This page must be submitted as the first page of your FINAL EXAM-paper answer pages.

York University
Department of Electrical Engineering and Computer Science Lassonde School of Engineering
MATH 1090 B. FINAL EXAM, December 22, 2021;
9:05am-11:05am

Professor George Tourlakis

This page must be submitted as the first page of your FINAL EXAM-paper answer pages.

By putting my name and student ID on this MID TERM page, I attest to the fact that my answers included here and submitted by Moodle are my own work, and that I have acted with integrity, abiding by the Senate Policy on Academic Honesty that the instructor discussed at the beginning of the course and linked the full Policy to the Course Outline.

Student NAME (Clearly): \qquad
Student NUMBER (Clearly): \qquad
DATE (Clearly):

This page must be submitted as the first page of your FINAL EXAM-paper answer pages.

README FIRST! INSTRUCTIONS:

1. TIME-LIMITED ON LINE FINAL $E X A M$.
You have 120 MIN to answer the EXAM questions.
ABSOLUTELY last opportunity to upload to eClass is BY 11:20am, that is, EXACTLY 15 min after the Official End Time.
2. Only ONE file can be uploaded per student.
3. If you submit photographed copy it still must be ONE file that you submit. Either ZIP the JPEG/PNG images OR import them in MS Word and submit ONE Word file with the images attached.
4. Using the time allotted for the uploading mechanisms (15 min) for the FINAL EXAM-answering part is at your own discretion.

But also at your own risk.

FINAL EXAM $\boldsymbol{n O} \boldsymbol{t}$ uploaded $=$ FINAL

Question	MAX POINTS	MARK
1	3	
2	3	
3	5	
1	3	
2	5	
3	5	
4	5	
5	5	
TOTAL	34	

5. Please write your answers by hand as you normally do for assignments or use a word processor that can convert to PDF. Microsoft Word is acceptable to upload as is (without conversion to PDF).
6. Whatever results were proved in class or appeared in the assignments you may use without proof, unless I am asking you to prove them in this Examination. If you are not sure whether some statement has indeed been proved in class, I recommend that you prove it in order to be "safe".

The following are the axioms of Propositional Calculus: In what follows, A, B, C stand for arbitrary formulae.

> Properties of \equiv
> Associativity of $\equiv((A \equiv B) \equiv C) \equiv(A \equiv(B \equiv C))$
> Symmetry of $\equiv \quad(A \equiv B) \equiv(B \equiv A)$
> Properties of \perp, \top
> \top vs. $\perp \quad \top \equiv \perp \equiv \perp$
> Properties of \neg
> Introduction of $\neg \quad \neg A \equiv A \equiv \perp$
> Properties of \vee
> Associativity of $\vee \quad(A \vee B) \vee C \equiv A \vee(B \vee C)$
> Symmetry of $\vee \quad A \vee B \equiv B \vee A$
> Idempotency of $\vee \quad A \vee A \equiv A$
> Distributivity of \vee over $\equiv \quad A \vee(B \equiv C) \equiv A \vee B \equiv A \vee C$
> Properties of \wedge
> Golden Rule $A \wedge B \equiv A \equiv B \equiv A \vee B$
> Properties of \rightarrow
> Implication $\quad A \rightarrow B \equiv A \vee B \equiv B$

The Primary Boolean rules are:

$$
\begin{equation*}
\frac{A, A \equiv B}{B} \tag{Eqn}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{A \equiv B}{C[\mathbf{p}:=A] \equiv C[\mathbf{p}:=B]} \tag{Leib}
\end{equation*}
$$

The following are the Predicate Calculus Axioms:

Any partial generalisation of any formula in groups $\mathrm{Ax} 1-\mathrm{Ax} 6$ is an axiom for Predicate Calculus.

Groups Ax1-Ax6 contain the following schemata:

Ax1. Every tautology.
Ax2. $(\forall \mathbf{x}) A \rightarrow A[\mathbf{x}:=t]$, for any term t.
Ax3. $A \rightarrow(\forall \mathbf{x}) A$, provided \mathbf{x} is not free in A.
Ax4. $(\forall \mathbf{x})(A \rightarrow B) \rightarrow(\forall \mathbf{x}) A \rightarrow(\forall \mathbf{x}) B$.
Ax5. For each object variable \mathbf{x}, the formula $\mathbf{x}=\mathbf{x}$.
Ax6. For any terms t, s, the schema $t=s \rightarrow(A[\mathbf{x}:=t] \equiv A[\mathbf{x}:=s])$.
There is ONLY ONE Primary First-Order rule; MODUS PONENS (MP)

$$
\begin{equation*}
\frac{A, A \rightarrow B}{B} \tag{MP}
\end{equation*}
$$

In predicate calculus the most natural proofs are Hilbert-style.
The following metatheorems hold for both Propositional and Predicate Calculus:

1. Redundant \top. $\Gamma \vdash A$ iff $\Gamma \vdash A \equiv \top$
2. Cut Rule. $A \vee B, \neg A \vee C \vdash B \vee C$
3. Deduction Theorem. If $\Gamma, A \vdash B$, then $\Gamma \vdash A \rightarrow B$
4. Proof by contradiction. $\Gamma, \neg A \vdash \perp$ iff $\Gamma \vdash A$
5. Post's Theorem. (Also called "tautology theorem", or even "completeness of Propositional Calculus theorem")

If $\models_{\text {taut }} A$, then $\vdash A$.
Also: If $\Gamma \not \models_{\text {taut }} A$ for finite Γ, then also $\Gamma \vdash A$.
6. Proof by cases. $A \rightarrow B, C \rightarrow D \vdash A \vee C \rightarrow B \vee D$

Also the special case: $\quad A \rightarrow B, C \rightarrow B \vdash A \vee C \rightarrow B$

The Existential Quantifier \exists

$$
(\exists \mathbf{x}) A \text { stands for } \neg(\forall \mathbf{x}) \neg A
$$

therefore $(\exists \mathbf{x}) A \equiv \neg(\forall \mathbf{x}) \neg A$ is a tautology, hence an absolute theorem.

Useful facts from Predicate Calculus (proved in class-you may use them without proof):
We know that WL (not stated here; you should know this rule well!) is a derived rule useful in Equational proofs within predicate calculus.

- More "rules" and (meta)theorems.
(i) "Renaming the Bound Variable".

If \mathbf{z} does not occur in $(\forall \mathbf{x}) A$ as either free or bound, then $\vdash(\forall \mathbf{x}) A \equiv(\forall \mathbf{z})(A[\mathbf{x}:=\mathbf{z}])$
If \mathbf{z} does not occur in $(\exists \mathbf{x}) A$ as either free or bound, then $\vdash(\exists \mathbf{x}) A \equiv(\exists \mathbf{z})(A[\mathbf{x}:=\mathbf{z}])$
(ii) \forall over \circ distribution, where "○" is " \vee " or " \rightarrow ".

$$
\vdash A \circ(\forall \mathbf{x}) B \equiv(\forall \mathbf{x})(A \circ B), \text { provided } \mathbf{x} \text { is not free in } A
$$

\exists over \wedge distribution

$$
\vdash A \wedge(\exists \mathbf{x}) B \equiv(\exists \mathbf{x})(A \wedge B), \text { provided } \mathbf{x} \text { is not free in } A
$$

(iii) \forall over \wedge distribution.

$$
\vdash(\forall \mathbf{x}) A \wedge(\forall \mathbf{x}) B \equiv(\forall \mathbf{x})(A \wedge B)
$$

\exists over \vee distribution.

$$
\vdash(\exists \mathbf{x}) A \vee(\exists \mathbf{x}) B \equiv(\exists \mathbf{x})(A \vee B)
$$

(iv) \forall commutativity (symmetry).

$$
\vdash(\forall \mathbf{x})(\forall \mathbf{y}) A \equiv(\forall \mathbf{y})(\forall \mathbf{x}) A
$$

(v) Specialisation. "Spec" $(\forall \mathbf{x}) A \vdash A[\mathbf{x}:=t]$, for any term t.
(vi) Dual of Specialisation. "Dual Spec" $A[\mathbf{x}:=t] \vdash(\exists \mathbf{x}) A$, for any term t.
(vii) Generalisation. "Gen" If $\Gamma \vdash A$ and if, moreover, the formulae in Γ have no free x occurrences, then also $\Gamma \vdash(\forall \mathbf{x}) A$.
(viii) \forall Monotonicity. If $\Gamma \vdash A \rightarrow B$ so that the formulae in Γ have no free \mathbf{x} occurrences, then we can infer

$$
\Gamma \vdash(\forall \mathbf{x}) A \rightarrow(\forall \mathbf{x}) B
$$

(ix) \forall Introduction; a special case of \forall Monotonicity. If $\Gamma \vdash A \rightarrow B$ so that neither the formulae in Γ nor A have any free \mathbf{x} occurrences, then we can infer

$$
\Gamma \vdash A \rightarrow(\forall \mathbf{x}) B
$$

(x) Finally, the Auxiliary Hypothesis Metatheorem. If $\Gamma \vdash(\exists \mathbf{x}) A$, and if \mathbf{y} is a variable that does not occur as either free or bound variable in any of A or B or the formulae of Γ-that is, it is fresh- then

$$
\Gamma, A[\mathbf{x}:=\mathbf{y}] \vdash B \text { implies } \Gamma \vdash B
$$

Semantics facts

Propositional Calculus	Predicate Calculus
$\left(\right.$ Boolean Soundness $\vdash A$ implies $\models_{\text {taut }} A$	$\vdash A$ does NOT imply $\models_{\text {taut }} A$
(Post) $\models_{\text {taut }} A$ implies $\vdash A$	However, $\models_{\text {taut }} A$ implies $\vdash A$, and
	(Pred. Calc. Soundness) $\vdash A$ implies $\models A$

CAUTION! The above facts/tools are only a fraction of what we have covered in class. They are very important and very useful, and that is why they are listed for your reference here.

You can also use without proof $\boldsymbol{A} \boldsymbol{L} \boldsymbol{L}$ the things we have covered (such as the absolute theorems known as "ヨ-definition", "de Morgan's laws", etc.).

But these - the unlisted ones- are up to you to remember and to correctly state!
Whenever in doubt of whether or not a "tool" you are about to use was indeed covered in class, prove the validity/fitness of the tool before using it!

Boolean Logic 1. (3 MARKS) Suppose $\vdash A$ and $\vdash B$. Does it follow that $\vdash A \equiv B$?
If yes, give a proof.
If not, use soundness to justify your "NO".
Post's theorem is NOT allowed.

Boolean Logic 2. (3 MARKS) Suppose $\vdash A \equiv B$. Does it follow that $\vdash A$ and $\vdash B$?

If yes, give a proof.
If not, use soundness to justify your "NO".
Post's theorem is NOT allowed.

Boolean Logic 3. (5 Marks) Prove by Resolution:

$$
\vdash(X \rightarrow(Y \rightarrow Z)) \rightarrow((X \rightarrow Y) \rightarrow(X \rightarrow Z))
$$

Caution: 0 Marks gained if any other technique is used. In particular, Post's theorem is NOT allowed.
(2) A proof by resolution

1) MUST use proof by contradiction, and
2) It cannot/must not be "preloaded" with a long Equational or Hilbert proof only to conclude with $\overline{\text { ONE }}$ CUT.
Such a proof, if correct, loses half the points.

Predicate Logic 1. (3 MARKS) True or False and WHY - No correct "WHY" $=0$ MARKS:

For any formula A, we have $\vdash(\forall \mathbf{x})(\forall \mathbf{z})(A \equiv A)$.

Predicate Logic 2. (5 MARKS) Use an Equational proof to establish the \exists-version of the one-point-rule:

If \mathbf{x} is not free in t then

$$
\vdash(\exists \mathrm{x})(\mathrm{x}=t \wedge A) \equiv A[\mathrm{x}:=t]
$$

Hint. Use the \forall-version of the one-point rule as a given.

Predicate Logic 3. (5 MARKS) Using soundness of predicate logic show why the converse of $\mathrm{Ax} 4(\mathrm{p} \cdot 3)$

$$
\begin{equation*}
(\forall \mathbf{x})(A \rightarrow B) \rightarrow(\forall \mathbf{x}) A \rightarrow(\forall \mathbf{x}) B \tag{Ax4}
\end{equation*}
$$

is not a theorem.

Predicate Logic 4. (5 MARKS) Prove $\vdash(\forall \mathbf{x}) A \vee(\forall \mathbf{x}) B \rightarrow(\forall \mathbf{x})(A \vee B)$.

Predicate Logic 5. (5 MARKS) You must use the technique of the "auxiliary hypothesis metatheorem" in the proof that you are asked to write here. Any other proof (even IF correct) will MAX at 0 MARKS.
For any formulas A, B, and C show that

$$
\vdash(\exists \mathbf{x})(A \vee \underset{\text { Page } \mathbf{6}}{\rightarrow} C) \rightarrow(\exists \mathbf{x})(A \rightarrow C) \wedge(\exists \mathbf{x})(B \rightarrow C)
$$

