Lassonde School of Engineering

Dept. of EECS
Professor G. Tourlakis
MATH1090 A. Problem Set No 3
Posted: Nov. 6, 2020
Due: Nov. 23, 2020; by 2:00pm, in eClass, "Assignment \#3"

Q: How do I submit?

A:
(1) Submission must be ONLY ONE file
(2) Accepted File Types: PDF, RTF, MS WORD, ZIP
(3) Deadline is strict, electronically limited.
(4) MAXIMUM file size $=10 \mathrm{MB}$

A proof that I ask you to write can be either Hilbert or Equational, UNLESS I ask for one of those styles specifically.

$$
\text { If so, the other proof style is worth } 0(\mathrm{~F}) \text {. }
$$

A brief but full justification of each proof step is required!
Do all the following problems; (5 Points Each).

(2) Important Notes; Read First!

"Required Method" means that any other method will get a 0-grade.
It is all right to use the Cut Rule in each problem, unless specified otherwise!
Post's Theorem is NOT allowed in Problems 1-5.

1. Show that $\vdash(A \equiv B \equiv C) \rightarrow A \rightarrow B \rightarrow C$

Required Method: Use a Hilbert style proof and the Deduction Theorem.
2. Show that if $\vdash A$ and $\vdash B$, then also $\vdash B \equiv A$.
3. Prove that for any formula A, we have $\perp \vdash A$.

You may NOT use Post's Theorem.
4. For any formulas A, B and C, prove that

$$
\vdash(A \equiv B) \rightarrow(B \equiv C) \rightarrow(A \rightarrow C)
$$

Required Method: Use a Hilbert style proof and the Deduction Theorem.
5. For any formulas A, B and C, prove that

$$
\vdash(A \rightarrow B) \wedge(B \rightarrow C) \rightarrow(A \rightarrow C)
$$

Required Method: Use a a Resolution proof.
6. For any formulas A and B prove two things WITH THE LEAST AMOUNT OF TOOLS:

$$
\vdash(\forall \mathbf{x}) A \wedge(\forall \mathbf{z}) B \rightarrow(\forall \mathbf{z}) B
$$

and

$$
\vdash(\forall \mathbf{x})(\forall \mathbf{y})(\forall \mathbf{z})((\forall \mathbf{w}) A \rightarrow A)
$$

7. Let A, B be any formulas, and \mathbf{x} a variable that is not free in B.

Prove that

$$
(\forall \mathbf{x})(A \rightarrow B), \neg B \vdash(\forall \mathbf{x}) \neg A
$$

8. Prove that $\vdash(\forall \mathbf{x}) A \vee(\forall \mathbf{x}) B \rightarrow(\forall \mathbf{x})(A \vee B)$.
