Lassonde School of Engineering

Dept. of EECS
Professor G. Tourlakis
MATH1090 A. Problem Set No
Posted: Sept. 19, 2020
Due: Oct. 9, 2020; by 2:00 pm, in Class,
"Assignment \#1".

Q: How do I submit?

A:
(1) Submission must be ONLY ONE file
(2) Accepted File Types: PDF, RTF, MS WORD, ZIP
(3) Deadline is strict, electronically limited.
(4) MAXIMUM file size $=10 \mathrm{MB}$
(3)

It is worth remembering (from the course outline):
The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course.

1. (6 MARKS)

Use a Formula Construction to either support or reject $E A C H$ of the following statements:

- (\mathbf{p}) is a formula.
- () is a formula.
- $\mathbf{p} \rightarrow \mathbf{q}$ is a formula.

2. (4 MARKS) Prove that no wff is the empty string.

Hint. Use induction on formulas or analyse what is happening during a formula construction.
3. A formula schema is a tautology iff all its instances are tautologies.

Which of the following schemata are tautologies? Show the whole process that lead to your answers.

I note that in the six sub-questions below I am NOT always using all the formally necessary brackets.

Be sure to insert brackets CORRECTLY before you try to answer each question.

- $(1 \mathrm{MARK})((A \vee B) \vee C) \equiv(A \vee(B \vee C))$
- (1 MARK) $A \rightarrow B \equiv A \vee B \equiv B$
- (1 MARK$) \top \equiv \perp \equiv \perp$
- (1 MARK) $\neg A \vee B \equiv A \vee B \equiv B$
- (1 MARK) $A \vee B \equiv A \wedge B \equiv A$
- (1 MARK) $A \rightarrow B \equiv A \wedge B \equiv A$

4. (5 MARKS) Prove that if we have $A, B \models_{\text {taut }} C$, then we also have $\models_{\text {taut }} A \rightarrow B \rightarrow C$ and conversely.

Or as we usually put it: " $A, B \models_{\text {taut }} C \underline{\text { iff }} \models_{\text {taut }} A \rightarrow$ $B \rightarrow C$ ".

Here, using truth tables or truth-table shortcuts, you must prove that if you have one side of the "iff", then you must have the other. There are two directions in your proof!
5. (4 MARKS) Prove that every nonempty proper suffix of a wff A contains an excess of right brackets.
6. (3 MARKS) Suppose we know $\models_{\text {taut }} A \wedge B$.

Prove that we can conclude that $\models_{\text {taut }} A$ and $\models_{\text {taut }} B$.
7. (4 MARKS) Suppose we know $\models_{\text {taut }} A \vee B$.

Prove that the conclusion $\models_{\text {taut }} A$ or $\models_{\text {taut }} B$ is false.
Caution. Here you need a counter example! So you cannot argue with general A and B.
8. (5 MARKS) By using truth tables, or using related shortcuts, prove or disprove the following tautological implication claims.

Show the whole process that led to each of your answers and note that disproofs need SPECIFIC counterEXAMPLES not a loose general argument via A and B.

- $A \wedge B \models_{\text {taut }} A$
- $A \models_{\text {taut }} A \wedge B$
- $A \models_{\text {taut }} A \vee B$

Page 3
G. Tourlakis

- $A, A \equiv B \models_{\text {taut }} B$
- $B, A \rightarrow B \models_{\text {taut }} A$

9. (6 MARKS) Compute the result of the following substitutions, whenever the requested substitution makes sense.

Whenever a requested substitution does not make sense, explain exactly why it does not.
(2) Remember the priorities of the various connectives as well as of the metaexpression " $[\mathbf{p}:=\ldots]$ "! The following formulas have not been written with all the formally required brackets.

- $\mathbf{p} \vee \mathbf{q} \rightarrow \mathbf{p}[\mathbf{p}:=\mathbf{r}]$
- $(\mathbf{p} \wedge \mathbf{q})[\mathbf{p}:=\mathbf{f}]$
- $(\mathbf{p} \rightarrow \mathbf{q})[\mathbf{p}:=\mathrm{T}]$
- $\mathrm{T}[\mathrm{T}:=\mathbf{p}]$
- $(q \wedge r \rightarrow p)\left[r^{\prime}:=A\right]$ (where A is some mf and p, q, r, r^{\prime} are actual (distinct) Boolean variables; not metavariables)
- $\mathbf{p} \vee(\mathbf{q} \wedge \mathbf{r})[A:=\mathbf{r}]($ where A is some mf)

