Lassonde School of Engineering
 Dept. of EECS
 Professor G. Tourlakis
 MATH1090 B. Problem Set No2
 Posted: Oct. 9, 2019

Due: Oct. 30, 2019; by 2:00pm, in the course assignment box.
(2) In this problem set and onwards, $\mathbf{p}, \mathbf{q}, \mathbf{r}^{\prime}$ etc., are metavariables that stand for actual Boolean variables. As such, it is possible that, say, \mathbf{p} and \mathbf{q} stand for the same actual variable in some line of reasoning.

1. (8 MARKS)

Prove that

$$
\vdash A \equiv A
$$

in two different ways that do not use the "trick" of a Leibniz variable \mathbf{p} that does not appear in A.
2. (5 MARKS) True or False and WHY?

The following two statements - (1) and (2) - are equivalent

$$
\begin{gather*}
\Gamma \vdash A \text { iff } \Gamma \vdash B \tag{1}\\
\Gamma \vdash A \equiv B \tag{2}
\end{gather*}
$$

3. (5 MARKS) We have learnt that $\Gamma \vdash A \wedge B$ implies that $\Gamma \vdash A$ AND $\Gamma \vdash B$.

Is (1) below True or False and WHY?

$$
\begin{equation*}
\Gamma \vdash A \vee B \text { implies that } \Gamma \vdash A \text { OR } \Gamma \vdash B \tag{1}
\end{equation*}
$$

(2) Caution. If a proof style is explicitly required in what follows, then any other style used gets 0 marks regardless of its correctness.
4. (5 MARKS) Prove Equationally that

$$
A, \neg A \vdash \perp
$$

directly, without using the derived rule $C U T$ in any of its special forms.
5. (4 MARKS) Prove Equationally that $A \vdash B \rightarrow A$.
6. (4 MARKS) Prove Equationally that $A \vee B \vdash \neg B \rightarrow A$.
7. (5 MARKS) Prove that $A \rightarrow B \vdash A \vee C \rightarrow B \vee C$.
8. Prove that $A \rightarrow B, A \rightarrow C \vdash A \rightarrow B \wedge C$.

Do two proofs:

- (3 MARKS) One with the Deduction theorem (and a Hilbert-style proof).
- (5 MARKS) One Equational, WITHOUT using the Deduction theorem.

