Lassonde School of Engineering
 Dept. of EECS
 Professor G. Tourlakis
 MATH1090 B. Problem Set No
 Posted: Sept. 15, 2019

Due: Oct. 7,2019 ; by $2: 00 \mathrm{pm}$, in the course assignment box.

The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course.

1. (5 MARKS)

Prove that the string $\rightarrow \rightarrow$ cannot appear as a substring in any mf.
Restrictions. Your proof will be acceptable only if it is either by inducion on formulas, or by analysing formula-calculations.
2. Recall that a schema is a tautology iff all its instances are tautologies.

Which of the following schemata are tautologies? Show the whole process that lead to your answers.

I note that in the six sub-questions below I am not using all the formally necessary brackets.

- $(1 \mathrm{MARK})((A \rightarrow B) \rightarrow A) \rightarrow A$
- (1 MARK) $A \vee B \rightarrow A \wedge B$
- (1 MARK) $A \rightarrow B \equiv \neg B \rightarrow \neg A$
- (1 MARK$) A \wedge(B \equiv C) \equiv A \wedge B \equiv A \wedge C$

Page 1
G. Tourlakis

- (1 MARK) $A \vee(B \equiv C) \equiv A \vee B \equiv A \vee C$
- (1 MARK) $\neg A \equiv A \equiv \perp$

3. (4 MARKS) Prove that if we have $\neg A \models_{\text {taut }} B$ and $B \models_{\text {taut }} \perp$ then we must have $\models_{\text {taut }} A$.
4. (5 MARKS) Prove that we have $A, B \models_{\text {taut }} C$, then we also have $\models_{\text {taut }}$ $A \rightarrow B \rightarrow C$ and conversely. Or as we usually put it: " $A, B \models_{\operatorname{taut}} C$ iff $\models_{\text {taut }} A \rightarrow B \rightarrow C^{\prime \prime}$.

Here, using truth tables or truth-table shortcuts, you will show that if you have one side of the "iff", then you must have the other. There are two directions in your proof!
5. (5 MARKS) Prove that the complexity of a wff equals the number of its right brackets.

Caution. The proof must be by analysing formula calculations or by induction on formulas.
6. (3 MARKS) Prove that if for some formulas A and B it is the case that $A \wedge B \models_{\text {taut }} \perp$, then it is also the case that $\models_{\text {taut }} A \rightarrow \neg B$.
7. (6 MARKS) True or false? Prove whichever answer you opt for!

The statement

$$
\models_{\text {taut }} A \text { iff } \models_{\text {taut }} B
$$

is equivalent (i.e., both are true, or both are false) to the statement

$$
\models_{\text {taut }} A \equiv B
$$

8. (5 MARKS) By using truth tables, or using related shortcuts, examine whether or not the following tautological implications are correct.
Show the whole process that led to each of your answers.

- $p \models_{\text {taut }} p \wedge q$
- $A, B \models_{\text {taut }} A \wedge B$
- $A, A \rightarrow B \models_{\text {taut }} B$
- $B, A \rightarrow B \models_{\text {taut }} A$

Page 2
G. Tourlakis

- $p \models_{\text {taut }} p \vee q$

9. (6 MARKS) Compute the result of the following substitutions, whenever the requested substitution makes sense. Whenever a requested substitution does not make sense, explain exactly why it does not.
(2) Remember the priorities of the various connectives as well as of the metaexpression " $[\mathbf{p}:=\ldots]$ "! The following formulas have not been written with all the formally required brackets.

- $p \vee(q \rightarrow p)[p:=r]$
- $(p \vee q)[p:=\mathbf{t}]$
- $(p \vee q)[p:=\top]$
- $(\top \vee q)[\top:=p]$
- $p \vee q \wedge r[q:=A]$ (where A is some formula)
- $p \vee(q \wedge r)[q:=A]$ (where A is some formula)

