z − z2) = z

The roots of 1− z − z2 = 0 are

z =
−1±

√
1 + 4

2
=


−1 +

√
5

2
−1−

√
5

2

For convenience of notation, set

φ1 =
−1 +

√
5

2
, φ2 =

−1−
√

5

2
(iii)

Hence
1− z − z2= −(z − φ1)(z − φ2)

= −(φ1 − z)(φ2 − z) (iv)

therefore

G(z) =
z

1− z − z2
=

A

φ1 − z
+

B

φ2 − z
splitting into partial fractions

from which (after some arithmetic that I will not show),

A =
φ1

φ1 − φ2
, B =

φ2

φ2 − φ1
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so

G(z)= 1
φ1−φ2

[
φ1

φ1−z −
φ2

φ2−z

]
= 1

φ1−φ2

[
1

1−z/φ1
− 1

1−z/φ2

]
= 1

φ1−φ2

((
· · · [ zφ1

]n · · ·
)
−
(
· · · [ zφ2

]n · · ·
))

therefore

Fn =
1

φ1 − φ2

(
1

φn1
− 1

φn2

)
(v)

Let’s simplify (v):
First, by brute force calculation, or by using the “known” relations between

the roots of a 2nd degree equation, we find

φ1φ2 = −1, φ1 − φ2 =
√

5

so that (v) gives

Fn= 1√
5

(
φn
2

(φ1φ2)n −
φn
1

(φ1φ2)n

)
= 1√

5

(
(−1)n

(
(1+
√

5)/2
)n

(−1)n − (−1)n
(

(1−
√

5)/2
)n

(−1)n

)
= 1√

5

([
1+
√

5
2

]n
−
[

1−
√

5
2

]n)
In particular, we find that

Fn = O

([
1 +
√

5

2

]n)

since [
1−
√

5

2

]n
→ 0 as n→∞

since (1−
√

5)/2 is about −0.62.
That is, Fn grows exponentially with n, since |φ2| > 1.

Notes on discrete mathematics; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.



140 6. Recurrence relations and their closed-form solutions

Notes on discrete mathematics; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.



Bibliography

[Dav65] M. Davis, The undecidable, Raven Press, Hewlett, NY, 1965.

[Hin78] P. G. Hinman, Recursion-theoretic hierarchies, Springer-Verlag, New
York, 1978.

[Kle43] S.C. Kleene, Recursive predicates and quantifiers, Transactions of the
Amer. Math. Soc. 53 (1943), 41–73, [Also in [Dav65], 255–287].

[Knu73] Donald E. Knuth, The Art of Computer Programming; Fundamental
Algorithms, 2nd ed., vol. 1, Addison-Wesley, 1973.

[Kur63] A.G. Kurosh, Lectures on General Algebra, Chelsea Publishing Com-
pany, New York, 1963.

[Tou03a] G. Tourlakis, Lectures in Logic and Set Theory, Volume 1: Mathe-
matical Logic, Cambridge University Press, Cambridge, 2003.

[Tou03b] , Lectures in Logic and Set Theory, Volume 2: Set Theory,
Cambridge University Press, Cambridge, 2003.

[Tou08] , Mathematical Logic, John Wiley & Sons, Hoboken, NJ, 2008.

Notes on discrete mathematics; from the EECS 1028 lecture notes © G. Tourlakis, W 2020.


	Some Elementary Informal Set Theory
	Russell's ``Paradox''

	Safe Set Theory
	The ``real sets''
	What caused Russell's paradox
	Some useful sets
	Operations on classes and sets
	The powerset
	The ordered pair and finite sequences
	The Cartesian product

	Relations and functions
	Relations
	Transitive closure
	Equivalence relations
	Partial orders

	Functions
	Finite and Infinite Sets
	Diagonalisation and uncountable sets

	A Tiny Bit of Informal Logic
	Enriching our proofs to manipulate quantifiers
	Induction
	Inductive definitions

	Inductively defined sets; Structural induction
	Induction over a closure
	Closure vs. definition by stages

	Recurrence relations and their closed-form solutions
	Big-O, small-o, and the ``other'' 
	Solving recurrences; the additive case
	Solving recurrences; the multiplicative case
	Generating Functions


