
1. Tutorial

We do problems 3.8, 3.10, 3.13, 3.19, 3.23, 3.24, 3.26, 3.27 and 3.32 for extra
practice, supplementing the examples worked out in the text (Chapter 3 of GS).
Of course, we use our schemata-notation from class, so we prove in each case not
just a single theorem (like ¬¬p ≡ p), but a theorem-schema (like ¬¬A ≡ A).

3.8 Prove ¬¬A ≡ A (with no additional assumptions).

� We also often say “Prove that ` ¬¬A ≡ A”. Assuming that we know what
we are doing, that is probably “OK”. But strictly speaking, we should say
“metaprove that ` ¬¬A ≡ A”, because “` ¬¬A ≡ A” says “¬¬A ≡ A is a
logical theorem”. Note that the latter statement, although correct, is not in its
entirety a formula of our language—only the “¬¬A ≡ A” part of it is—hence
it cannot be a “theorem”. �

Now that we got the jargon straight, let us proceed:

¬¬A ≡ A

=
〈
` ¬A ≡ B ≡ A ≡ ¬B was proved in class

〉
¬A ≡ ¬A

The last formula is a theorem (class: ` A ≡ A). Done.
Wait a minute! If we proved in class that “` A ≡ A”, how come this is as

good as “` ¬A ≡ ¬A”? �

3.10 Prove that ` (A 6≡ B) ≡ ¬A ≡ B.

� It is important to note that whenever a defined connective such as 6≡,⇐, 6⇐, 6⇒
is involved, we do not involve it in the formal proof but first translate the
informally written formula to correct form, and only then start the proof. �

So, translation: We are really being asked to prove that:

` ¬(A ≡ B) ≡ ¬A ≡ B

But this so! This is the axiom on distribution of ¬ over ≡. �

3.13 Prove that ` ((A 6≡ B) ≡ C) ≡ (A 6≡ (B ≡ C)).
Translation: We are really being asked to prove that:

` (¬(A ≡ B) ≡ C) ≡ ¬(A ≡ (B ≡ C))



2

Here it goes:

¬(A ≡ B) ≡ C

=
〈

Axiom “distribution of ¬ over ≡
〉

¬
(

(A ≡ B) ≡ C
)

=
〈

Assoc. of ≡ and Leib. with formula ¬r
〉

¬
(
A ≡ (B ≡ C)

)

Done. �

3.19 Prove ` A ∨B ≡ A ∨ ¬B ≡ A.� A common (fatal) error that I often see is the interpretation of the above as

A ∨B
=

A ∨ ¬B
=

A

which is “way out”. None of these “=” holds! �
Let’s do it then, pretending the rightmost ≡ is the last one. (What do I

mean by “the last one”? Can I do that?)

A ∨B ≡ A ∨ ¬B

=
〈

Axiom: distrib. of ∨ over ≡
〉

A ∨ (B ≡ ¬B)

=
〈

Leib. on A ∨ r plus ` ¬A ≡ A ≡false from class
〉

A ∨ false

=
〈

Class: ` A ∨ false = A
〉

A

Done. �

3.23. Prove that ` A ∧A ≡ A.

Tutorial for Ch.3 c© by George Tourlakis



1. Tutorial 3

A ∧A ≡ A

=
〈

By “GR”
〉

A ≡ A ∨A

The second line is an axiom (idempotent for ∨). Done. �

3.24. Prove that ` A ∧ false ≡ false.

A ∧ false ≡ false

=
〈

By “GR”
〉

A ≡ A ∨ false

The second line is an (logical) theorem (done in class). Done. �

3.26. Prove that A ∧ ¬A ≡ false.

A ∧ ¬A

=
〈

By “GR”
〉

A ≡ ¬A ≡ A ∨ ¬A

=
〈

By redundant true plus excluded middle axiom, using Leib. on A ≡ ¬A ≡ r
〉

A ≡ ¬A ≡ true

=
〈

By redundant true
〉

A ≡ ¬A

=
〈

By ` A ≡ ¬A ≡ false from class
〉

false

Done. �

3.27. Prove that ` A ∧ (A ∨B) ≡ A.

Tutorial for Ch.3 c© by George Tourlakis



4

A ∧ (A ∨B)

=
〈

By “GR”
〉

A ≡ A ∨B ≡ A ∨A ∨B

=
〈

Leib. on A ≡ A ∨B ≡ r ∨B and idemp. axiom: A ∨A ≡ A
〉

A ≡ A ∨B ≡ A ∨B

=
〈

Redundant true and ` A ≡ A (class) using Leib. on A ≡ r
〉

A ≡ true

=
〈

Redundant true
〉

A

Done. �

3.32. Prove that ` ¬(A ∧B) ≡ ¬A ∨ ¬B.
The only “trick” in the proof that follows is not a trick at all. We “factor”

formulas (using distribution of ∨ over ≡) just as we do so with numbers. In
slow motion, compare

a+ a× b

=
〈
` a× 1 = a on numbers, i.e., “1” is the “×-identity”

〉
a× 1 + a× b

=
〈

Distribution of × over +
〉

a× (1 + b)

with

A ≡ A ∨B

=
〈
` A ∨ false ≡ A on formulas, i.e., “false” is the “∨-identity”

〉
A ∨ false ≡ A ∨B

=
〈

Distribution of ∨ over ≡
〉

A ∨ (false ≡ B)

Ready for the main event (which uses the immediately above “factoring”
twice):

Tutorial for Ch.3 c© by George Tourlakis



1. Tutorial 5

¬(A ∧B)

=
〈

By “GR” using Leib. on ¬r
〉

¬(A ≡ B ≡ A ∨B)

=
〈

Distribution of ¬ over ≡
〉

¬A ≡ B ≡ A ∨B

=
〈

Leib. on ¬A ≡ r ≡ A ∨B and ` false ∨B ≡ B (class)
〉

¬A ≡ false ∨B ≡ A ∨B

=
〈

Leib. on ¬A ≡ r and distrib. of ∨ over ≡
〉

¬A ≡ (false ≡ A) ∨B

=
〈

Leib. on ¬A ≡ r ∨B and ` false ≡ A ≡ ¬A (class)
〉

¬A ≡ ¬A ∨B

=
〈

Leib. on r ≡ ¬A ∨B and ` false ∨B ≡ B (class)
〉

¬A ∨ false ≡ ¬A ∨B

=
〈

Distrib. of ∨ over ≡
〉

¬A ∨ (false ≡ B)

=
〈

Leib. on ¬A ∨ r and ` false ≡ A ≡ ¬A (class)
〉

¬A ∨ ¬B

Done. �

Tutorial for Ch.3 c© by George Tourlakis


