Lassonde School of Engineering
 Dept. of EECS
 Professor G. Tourlakis
 MATH1090 A. Problem Set No 4
 Posted: Nov. 24, 2020

Due: Dec. 8, 2020; by 3:00pm, in eClass, "Assignment

$$
\# 4 "
$$

Q: How do I submit?

A:
(1) Submission must be ONLY ONE file
(2) Accepted File Types: PDF, RTF, MS WORD, ZIP
(3) Deadline is strict, electronically limited.
(4) MAXIMUM file size $=10 \mathrm{MB}$
(2) It is worth remembering (from the course outline):

The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course.

In what follows, "give a proof of $\vdash A$ " or "show $\vdash A$ " means to give an Equational or Hilbert-style proof of A, unless some other proof style is required (e.g., Resolution).

Annotation is always required!
Do the following problems (5 MARKS/Each).

1. Prove using soundness (Required):

$$
\nvdash(\forall \mathbf{x})(A \vee B) \rightarrow(\forall \mathbf{x}) A \vee(\forall \mathbf{x}) B
$$

2. Prove using soundness (Required):

$$
(\forall \mathbf{x}) A \rightarrow(\forall \mathbf{x}) B \nvdash(\forall \mathbf{x})(A \rightarrow B) .
$$

3. Use the \exists elimination technique -Required- to show $\vdash(\exists \mathbf{x})(A \wedge B) \rightarrow(\exists \mathbf{x})(A \rightarrow B)$.
4. Use the \exists elimination technique - Required; and ping-pong if/where needed- to show $\vdash(\exists \mathbf{x})(A \equiv \neg A) \equiv \perp$.
(2) Do NOT use an Equational proof NOR WL for the above Question (0 marks for such solutions).
5.

(3 MARKS) Prove $\vdash(\forall x)(\forall y) x=y \rightarrow(\forall y) y=y$.
(2 MARKS) Also explain precisely why the above is NOT an instance of Ax2.
Page 2
G. Tourlakis

