Lassonde School of Engineering

Dept. of EECS
Professor G. Tourlakis
MATH1090 A. Problem Set No2
Posted: Oct. 9, 2020
Due: Oct. 30, 2020; by 2:00pm, in eClass, "Assignment \#2"

Q: How do I submit?

A:
(1) Submission must be ONLY ONE file
(2) Accepted File Types: PDF, RTF, MS WORD, ZIP
(3) Deadline is strict, electronically limited.
(4) MAXIMUM file size $=10 \mathrm{MB}$
(2) In this problem set and onwards, $\mathbf{p}, \mathbf{q}, \mathbf{r}^{\prime}$ etc., are metavariables that stand for actual Boolean variables. As such, it is possible that, say, \mathbf{p} and \mathbf{q} stand for the same actual variable in some line of reasoning.

A proof that I ask you to write can be either Hilbert or Equational, UNLESS I ask for one of those styles specifically.

If so, the other proof style is worth $0(\mathrm{~F})$.

Page 1

G. Tourlakis

1. (5 MARKS)

Prove Equationally the associativity of \wedge. That is prove

$$
\vdash((A \wedge B) \wedge C) \equiv A \wedge(B \wedge C))
$$

Use of Post's Theorem is NOT allowed (0 MARKS otherwise).
2. (5 MARKS) True or False CLAIM (below) and WHY Exactly?

I claim that statements - (1) and (2) - say the SAME THING:

$$
\begin{gather*}
\Gamma \vdash A \text { iff } \Gamma \vdash B \tag{1}\\
\Gamma \vdash A \equiv B \tag{2}
\end{gather*}
$$

HINT. If true, give a proof. If false, offer a counterexample. In the latter case you CANNOT and MAY NOT use schemata. Must use specific formulas A and B, and set Γ.
3. (3 MARKS) p and q are distinct variables.

I this correct? $p \vdash p \wedge q$. WHY EXACTLY?
4. (4 MARKS) Prove Equationally that $A, B \vdash A \equiv B$. Use of Post's Theorem is NOT allowed (0 MARKS otherwise).

In the following question the Deduction Theorem is recommended.

Use of Post's Theorem is NOT allowed in the following 4 Problems (0 MARKS otherwise).
5. (4 MARKS) Prove in Hilbert-style that

$$
A \rightarrow B \vdash \neg B \rightarrow \neg A
$$

6. (5 MARKS) Prove in Hilbert-style that

$$
A \rightarrow B \vdash(B \rightarrow C) \rightarrow(A \rightarrow C)
$$

Page 2

G. Tourlakis
7. (5 MARKS) Prove in Hilbert-style that

$$
\vdash(A \rightarrow(B \rightarrow C)) \rightarrow(A \rightarrow B) \rightarrow(A \rightarrow C)
$$

8. (5 MARKS) Prove in Hilbert-style that

$$
\vdash(A \rightarrow(B \rightarrow C)) \rightarrow(B \rightarrow(A \rightarrow C))
$$

G. Tourlakis

