
Chapter 0

Boolean expressions
and Theorems

In Logic—the “practice”, as opposed to the (meta)theory—the primary job is to
calculate† “theorems”. Theorems are some very special Boolean expressions—or
well-formed-formulas‡—as logicians like to call them.

So before we learn how to calculate formulas that are theorems, it is prudent
to learn how to calculate formulas in general.

Now the term to “calculate formulas” (or theorems) is deliberately chosen to
emphasize the fact that for both formulas in general, and theorems in particular,
there is a methodology of calculation—or calculus, for each—which allows us to
generate or derive (e.g., write on a piece of paper) all formulas correctly and also
all theorems, correctly.§

Indeed, a computer program can be written instructing a computer to gen-
erate and print all well-formed-formulas in a systematic way (again, assuming
the computer would be operating for ever on this task, and that sufficient paper
would be available to print all these formulas on . . .). A similar program can be
written to instruct a computer to generate all theorems of Propositional Logic
and all the theorems of Predicate Logic.

1. Formula calculus

So how does one calculate formulas?
We start with the basic building blocks, which collectively form what is called

the alphabet (for formulas). Namely,
†This is why Logic is often referred to as a “calculus”, be it of “Propositional” or “Predi-

cate” type. Still, most logicians say that they deduce, or derive, or prove theorems, obviously
preferring any of the latter three verbs to “calculate”.
‡Or just “formulas”.
§This we can do in principle only, for it requires that we have infinite time at our disposal:

Theorems, and a fortiori formulas, form an infinite set.

Boolean expressions and Theorems c© by George Tourlakis

2 0. Boolean expressions and Theorems

A1. Symbols for variables, the “Boolean variables”. These are p, q, r, with or
without primes or subscripts (i.e., p′, q13, r

′′′
51 are also symbols for variables).

A2. Two symbols for Boolean constants, namely true and false.

A3. Brackets, namely, (and).

A4. “Boolean connectives”, namely, the symbols listed below, separated by
commas

¬,∧,∨,⇒,≡

� (1) Even though I say very emphatically that p, q, r, etc., and also true and false
are just symbols,†—the former for variables, the latter for constants—yet, I will
stop using the qualification “symbols”, and just say “variables” and “constants”.
This entails an agreement: I always mean “symbols”, I just don’t say it.

(2) Each of true and false are “single” symbols—not words of symbols (made
of simpler symbols such as “t, r, u, e, f, a, l, s”). Some logicians emphasize
this—and the “meaningless” character of these symbols—by using, instead of
the symbols true and false, the symbols > and ⊥ respectively.

Note. In class it is hard to write italics or boldface type on the blackboard,
so I write these symbols with underlining instead, as true and false respectively. �
1.1 Definition. (Strings or expressions) An ordered sequence of symbols
from an alphabet, written adjacent to each other without any visible separators
(space, comma, or the like) is called a string (also “word” or expression) over the
alphabet. E.g., aabba is a string of symbols over the alphabet {a, b, c, 0, 1, 2, 3}
(note that you don’t have to use all the alphabet symbols in any given string,
and, moreover, repetitions are allowed). “Ordered” means that aab 6= aba.

We denote arbitrary strings over the alphabet A1.–A4. by “string vari-
ables”, i.e., names that stand for arbitrary‡ or specific§ strings.

These string variables—by agreement—will be denoted by upper case letters
A,B,C,D,E with or without primes or subscripts. In particular, since Boolean
expressions (and theorems) are strings, this naming is valid for this special case
too. �

We are ready to define

1.2 Definition. (Formula-calculation or formula parse)
A formula-calculation (or formula-parse) is any finite (ordered) sequence of

strings that we may write respecting the following three requirements:

1. At any step we may write any symbol from A1. or A2.

2. At any step we may write the string (¬A), provided we have already written
the string A

†More emphatic logicians say “meaningless symbols”.
‡E.g., “let A be any string”.
§E.g., “let A stand for (¬(p ∧ q))”.

Boolean expressions and Theorems c© by George Tourlakis

1. Formula calculus 3

3. At any step we may write any of the strings (A ∧B), (A ∨B), (A⇒ B),
(A ≡ B), provided we have already written the strings A and B.

�

1.3� Example. In the first step of any formula calculation only the require-
ment (1) of Definition 1.2 is applicable, since the other two require the existence
of prior steps. Thus in the first step we may only write a variable or a constant.
In all other steps, all the requirements (1)–(3) are applicable.

Here is a calculation (the comma is not part of the calculation, it just sepa-
rates strings written in various steps):

p, true, (¬true), q

Ensure that the above obeys Definition 1.2.
Here is a more “interesting” one:

p, q, (p ∨ q), (p ∧ q),
(
(p ∨ q) ≡ q

)
,
(
(p ∧ q) ≡ p

)
,
((

(p ∨ q) ≡ q
)
≡ ((p ∧ q) ≡ p

))
�

1.4 Definition. (Boolean expressions or WFFs) A string A over the al-
phabet A1.–A4. will be called a Boolean expression or a well-formed-formula
iff † it is a string written at some step of some formula-calculation.

The set of Boolean expressions we will denote by WFF. �

1.5� Remark. (1) The idea of presenting the definition of formulas as a “con-
struction” or “calculation” goes as far back as—at least—[1, 3].

(2) We used, in the interest of user-friendliness, active or “procedural” lan-
guage in Definition 1.2‡ (i.e., that we may do this or that in each step). A
mathematically more austere (hence “colder”(!)) approach that does not call
upon anyone to write anything down—and does not speak of “steps”—would
say exactly the same thing as Definition 1.2 rephrased as follows:

I A formula-calculation (or formula-parse) is any finite (ordered) sequence
of strings A1, A2, . . . , An such that—for all i = 1, . . . , n—Ai is one of:

1. Any symbol from A1. or A2.

2. (¬A), provided A is the same string as some Aj , where 1 ≤ j < i.

3. Any of the strings (A ∧ B), (A ∨ B), (A ⇒ B), (A ≡ B), provided A is
the same string as some Aj , where 1 ≤ j < i and B is the same string as
some Ak, where 1 ≤ k < i (it is allowed to have j = k, if needed). J

†If and only if.
‡Exactly as [3] does.

Boolean expressions and Theorems c© by George Tourlakis

4 0. Boolean expressions and Theorems

(3) There is an advantage in the procedural formulation 1.2. It makes it
clear that we build formulas in stages (or steps), each stage being a calculation
step.

In each step where we apply requirement (2) or (3) of 1.2 we are building a
more complex formula from simpler formulas.

Moreover, we are building a formula from previously built formulas.

These last two remarks are at the heart of the fact that we can prove prop-
erties of formulas by induction on the number of steps (stages) it took to build
them (see next section). �

The concluding remark above motivates an “inductive” or “recursive” defi-
nition of formulas, which is the favourite definition in the “modern” literature,
and we should become familiar with it:

1.6 Definition. (WFF) The set of well-formed-formulas is the smallest set
of strings, WFF, that satisfies

(1) All Boolean variables are in WFF, and so are the symbols true and false.

(2) If A and B are any strings in WFF, so are the strings (¬A), (A ∧ B),
(A ∨B), (A⇒ B), (A ≡ B).

�

1.7� Remark.

(a) Why “inductive”? Because item (2) in 1.6 defines the concept “formula” in
terms of (a smaller, or earlier, instance of †) “itself”: It says, in essence,
“. . . (A ∨ B) is a formula, provided we know that A and B are formulas
. . .”

(b) Part (1) in 1.6 defines the most basic, most trivial formulas. This part con-
stitutes what we call the “Basis” of the inductive definition, while part (2)
is called the inductive, or recursive, part of the definition.

(c) 1.6 and 1.4 say the same thing, looking at it from opposite ends: Indeed,
suppose that we want to establish that a given string D is a formula. If
we are using 1.4, we will try to build D via a formula calculation, starting
from “atomic” ingredients (variables and constants) and building as we go
successively more complex formulas until finally, in the last step, we obtain
D.

If on the other hand we are using 1.6, we are working backwards (and build
a formula-calculation in reverse!). Namely, if D is not atomic, we try to
†Each of A and B are parts—subexpressions or substrings—of (A∨B), so they are “smaller”

than the latter. They are also “earlier” in the sense that we must already have them—i.e.,
know that they are formulas—in order to proclaim (A ∨B) a formula.

Boolean expressions and Theorems c© by George Tourlakis

1. Formula calculus 5

see—from its form—what was the last connective applied. Say, it was ⇒,
that is to say, D is (A ⇒ B) for some strings A and B. Taking each of A
and B in turn as (a new, smaller) “D” we repeat this process—of verifying
that D is a formula. And so on. This is a terminating process since the new
strings we obtain (for testing) are always smaller than the originals.

Of course, I did not prove here that the two definitions define the same set
WFF.† But they do!

Technically, the term “smallest” is crucial in 1.6 and it corresponds to the
similarly emphasized “iff” of 1.4. A proof that the two definitions are equiv-
alent is beyond our syllabus. In Chapter 2 however I give a proof—solely
for the benefit of the ambitious reader—in the analogous case where the in-
ductive and calculational ‡ definitions of “theorem” rather than “formula”
are compared.

�
In the course of a formula-calculation (1.2), some formulas we write down

without looking back. (Step of type (1)). Some others we write down by combin-
ing via one of the connectives ∧,∨,⇒,≡ two formulas A and B already written,
or by prefixing one already written formula, C, by ¬.

In terms of the construction by stages then, the formula built in this last
stage had as immediate predecessors A and B in the first case, or just C in the
second case.

One can put this elegantly via the following definition:

1.8 Definition. (Immediate predecessors) None among the constants true
and false, and among the variables, have any immediate predecessors.

Any of the formulas (A ∧ B), (A ∨ B), (A ⇒ B), (A ≡ B) have A and B as
immediate predecessors.

(¬A) has exactly one immediate predecessor: A.
Sometimes we use the acronym “i.s.” for “immediate predecessor”. �

1.9� Remark. (Priorities) In practice, too many brackets make it hard to read
complicated formulas. Thus, texts (and other writings in Logic) often come up
with

An agreement on how to be sloppy, and, yet, get away with it.

This agreement tells us what brackets are redundant—and hence can be
removed—in a formula written according to Definitions 1.4 and 1.6, while pre-
serving its meaning:

1. Outermost brackets are redundant.
†I only handwaived to that effect, arguing that for any string D in WFF, 1.4 builds a

calculation the normal way, while 1.6 builds it backwards. I conveniently swept under the rug
the case where D is not in WFF, i.e., is not correctly formed.
‡A theorem-calculation—unlike formula calculation—has a special name: “Proof”.

Boolean expressions and Theorems c© by George Tourlakis

6 0. Boolean expressions and Theorems

2. Any other pair of brackets is redundant if its presence can be understood
from the priority, or precedence, of the connectives. Higher priority con-
nectives bind before lower priority ones. The order of priorities (decreas-
ing from left to right) is:

¬,∧,∨,⇒,≡ (∗)

3. In a situation like “. . . � (A) � . . .”—where � is any connective listed in (∗)
above—the right � acts before the left. As we say, all connectives are right
associative.

It is important to emphasize:

(a) This “agreement” results into a shorthand notation. Most of the strings
depicted by this notation are not correctly written formulas, but this is fine:
Our agreement allows us to decipher the shorthand and uniquely recover the
correctly written formula we had in mind.

(b) I gave above the convention followed by 99.9% of the writings in Logic, and
by almost the totality of Programming Language definitions (when it comes
to “Boolean expressions” or “conditions”).

The text differs in ∧ versus ∨ (check it!) and in the associativities. It gives
left associativity to some and right associativity to others.

(c) The agreement on removing brackets is a syntactic agreement.

In particular, right associativity says simply that, e.g., p∨q∨r is shorthand
for (p ∨ (q ∨ r)) rather than ((p ∨ q) ∨ r).
However, no claim is either made or implied that (p∨(q∨r)) and ((p∨q)∨r)
have “different meanings”. Indeed, it is trivial to check that the two evaluate
identically in every state.

�
1.10 Example. p means p.
¬p means (¬p).
p⇒ q ⇒ r means (p⇒ (q ⇒ r)).
If I want to simplify ((p ⇒ q) ⇒ r), then (p ⇒ q) ⇒ r is as simple as I can

get it.
¬p ∧ q ∨ r is short for (((¬p) ∧ q) ∨ r).
If in the previous I wanted to have ¬ act last, and ∨ to act first, then the

minimal set of brackets necessary is: ¬(p ∧ (q ∨ r)).

�� A connection with things to come. Any set of “rules” that tell us how
to correctly write down strings constitute a so-called “grammar”. Formal lan-
guage theory studies grammars, the sets of strings they define (called “formal
languages”), and the procedures (or “machines”) that are appropriate to parse
these strings.

Boolean expressions and Theorems c© by George Tourlakis

2. Induction on WFF Some easy properties of WFF 7

In COSC2001 one learns about formal languages. A student of COSC2001
would quickly realize that Definition 1.6 is, in effect, a definition of a grammar
for the “language” (i.e., set of strings) WFF. He or she would utilize a neat
notation,† such as

E ::=A
∣∣∣(E ∧ E)

∣∣∣(E ∨ E)
∣∣∣(E ⇒ E)

∣∣∣(E ≡ E)
∣∣∣(¬E)

A ::=true
∣∣∣false

∣∣∣p∣∣∣q∣∣∣r∣∣∣p′∣∣∣ . . .
to effect the definition, where E stands for (Boolean) Expression, A for Atom,
“::=” is read “is defined to be” and “

∣∣∣” is read “or”, separating alternatives in
an “is defined to be”-list.

Thus, the first line, in English, says “A (Boolean) expression is defined to
be an atom, or “(” followed by an expression, followed by “∧” followed by an
expression followed by “)”, or, etc.”

The second line defines “atom” as any of the constants or the variables (note
the separating “or”s). ��
2. Induction on WFF

Some easy properties of WFF

Suppose now that we want to prove that every A ∈WFF‡ has a “property” P.� First off, we write “P(A) is true”—or just “P(A)”—as shorthand for “A has
property P”. �

Now, since formulas A are built in stages, the sensible—indeed obvious—
thing to do towards proving

P(A), for all A ∈WFF (1)

is to prove

I1. All formulas that we can build in stage 1 have property P,

I2. Property P is preserved (or, propagates) by the building-operations ((2) and
(3) of 1.2).

In other words, if the building blocks used in an application of (2) or (3)
have property P, then so does the string we wrote down as a result of such
application.� Instead of “P propagates with an application of (2) and (3)” we can say that “a

formula inherits a property P if all its immediate predecessors (Definition 1.8)
have P”. �
†Known as “BNF notation”, or Backus-Naur-Form notation.
‡“x ∈ y” is shorthand for the claim “x is a member of the set y”.

Boolean expressions and Theorems c© by George Tourlakis

8 0. Boolean expressions and Theorems

Intuitively,† the above guarantees that no matter what stage we look at, the
string produced at that stage has P (since the strings written in stage 1 have
P by I1; the ones written in stage 2 inherit P from stage 1‡; the ones written
in stage 3 inherit P from 1 and 2;. . .; the ones written in stage n+ 1 inherit P
from the ones in stages 1 to n;. . .)

The procedure I1.–I2. for proving (1) is called Induction on Formulas. It is
an immediate consequence of our preceding remarks that it can be rephrased:

To prove (1), prove instead,

1. All atomic Boolean expressions have P—this step is called the Basis.

2. If A has P, then so does (¬A)

3. If A and B have P, then so do (A ∧B), (A ∨B), (A⇒ B) and (A ≡ B).

The “if-part” in steps 2. and 3. above is called the Induction Hypothesis, or just
the “I.H.”

Let us apply induction on formulas to prove a few properties of formulas.

2.1 Theorem. Every Boolean expression A has the same number of left and
right brackets.

Proof. We prove the property of A claimed in the theorem using induction on
formulas, as formulated by 1.–3. above.

1. p, q, r, . . . as well as true and false have 0 left and 0 right brackets. We are
OK.

2. If A has m left and m right brackets, then the property is inherited by
(¬A): m+ 1 left and m+ 1 right brackets.

3. If A m left and m right brackets and B nm left and n right brackets, then
each of (A ∧B), (A ∨B), (A⇒ B) and (A ≡ B) have n+m+ 1 left and
n+m+ 1 right brackets. Done.

�

2.2 Corollary. Any nonempty proper prefix of a Boolean expression A has
more left than right brackets.

Proof. Induction on A.
†There are infinitely many steps in the argument of this paragraph, so it cannot be a

proof. It is just a “plausibility” argument of the “domino effect” type, such as the ones found
in elementary texts in defense of induction on the integers. Essentially, I1.–I2. is induction
on the integers, for stages are positive integers. Translating makes this clear: I1., the “basis”,
says that we must verify that everything built in stage s = 1 has property P. I2. says that
if everything we construct in stages s satisfying 1 ≤ s ≤ n has P [the Induction Hypothesis
or “I.H.”], then so does everything constructed in stage s = n+ 1 [the induction step].
‡If not atomic. Atomic ones are covered by I1.

Boolean expressions and Theorems c© by George Tourlakis

2. Induction on WFF Some easy properties of WFF 9

1. For the basis we observe that none of the atomic formulas has any nonempty
proper prefixes, so we are done without lifting a finger.

2. Case of (¬A), on the I.H. that A has the property stated in the corollary.
Well, let’s check the nonempty proper prefixes of (¬A). These are (quotes
not included, of course):

(a) “(”. OK, by inspection.

(b) “(¬”. Ditto.

(c) “(¬C”, where C is a nonempty proper prefix of A. By I.H., if m is the
number of left and n the number of right brackets in C, then m > n.
But the number of left brackets of “(¬C” is m+ 1. Since m+ 1 > n,
we are done.

(d) “(¬A”. By 2.1, A has, say, k left and k right brackets. We are OK,
since k + 1 > k.†

3. Case of (A◦B)—where “◦” is any of ∧,∨,⇒,≡—on the I.H. that A and B
have the property stated in the corollary. Well, let’s check the nonempty
proper prefixes of (A ◦B). These are (quotes not included, of course):

(i) “(”. OK, by inspection.

(ii) “(C”, where C is a nonempty proper prefix of A. By I.H., if m is the
number of left and n the number of right brackets in C, then m > n.
But the number of left brackets of “(C” is m+ 1. OK.

(iii) “(A”. By 2.1, A has, say, k left and k right brackets. We are OK,
since k + 1 > k.

(iv) “(A◦”. The accounting exercise is exactly as in (iii). OK.

(v) “(A ◦C”, where C is a nonempty proper prefix of B. By 2.1, A has,
say, k left and k right brackets. By I.H., C has, say, m left and r
right brackets, where m > r. Thus, “(A ◦C” has 1 + k +m left and
k + r right brackets. OK!

(vi) “(A ◦B”. Easy.

�

The following tells us that once a formula has been written down correctly,
there is a unique way to understand the order in which connectives apply.

2.3 Theorem. (Unique Readability) For any formula A, its immediate pre-
decessors are uniquely determined.

†The I.H. was not needed in this step. Indeed, it was only used in the previous step.

Boolean expressions and Theorems c© by George Tourlakis

10 0. Boolean expressions and Theorems

Proof. Obviously, if A is atomic, then we are OK (nothing to prove, for such
instances of A have no i.s.). Moreover, no A can be seen (written) as both
atomic and non atomic.† The former do not start with a bracket, the latter do.‡

Suppose that A is not atomic. Is it possible to build this string in more
than one ways?

Can A have two different sets of i.s., as listed below? (Below, when I
say “we are OK” I mean that the answer is “no”, as the theorem claims.)

1. (¬C) and (¬D)? Well, if so, C is the same string as D (why?), so in this
case we are OK.

2. (¬C) and (D ◦ E), where ◦ is any of ∧,∨,⇒,≡? Well, no (which means
we are OK in this case too). Why “no”? For if (¬C) and (D ◦ E) are
identical strings (they are, supposedly, two ways to read A, remember?),
then “¬” must be equal (same symbol) to the first symbol of D. Now
the first symbol of D is one of “(” or an atomic symbol. None matches
“¬”.

3. (C ◦ D) and (E � G), where ◦ and � are any of ∧,∨,⇒,≡ (possibly the
same symbol) and either C and E are different strings, or D and G are
different strings, or both? Well, nope!

(i) If C and E are different, then, say, C is a proper prefix of E (of course,
C is nonempty as well (why?)). By 2.2, C has more left brackets than
right, but—being also a formula—it has the same number of left and
right brackets (by 2.1). Impossible! The other case, E being a proper
prefix of C instead, is equally impossible.

(ii) If C and E match, then ◦ and � match. But then D and G are
identical strings for the same reason as in 1. above.

Pause. What was the resaon in 1. above?

Having answered “no” in all cases, we are done. �

3. Inductive definitions on formulas

Now that we know (2.3) that we can decompose a formula uniquely into its
constituent parts, we are comfortable with defining functions (more generally
“concepts”) on formulas (Boolean expressions) by induction—or recursion—on
formula structure, or as we often say, “by induction—or recursion—on formu-
las”.

Here is a familiar example, the definition of the state function “s” on an
arbitrary formula A, once the state has been defined for all variables (below I
†So we cannot be so hopelessly confused as to think at one time that A has no i.s. and at

another time that it does.
‡Easy exercise to do (by induction on formulas). Maybe I’ll assign it! Prove that the first

symbol of any formula A is one of (1) a variable (2) true, (3) false, (4) a left bracket.

Boolean expressions and Theorems c© by George Tourlakis

3. Inductive definitions on formulas 11

use “p” generically, so that “s(p)” refers to all variables p that a state has been
defined).

s(p) = whatever we assigned, t or f
s(true) = t
s(false) = f

s
(

(¬A)
)

= s(A)

s
(

(A ∧B)
)

= s(A) · s(B)

s
(

(A ∨B)
)

= s(A) + s(B)

s
(

(A⇒ B)
)

= s(A)→ s(B)

s
(

(A ≡ B)
)

=
(
s(A) = s(B)

)

Why the above works is clear at the intuitive level: Lack of ambiguity in de-
composing “C” uniquely as one of (¬A), (A ∧ B), (A ∨ B), (A ⇒ B), (A ≡ B)
allows us to know how to compute a unique answer for s(C). The “why”, at
the technical level, is beyond our reach.

Here is an example of a definition of a “concept” regarding formulas, by
induction on formulas.

3.1 Definition. (Occurrence of a variable) We define “p occurs in A” and
“p does not occur in A” simultaneously.

Occ1. (Atomic) p occurs in p. It does not occur in any of r, true, false—where
r is a variable distinct from p.

Occ2. p occurs in (¬A) iff it occurs in A.

Occ3. p occurs in (A ◦B)—where ◦ is one of ∧,∨,⇒,≡ —iff it occurs in A or
B or both.†

�

3.2� Remark. We wanted to be user-friendly (which often means “sloppy”) in
the first instance, and said that the above defines a “concept”: Occurs, does
not occur. In reality, all such “concepts” that we may define by recursion on
formulas are just functions.

For example, the “concept” in question here is captured by the function
“occurs(p,A)”, where occurs(p,A) = 0 means “p occurs inA”, and occurs(p,A) =
1 means “p does not occur in A”. �
†Needless to say, by the “iff”, it does not occur exactly when it does not occur in A and

does not occur in B.

Boolean expressions and Theorems c© by George Tourlakis

12 0. Boolean expressions and Theorems

We conclude this section with the definition of substitution in a Boolean
expression, and with the proof of two important properties of substitution.

Intuitively, the symbol “A[p := B]” means the result of the replacement of
the variable p in A—in all its occurrences—by the formula B. We may think of
this operation as defining a function from formulas to strings:

Input: A, p,B, output: the string A[p := B].

3.3 Definition. (Substitution in BE) Below “=” means equality of strings.
The definition states the obvious: (1) Handles the basis cases in the trivial
manner, and (2) when A is actually build from i.s., it says that we substitute
into each i.s. first, and then apply the connective.

A[p := B] =



B if A = p

A if A = r (where p 6= r), or
A = true, or A = false(

¬(C[p := B])
)

if A = (¬C)(
(C[p := B]) ◦ (D[p := B])

)
if A = (C ◦D)

where ◦ is one of ∧,∨,⇒,≡.
As in [2], when we write Boolean expressions in least parenthesized form (i.e.,

sloppily), then “[p := . . .]” has highest priority. Thus, e.g., A∨B[q := E] means
A ∨ (B[q := E]). �

We state and prove two easy and hardly unexpected properties of substitu-
tion:

3.4 Proposition. † For any formulas A and B and variable p, A[p := B] is a
(well-formed!) formula.

Proof. Induction on A, keeping an eye on Definition 3.3.
In the Basis we get p or A (see 3.3!), a formula in either case.
The induction steps:
For ¬: Does A, that is, (¬C) inherit the property from its i.s. C? You bet.

See the 3rd case in the definition above: If C[p := B] is a formula, then so is(
¬(C[p := B])

)
by 1.6.

For ◦: Does A, that is, (C ◦ D) inherit the property from its two i.s., C
and D? You bet. See the 4th case in the definition above: If C[p := B] and
D[p := B] are formulas, then so is

(
(C[p := B])◦(D[p := B])

)
, again by 1.6. �

†A “Proposition” is a theorem—here metatheorem—that did not quite make it to be called
that. You see, people reserve the term “Theorem”, or “Metatheorem”, for the “important”
or earth shattering stuff that we prove. All else that we prove are just “Propositions”, some
are “Lemmata” (singular: Lemma)—if they have just “auxiliary status”, just like FORTRAN
subroutines—and some are “Corollaries”, i.e., “little” Theorems (or Metatheorems) that follow
trivially—more or less—from earlier results.

Boolean expressions and Theorems c© by George Tourlakis

4. Theorem calculus 13

Finally,

3.5 Proposition. If p does not occur in A, then A[p := B] = A, where we
mean “=” as equality of strings—it says that the two sides read, as strings,
exactly the same.

Proof. Again, induction on formulas A:
Basis. A can only be r (r 6= p), true or false, by Definition 3.1. Then, by

Definition 3.3 (2nd case), A[p := B] = A. OK, so far.
For the induction steps we assume that the i.s. of A have the property (I.H.),

and prove that A inherits it :
For A = (¬C): We are told that occurs(p, (¬C)) = 1 (see Remark 3.2).

By 3.1, occurs(p, C) = 1. By I.H. above, C[p := B] = C and we are done
by 3.3, case 3.

For A = (C ◦ D): We are told that occurs(p, (C ◦ D)) = 1. By 3.1,
occurs(p, C) = 1 and occurs(p,D) = 1. By I.H. above, C[p := B] = C and
D[p := B] = D, and we are done by 3.3, case 4. �

4. Theorem calculus

We are ready to calculate theorems. As in formula calculations, we need to
know:

(1) What we can write down outright
(2) What we can write as a result of things that we already wrote down.
Item (1) is addressed by the axioms. These are some well chosen formu-

las that we agree to write down at any step, without checking to see what—if
anything—we wrote earlier.

In intuitive terms—granting that the quest for theorems is the quest for
“mathematical truths”—these axioms are our initial truths, which, for reasons
of our own, take for granted (“without proof”—but I am in the danger of getting
ahead of myself).

Item (2) is serviced by our “writing rules” or rules of inference. The latter
are often written as fractions, like

P1, P2, . . . , Pn
Q

(R)

where all of P1, . . . , Pn, Q denote formulas.
A rule like (R) above is understood as follows: In the course of a theorem

calculation we are allowed to write the formula Q at any stage, as long as all of
P1, . . . , Pn have already been written in earlier stages.

But let us not get carried away in generalities, and let us spell out the exact
rules of inference that we will use in this course, at least the ones we will need
to define proof and theorem.†

†We will soon learn that we can apply additional rules in a theorem calculation, that were
not mentioned in the definition below. Such rules we call derived rules, or secondary rules.

Boolean expressions and Theorems c© by George Tourlakis

14 0. Boolean expressions and Theorems

4.1 Definition. (Rules of Inference) The following three are our primary
rules of inference:‡

Inf1
A ≡ B

C[p := A] ≡ C[p := B]
, for any A,B, p, C (Leibniz)

Inf2
A,A ≡ B

B
, for any A,B (Equanimity)

Inf3
A ≡ B,B ≡ C

A ≡ C
, for any A,B,C (Transitivity)

An instance of a rule of inference is obtained by replacing all the letters A,B,C
and p by specific formulas and a specific variable respectively. �

4.2� Remark. (1) The rules above apply to formulas, not to arbitrary strings
(unlike the formula formation rules of Section 1). The capital letters then stand
for any formula, while the lower case, “p”, for any variable.

(2) Other than the restriction that the A,B,C are formulas, there is NO
other restriction on the letters. Thus, any of the rules “says” that “if in earlier
stage(s) the formula(s) in the numerator of a rule have already been written—
emphasis: regardless of what led to them being written—then we can write the
denominator down in the present stage.” �

So we have disclosed our rules, in preparation of the following definition.
Unfortunately, we will not disclose our set of axioms for the following reasons.

There are two types of axioms:
(1) Those that are common to ALL mathematical applications, and hence

are considered as part of Logic. We call them for that reason logical axioms.
These we will disclose little by little, as our story unfolds (from Ch.3, to

Ch.9, to Ch.8). But we will not do so right away now, and we will not need to
do so anyway.

(2) Those that are special to particular branches of mathematics or to partic-
ular situations/examples—and may not “hold” outside that branch of MATH,
or outside that situation/example. Certainly they will not hold in all mathe-
matics. For example, a “special” axiom of “Peano Arithmetic” (on the natural
numbers N) is “x+ 1 6= 0”. Note how this axiom is not true over all reals.

Since our job here (in MATH1090) is not to do “all mathematics”, we will
simply acknowledge the presence of such special axioms without saying—99.96%
of the time—which ones we have in mind. Thus, this generality will allow us to
explore and practice the reasoning that takes place in any MATH field, without
specifically studying any particular MATH field.
‡Actually, it turns out that we only need Inf1–Inf2 as primary, and we can demote Inf3

to derived status.

Boolean expressions and Theorems c© by George Tourlakis

4. Theorem calculus 15

We write Λ to denote the set of all logical axioms (for now, these are the
ones in [2], Ch.3, with a few minor amendments).

We write Γ or Σ or ∆ for any set of special (NOT logical) axioms. By
the way, “special” axioms are called “nonlogical” by most logicians. We will
sometimes call them assumptions.†� So our totality of axioms at any given point in an exposition—if we stick to the
Γ notation—is Λ∪Γ, i.e., the set of all formulas in Λ and all formulas in Γ, put
together. Λ is fixed, but not yet spelled out. Γ changes with the context. On
occasion it will be spelled out. �

We are ready! (Compare with Definition 1.2.)

4.3 Definition. (Theorem calculations—or, Proofs) Atheorem-calculation,
or proof, is any finite (ordered) sequence of formulas that we may write respect-
ing the following two requirements:

In any stage we may write down

Pr1 Any axiom (member of Λ ∪ Γ)

Pr2 Any formula that appears in the denominator of an instance of a rule Inf1–
Inf3 as long as all the formulas in the numerator of the same instance of
the (same) rule have already been written down at an earlier stage.

�

4.4 Definition. (Theorems) Any formula A that appears in a proof with
nonlogical axiom set Γ is called a Γ-theorem. We write Γ ` A to indicate this.
We say “A is proved from Γ” or “Γ proves A”.

If Γ is empty (Γ = ∅)—i.e., we have no special assumptions, we are just
“doing Logic”—then we simply write ` A and call A just “a theorem”.� Caution! We may also do this out of laziness and call a Γ-theorem just “a
theorem”, if the context makes clear which Γ 6= ∅ we have in mind. �

We say that A is an absolute, or logical theorem whenever Γ is empty. �

� Note how in the symbol “` A” we take Λ for granted and do not mention it. �
So, 4.4 tels us what kind of theorems we have:

1. Anything in Λ ∪ Γ.

2. For any formula C and variable p, C[p := A] ≡ C[p := B], provided (we
know that†) A ≡ B is a (Γ-) theorem.

3. B (any B), provided (we know that) A ≡ B and A are theorems.
†One mathematician calls them “temporary” assumptions.
†E.g., by looking back at an earlier stage.

Boolean expressions and Theorems c© by George Tourlakis

16 0. Boolean expressions and Theorems

4. A ≡ C (any A ≡ C), provided (we know that) A ≡ B and B ≡ C are
theorems.

Hey! The above is a recursive definition of (Γ-) theorems, and is worth
recording (compare with Definition 1.6).

4.5 Definition. (Theorems—inductively) A formula E is a Γ-theorem iff
E fulfills one of (“=” below is equality of strings!):

Th1 E is in Λ ∪ Γ.

Th2 For some formula C and variable p, E =
(
C[p := A] ≡ C[p := B]

)
, and

(we know that) A ≡ B is a (Γ-) theorem.

Th3 (we know that) A ≡ E and A are a theorems.

Th4 E =
(
A ≡ C

)
and (we know that) A ≡ B and B ≡ C are theorems.

�

Needless to say that we can prove properties of theorems by induction on
theorems, which is equivalent to doing induction on stages (compare with the
case for formulas, Section 2). Our Chapter 2 (“Post’s theorem and other things”)
looks into this issue, among other things.

Boolean expressions and Theorems c© by George Tourlakis

Bibliography

[1] N. Bourbaki. Éléments de Mathématique; Théorie des Ensembles. Hermann,
Paris, 1966.

[2] David Gries and Fred B. Schneider. A Logical Approach to Discrete Math.
Springer-Verlag, New York, 1994.

[3] H. Hermes. Introduction to Mathematical Logic. Springer-Verlag, New York,
1973.

Boolean expressions and Theorems c© by George Tourlakis

