1. Tutorial

We do problems $3.8,3.10,3.13,3.19,3.23,3.24,3.26,3.27$ and 3.32 for extra practice, supplementing the examples worked out in the text (Chapter 3 of GS). Of course, we use our schemata-notation from class, so we prove in each case not just a single theorem (like $\neg \neg p \equiv p$), but a theorem-schema (like $\neg \neg A \equiv A$).
3.8 Prove $\neg \neg A \equiv A$ (with no additional assumptions).

We also often say "Prove that $\vdash \neg \neg A \equiv A$ ". Assuming that we know what we are doing, that is probably "OK". But strictly speaking, we should say "metaprove that $\vdash \neg \neg A \equiv A$ ", because " $\neg \neg \neg \equiv A$ " says " $\neg \neg A \equiv A$ is a logical theorem". Note that the latter statement, although correct, is not in its entirety a formula of our language - only the " $\neg \neg A \equiv A$ " part of it is-hence it cannot be a "theorem".

Now that we got the jargon straight, let us proceed:

$$
\begin{gathered}
\neg \neg A \equiv A \\
=\langle\vdash \neg A \equiv B \equiv A \equiv \neg B \text { was proved in class }\rangle \\
\neg A \equiv \neg A
\end{gathered}
$$

The last formula is a theorem (class: $\vdash A \equiv A$). Done.
Wait a minute! If we proved in class that " $\vdash A \equiv A$ ", how come this is as good as " $\neg \neg A \equiv \neg A$ "?
3.10 Prove that $\vdash(A \not \equiv B) \equiv \neg A \equiv B$.

It is important to note that whenever a defined connective such as $\not \equiv, \Leftarrow, \nLeftarrow, \nRightarrow$ is involved, we do not involve it in the formal proof but first translate the informally written formula to correct form, and only then start the proof.

So, translation: We are really being asked to prove that:

$$
\vdash \neg(A \equiv B) \equiv \neg A \equiv B
$$

But this so! This is the axiom on distribution of \neg over \equiv.
3.13 Prove that $\vdash((A \not \equiv B) \equiv C) \equiv(A \not \equiv(B \equiv C))$.

Translation: We are really being asked to prove that:

$$
\vdash(\neg(A \equiv B) \equiv C) \equiv \neg(A \equiv(B \equiv C))
$$

Here it goes:

$$
\begin{aligned}
& \neg(A \equiv B) \equiv C \\
= & \langle\text { Axiom "distribution of } \neg \text { over } \equiv\rangle \\
& \neg((A \equiv B) \equiv C) \\
= & \langle\text { Assoc. of } \equiv \text { and Leib. with formula } \neg r\rangle \\
& \neg(A \equiv(B \equiv C))
\end{aligned}
$$

Done.
3.19 Prove $\vdash A \vee B \equiv A \vee \neg B \equiv A$.

2 A common (fatal) error that I often see is the interpretation of the above as

$$
\begin{aligned}
& A \vee B \\
= & A \vee \neg B \\
= & \\
& A
\end{aligned}
$$

which is "way out". None of these "=" holds!
Let's do it then, pretending the rightmost \equiv is the last one. (What do I mean by "the last one"? Can I do that?)

$$
\begin{aligned}
& A \vee B \equiv A \vee \neg B \\
= & \langle\text { Axiom: distrib. of } \vee \text { over } \equiv\rangle \\
& A \vee(B \equiv \neg B) \\
= & \langle\text { Leib. on } A \vee r \text { plus } \vdash \neg A \equiv A \equiv \text { false from class }\rangle \\
& A \vee \text { false } \\
= & \langle\text { Class: } \vdash A \vee \text { false }=A\rangle \\
& A
\end{aligned}
$$

Done.
3.23. Prove that $\vdash A \wedge A \equiv A$.

$$
\begin{array}{r}
A \wedge A \equiv A \\
=\langle\mathrm{By} " \mathrm{GR} "\rangle \\
A \equiv A \vee A
\end{array}
$$

The second line is an axiom (idempotent for \vee). Done.
3.24. Prove that $\vdash A \wedge$ false \equiv false.

$$
\begin{gathered}
A \wedge \text { false } \equiv \text { false } \\
=\langle\mathrm{By} " \mathrm{GR} "\rangle \\
A \equiv A \vee \text { false }
\end{gathered}
$$

The second line is an (logical) theorem (done in class). Done.
3.26. Prove that $A \wedge \neg A \equiv$ false.

$$
\begin{aligned}
& A \wedge \neg A \\
= & \langle\mathrm{By} " \mathrm{GR} \text { " }\rangle \\
& A \equiv \neg A \equiv A \vee \neg A
\end{aligned}
$$

$=\langle$ By redundant true plus excluded middle axiom, using Leib. on $A \equiv \neg A \equiv r\rangle$
$A \equiv \neg A \equiv$ true
$=\langle$ By redundant true \rangle
$A \equiv \neg A$
$=\langle\mathrm{By} \vdash A \equiv \neg A \equiv$ false from class \rangle
false

Done.
3.27. Prove that $\vdash A \wedge(A \vee B) \equiv A$.

Tutorial for Ch.3@ by George Tourlakis

$$
\begin{aligned}
& A \wedge(A \vee B) \\
= & \langle\mathrm{By} \text { "GR" }\rangle \\
& A \equiv A \vee B \equiv A \vee A \vee B \\
= & \langle\text { Leib. on } A \equiv A \vee B \equiv r \vee B \text { and idemp. axiom: } A \vee A \equiv A\rangle \\
& A \equiv A \vee B \equiv A \vee B \\
= & \langle\text { Redundant true and } \vdash A \equiv A \text { (class) using Leib. on } A \equiv r\rangle \\
& A \equiv \text { true } \\
= & \langle\text { Redundant true }\rangle \\
& A
\end{aligned}
$$

Done.
3.32. Prove that $\vdash \neg(A \wedge B) \equiv \neg A \vee \neg B$.

The only "trick" in the proof that follows is not a trick at all. We "factor" formulas (using distribution of \vee over \equiv) just as we do so with numbers. In slow motion, compare

$$
\begin{aligned}
& a+a \times b \\
= & \langle\vdash a \times 1=a \text { on numbers, i.e., " } 1 \text { " is the " } \times \text {-identity" }\rangle \\
& a \times 1+a \times b \\
= & \langle\text { Distribution of } \times \text { over }+\rangle \\
& a \times(1+b)
\end{aligned}
$$

with

$$
\begin{aligned}
& A \equiv A \vee B \\
= & \langle\vdash A \vee \text { false } \equiv A \text { on formulas, i.e., "false" is the " } \vee \text {-identity" }\rangle \\
& A \vee \text { false } \equiv A \vee B \\
= & \langle\text { Distribution of } \vee \text { over } \equiv\rangle \\
& A \vee(\text { false } \equiv B)
\end{aligned}
$$

Ready for the main event (which uses the immediately above "factoring" twice):

$$
\begin{aligned}
& \neg(A \wedge B) \\
= & \langle\text { By "GR" using Leib. on } \neg r\rangle \\
& \neg(A \equiv B \equiv A \vee B) \\
= & \langle\text { Distribution of } \neg \text { over } \equiv\rangle \\
& \neg A \equiv B \equiv A \vee B \\
= & \langle\text { Leib. on } \neg A \equiv r \equiv A \vee B \text { and } \vdash \text { false } \vee B \equiv B \text { (class) }\rangle \\
& \neg A \equiv \text { false } \vee B \equiv A \vee B \\
= & \langle\text { Leib. on } \neg A \equiv r \text { and distrib. of } \vee \text { over } \equiv\rangle \\
& \neg A \equiv(\text { false } \equiv A) \vee B \\
= & \langle\text { Leib. on } \neg A \equiv r \vee B \text { and } \vdash \text { false } \equiv A \equiv \neg A \text { (class) }\rangle \\
& \neg A \equiv \neg A \vee B \\
= & \langle\text { Leib. on } r \equiv \neg A \vee B \text { and } \vdash \text { false } \vee B \equiv B \text { (class) }\rangle \\
& \neg A \vee \text { false } \equiv \neg A \vee B \\
= & \langle\text { Distrib. of } \vee \text { over } \equiv\rangle \\
& \neg A \vee(\text { false } \equiv B) \\
= & \langle\text { Leib. on } \neg A \vee r \text { and } \vdash \text { false } \equiv A \equiv \neg A \text { (class) }\rangle \\
& \neg A \vee \neg B
\end{aligned}
$$

Done.

