Lassonde School of Engineering
 Dept. of EECS
 Professor G. Tourlakis

 MATH1090 A. Problem Set No2 - SOLUTIONS

 MATH1090 A. Problem Set No2 - SOLUTIONS}

Posted: Oct. 27, 2023

It is not allowed to use truth tables (or any of their shortcuts) in ANY of the problems below. Such methods get zero marks.

1. By definition, in a Σ-proof we are free to write an axiom $A(A \in \Lambda)$ or a "hyp" A from $\Sigma(A \in \Sigma)$ as many times as we like. Each time the justification is "axiom" or "wff from Σ " according to the case.
(a) (2 MARKS) Can we also write, say, consecutively 10 times in a row the result B of Eqn applied on previous wff X and Y in the proof?
What reason will we give each of the 10 times?
Answer. Yes. Say the X and Y are on lines (i) and (j).
The same justification/annotation will be given in each of the 10 cases: $\langle(i)+(j)+$ Eqn \rangle.
(b) (1 MARKS) What if the 10 times are not consecutive? Can we do it? What reason will we give?
Answer. Yes, we can do it exactly as above. Say the X and Y are on lines (i) and (j).
The same justification/annotation will be given in each of the 10 not consecutive cases: $\langle(i)+(j)+$ Eqn \rangle.
2. (4 MARKS) Prove Equationally that $A, B \vdash A \equiv B$.

Proof.

$$
\begin{array}{ll}
& A \equiv B \\
\Leftrightarrow\langle\text { Leib }+ \text { Red. } \top \text { META: } A, B \vdash A \equiv \top ; \text { Denom } \mathbf{p} \equiv B\rangle \\
& \top \equiv B \\
\Leftrightarrow\langle\text { Red. } \top \text { THM }\rangle \\
\quad B & \text { bingo! }
\end{array}
$$

3. (4 MARKS) Prove Equationally that for any A,

$$
\perp \vdash A
$$

Proof.

$$
\begin{aligned}
& A \\
\Leftrightarrow & \langle\text { thm from class/Notes }\rangle \\
& \perp \vee A \\
\Leftrightarrow & \langle\text { Red. } \top \text { META (i.e., } \perp \vdash \perp \equiv \top)+\text { Leib; Denom: } \mathbf{p} \vee A\rangle \\
& \top \vee A \quad \text { bingo! thm from class/Notes }
\end{aligned}
$$

4. (4 MARKS) Prove Equationally that $\vdash A \wedge B \equiv B \wedge A$.

Hint. Insert the missing brackets first (but not the outermost).
Proof. This asks us to certify $\vdash(A \wedge B) \equiv(B \wedge A)$.
$A \wedge B$
$\Leftrightarrow\langle\mathrm{GR}\rangle$
$A \vee B \equiv A \equiv B$
$\Leftrightarrow\langle$ commute \equiv-chain \rangle
$A \vee B \equiv B \equiv A$
$\Leftrightarrow\langle$ axiom + Leib; Denom: $\mathbf{p} \equiv B \equiv A\rangle$
$B \vee A \equiv B \equiv A$
$\Leftrightarrow\langle\mathrm{GR}\rangle$
$B \wedge A$

Page 2

G. Tourlakis
5. (4 MARKS) Prove Equationally that $\vdash A \wedge(A \vee B) \equiv A$.

Proof.

$$
\begin{aligned}
& A \wedge(A \vee B) \\
\Leftrightarrow & \langle\mathrm{GR} ; \mathrm{I} \text { drop brackets because we MAY do so! }\rangle \\
& A \vee A \vee B \equiv A \equiv A \vee B \\
\Leftrightarrow & \langle\text { axiom }+ \text { Leib; Denom: } \mathbf{p} \vee B \equiv A \equiv A \vee B\rangle \\
& A \vee B \equiv A \equiv A \vee B \\
\Leftrightarrow & \langle\text { commute an } \equiv \text {-chain }\rangle \\
& A \vee B \equiv A \vee B \equiv A \\
\Leftrightarrow & \langle\vdash X \equiv X \text {-thm }+ \text { Red. } \top \text { META }+ \text { Leib; Denom: } \mathbf{p} \equiv A\rangle \\
& \top \equiv A \\
\Leftrightarrow & \langle\text { Red. } \top \text { THM }\rangle \\
& A
\end{aligned}
$$

6. (3 MARKS) Prove Equationally that $\vdash B \wedge(A \vee \neg A) \equiv B$.

Proof.

$$
\begin{aligned}
& B \wedge(A \vee \neg A) \\
\Leftrightarrow & \langle(A \vee \neg A) \text {-axiom }+ \text { Red. } \top \text { META }+ \text { Leib; Denom: } B \wedge \mathbf{p}\rangle \\
& B \wedge \top \\
\Leftrightarrow & \langle\text { thm }(\text { class } / \text { Notes })\rangle \\
& B
\end{aligned}
$$

Page 3

7. (3 MARKS) Prove Equationally that $\vdash A \vee B \vee \neg A$.

Proof.

$$
\begin{aligned}
& A \vee B \vee \neg A \\
\Leftrightarrow & \langle\text { commute an } \vee \text {-chain }\rangle \\
& A \vee \neg A \vee B \\
\Leftrightarrow & \langle(A \vee \neg A) \text {-axiom }+ \text { Red. } \top \text { META + Leib; Denom: } \mathbf{p} \vee B\rangle \\
& \top \vee B \quad \text { bingo! }
\end{aligned}
$$

