Lassonde Faculty of Engineering EECS

MATH1090. Problem Set No. 3

Posted: October 26, 2018
Due: Nov. 20, 2018, by 2:30pm; in the course assignment box.

Administrative Stuff. It is worth remembering (from the course outline):
The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course.
A brief but full justification of each proof step is required!
Do all the following problems; (5 Points Each).

Important Notes; Read First!

"Show that -or prove that- $\Gamma \vdash A$ " means "write a Γ-proof that establishes A ". The proof can be Equational or Hilbert-style. Equational is rather easier in Boolean Logic. But it is your choice, unless a problem explicitly asks for a particular proof style.
"Required Method" means that any other method will gets a 0-grade.

It is alright to use the Cut Rule in each problem, unless specified otherwise!
Post's Theorem is NOT allowed in Problems 1-4.

1. Show that $A \equiv C \vdash A \rightarrow(B \rightarrow C)$

Required Method: Use a Hilbert style proof and the Deduction Theorem.

Page 1
G. Tourlakis
2. Show that $\vdash A \vee B \equiv(A \rightarrow B) \rightarrow B$

Required Method: Use a Resolution proof in each direction obtained by the ping-pong theorem.
3. For any formulas A, B and C, prove that

$$
\vdash A \rightarrow B \rightarrow((C \rightarrow A) \rightarrow(C \rightarrow B))
$$

Required Method: Use a Hilbert style proof and the Deduction Theorem.
4. Now prove a somewhat different theorem than the above: For any formulas A, B and C, prove that

$$
\vdash(A \rightarrow B) \rightarrow((C \rightarrow A) \rightarrow(C \rightarrow B))
$$

Required Method: Use a a Resolution proof.
5. For any formula A prove two things:

$$
\vdash(\forall \mathbf{x}) A \equiv(\forall \mathbf{x}) A
$$

and

$$
\vdash(\forall \mathbf{x})(\forall \mathbf{x})(\forall \mathbf{z})(A \equiv A)
$$

6. Let A, B be any formulas, and \mathbf{x} a variable that is not free in B.

Prove that

$$
(\forall \mathbf{x})(A \rightarrow B), \neg B \vdash(\forall \mathbf{x}) \neg A
$$

7. Use an Equational Proof to show

$$
\vdash(\exists \mathbf{x})(\exists \mathbf{y}) A \equiv(\exists \mathbf{y})(\exists \mathbf{x}) A
$$

8. Prove $\vdash(\forall \mathbf{x})((A \vee B) \rightarrow C) \rightarrow(\forall \mathbf{x})(A \rightarrow C) \rightarrow(\forall \mathbf{x})(B \rightarrow C)$.

Page 2

G. Tourlakis

