Lassonde Faculty of Engineering EECS MATH1090. Problem Set No. 2
 Posted: October 1, 2018

Due: Oct. 23, 2018, by 3:00pm; in the course assignment box.

 Administrative Stuff. It is worth remembering (from the course outline):The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course.
A brief but full justification of each proof step is required!
Do all the following problems; (5 Points Each).
(2) Important Notes; Read First!

II "Show that -or prove that- $\Gamma \vdash A$ " means "write a Γ-proof that establishes A ". The proof can be Equational or Hilbert-style. Equational is rather easier in Boolean Logic. But it is your choice, unless a problem explicitly asks for a particular proof style.

You may NOT use any of these tools in this Problem Set: Deduction Theorem, Resolution, Post's Theorem, Cut Rule. Any solutions that use these tools will be discarded (grade 0).

Recall that notation such as \mathbf{p} is for metavariables or syntactic variables that stand for any Boolean variable of our alphabet \mathcal{V} (that is, any of $p, q, r_{123}^{\prime \prime}$, etc.). In particular, just as in algebra x and y may hold the same value, similarly here \mathbf{p} and \mathbf{q} might stand for the same variable, say r. So, if we intend them to stand for different variables we will indicate this by simply saying "where \mathbf{p} and \mathbf{q} are different".

1. Let \mathbf{p} and \mathbf{q} be different, and let \mathbf{q} be fresh for C.

Prove by induction on formulas C (NOT by induction on their complexity; no credit will be given for such proof) that the result of the substitution $C[\mathbf{p}:=\mathbf{q}][\mathbf{q}:=\mathbf{A}]$ is the same as that of the substitution $C[\mathbf{p}:=A]$.
2. Show that $A \equiv C \vdash A \rightarrow(B \rightarrow C)$
3. Show that $\vdash A \equiv B \equiv A \equiv \perp \equiv B \equiv \perp$
4. Show that $\vdash A \vee B \equiv(A \rightarrow B) \rightarrow B$
5. Suppose you are given for some formulae A and B and set Γ that $\vdash A$ and $\Gamma \vdash B$. Show that $\Gamma \vdash A \vee B \rightarrow A \wedge B$.
6. For any formulas A and B show that $A \wedge \neg A \vdash B$
7. Prove that $A, B \vdash A \equiv B$.
8. For any formulas A, B and C, prove that

$$
\vdash A \rightarrow B \rightarrow((C \rightarrow A) \rightarrow(C \rightarrow B))
$$

9. For any formula A, prove that $\perp \vdash A$.
(2) Only an equational proof is acceptable in exercise \#9 (0 points for a Hilbert-style proof).
