Lassonde School of Engineering

Dept. of EECS

Professor G. Tourlakis
MATH1090 A. Problem Set No. 3 -SOLUTIONS
Posted: Nov. 24, 2023
(全 Unless a required proof style (e.g., by resolution, Equational, Hilbert) is used in your answer, then your answer is graded out of 0 .

Exercise \#5 has had a typo that was corrected only yesterday. So, it is NOT required.
(5 POINTS Max for each question) Do all of the following:
All resolution proofs below MUST use the graphical technique. Minimise preprocessing. You lose marks if your preprocessing is so long that it solves the problem WITHOUT doing any resolution step.

1. Use Resolution to prove $\vdash A \rightarrow \neg(\neg A \wedge \neg B)$.

Proof. Resolution MUST go via proof-by-contradiction, so
(a) Use DThm first to prove instead

$$
A \vdash \neg(\neg A \wedge \neg B)
$$

(b) Prove instead (by contradiction)

$$
A, \neg A \wedge \neg B \vdash \perp
$$

Here is the proof:
Page 1
G. Tourlakis
$A, \quad \neg A \wedge \neg B$

2. Use Resolution to prove, for any A, B, C, that $\vdash(A \rightarrow B) \rightarrow(C \rightarrow A) \rightarrow$ $(C \rightarrow B)$.
Proof. By DThm (3 times) it suffices to prove the following instead:

$$
(A \rightarrow B),(C \rightarrow A), C \vdash B
$$

By proof by contradiction do instead (I directly applied $\neg \vee$)

$$
\neg A \vee B, \neg C \vee A, C, \neg B \vdash \perp
$$

3. Use Resolution to prove, for any A, B, C, D, that

$$
\vdash(A \vee B \vee C) \wedge(A \rightarrow D) \wedge(B \rightarrow D) \wedge(C \rightarrow D) \rightarrow D
$$

Page 2

G. Tourlakis
by DThm, prove instead ($\neg \vee$ applied)

$$
(A \vee B \vee C) \wedge(\neg A \vee D) \wedge(\neg B \vee D) \wedge(\neg C \vee D) \vdash D
$$

By hypothesis splitting we do instead

$$
A \vee B \vee C, \quad \neg A \vee D, \quad \neg B \vee D, \quad \neg C \vee D \vdash D
$$

By proof by contradiction do instead

$$
\begin{equation*}
A \vee B \vee C, \quad \neg A \vee D, \quad \neg B \vee D \quad \neg C \vee D, \quad \neg D \vdash \perp \tag{1}
\end{equation*}
$$

So we prove (1):

Page 3
G. Tourlakis
4. You are in Boolean Logic.

Define: Σ is satisfiable, by definition, if some state s makes all the wff in Σ true. If no such s exists then we call $\Sigma \underline{\text { UNsatisfiable. }}$

Prove that if a finite set of wff Σ is unsatisfiable, then $\Sigma \vdash \perp$.
Proof. Start with statement $(*)$ below for an unsatisfiable finite $(*)$:

$$
\begin{equation*}
\Sigma \models_{\text {taut }} \perp \tag{*}
\end{equation*}
$$

The statement $(*)$ is valid since there is no counterexample (a counterexample would require an s that satisfies Σ).

Then, by finiteness and Post's Theorem, (*) implies $\Sigma \vdash \perp$
5. (Removed. Optionally you can do it to get extra points if correct) Prove that for any object variables $\mathbf{x}, \mathbf{y}, \mathbf{z}$ we have the absolute theorem $\vdash \mathbf{x}=$ $\mathbf{y} \rightarrow(\mathbf{y}=\mathbf{z}) \rightarrow(\mathbf{x}=\mathbf{z})$.

Hint. Use a Hilbert style proof using the axioms of equality.
Proof as the Exercise typo was removed on Nov. 23 (see red "=" above).

Take as " A " the $\mathbf{w f f} \mathbf{w}=\mathbf{z}$ in $\mathbf{A x} \mathbf{6}$. Then an Axiom 6 instance is

$$
\mathrm{x}=\mathrm{y} \rightarrow((\mathrm{x}=\mathrm{z}) \equiv(\mathrm{y}=\mathrm{z}))
$$

so here is a simple Hilbert proof:

1) $\mathbf{x}=\mathbf{y} \rightarrow((\mathbf{x}=\mathbf{z}) \equiv(\mathbf{y}=\mathbf{z})) \quad\langle\mathrm{Ax} 6\rangle$
2) $\mathbf{x}=\mathbf{y} \rightarrow((\mathbf{y}=\mathbf{z}) \rightarrow(\mathbf{x}=\mathbf{z})) \quad\langle 1+$ Post \rangle
(2) Do NOT use the Auxiliary Hypothesis Metatheorem in THIS Problem Set!
6. Prove that $\vdash A \rightarrow B$ implies $\vdash(\exists \mathbf{x}) A \rightarrow(\exists \mathbf{x}) B$.

Required Methodology. Use a Hilbert style proof and the metatheorem from class " $\vdash A \rightarrow B$ implies $\vdash(\forall \mathbf{x}) A \rightarrow(\forall \mathbf{x}) B$ ".
Page 4
G. Tourlakis

Proof.

1) $A \rightarrow B \quad\langle$ abs. thm \rangle
2) $\neg B \rightarrow \neg A \quad\langle 1+$ Post \rangle
3) $(\forall \mathbf{x}) \neg B \rightarrow(\forall \mathbf{x}) \neg A \quad\langle 2+\mathrm{A}-\mathrm{MON}(\mathrm{OK}, \Gamma=\emptyset)\rangle$
4) $\neg(\forall \mathbf{x}) \neg A \rightarrow \neg(\forall \mathbf{x}) \neg B \quad\langle 3+$ Post \rangle

Line (4) says " $(\exists \mathbf{x}) A \rightarrow(\exists \mathbf{x}) B$ " using the abbreviation " \exists ".
7. Prove Hilbert style, that $\vdash(\forall \mathbf{x})(A \rightarrow B) \rightarrow(\forall \mathbf{x}) A \rightarrow(\exists \mathbf{x}) B$.

Proof. We prove a Lemma: $\vdash Q \rightarrow(\exists \mathbf{x}) Q:$

1) $\quad(\forall \mathbf{x}) \neg Q \rightarrow \neg Q \quad\langle\mathrm{Ax} 2\rangle$
2) $\quad Q \rightarrow \neg(\forall \mathbf{x}) \neg Q \quad\langle 1+$ Post \rangle

But line 2) says what we want, by definition of \exists. END of Lemma PROOF

Main Proof Now.

1) $(\forall \mathbf{x})(A \rightarrow B) \rightarrow(\forall \mathbf{x}) A \rightarrow(\forall \mathbf{x}) B \quad\langle\mathrm{Ax} 4\rangle$
2) $(\forall \mathbf{x}) B \rightarrow B$
3) $B \rightarrow(\exists \mathbf{x}) B$

〈Lemma〉
4) $(\forall \mathbf{x})(A \rightarrow B) \rightarrow(\forall \mathbf{x}) A \rightarrow(\exists \mathbf{x}) B \quad\langle(1,2,3)+$ Post \rangle

END OF MAIN PROOF.

8. Prove Hilbert style, that

$$
\vdash(\forall \mathbf{x})(A \vee B \rightarrow C) \rightarrow(\forall \mathbf{x})(A \rightarrow C) \wedge(\forall \mathbf{x})(B \rightarrow C)
$$

Proof. We have seen the wff below many times before in the Boolean Part of our lectures/Notes ("proof by cases" we called it).

$$
\models_{\text {taut }}(A \vee B \rightarrow C) \equiv((A \rightarrow C) \wedge(B \rightarrow C))
$$

Trivially (think Ping-Pong!) we also have

$$
\models_{\text {taut }}(A \vee B \rightarrow C) \rightarrow((A \rightarrow C) \wedge(B \rightarrow C))
$$

Page 5
G. Tourlakis
hence - since the above is in the Ax1 group - we have:

$$
\begin{equation*}
\vdash(A \vee B \rightarrow C) \rightarrow(A \rightarrow C) \wedge(B \rightarrow C) \tag{1}
\end{equation*}
$$

By A-MON applied to (1) we have

$$
\begin{equation*}
\vdash(\forall \mathbf{x})(A \vee B \rightarrow C) \rightarrow(\forall \mathbf{x})((A \rightarrow C) \wedge(B \rightarrow C)) \tag{2}
\end{equation*}
$$

We conclude with a short Hilbert proof:

1) $(\forall \mathbf{x})(A \vee B \rightarrow C) \rightarrow(\forall \mathbf{x})((A \rightarrow C) \wedge(B \rightarrow C))$
〈by (2) above〉
2) $(\forall \mathbf{x})((A \rightarrow C) \wedge(B \rightarrow C)) \equiv(\forall \mathbf{x})(A \rightarrow C) \wedge(\forall \mathbf{x})(B \rightarrow C) \quad\langle$ by \forall over $\wedge\rangle$
3) $(\forall \mathbf{x})(A \vee B \rightarrow C) \rightarrow(\forall \mathbf{x})(A \rightarrow C) \wedge(\forall \mathbf{x})(B \rightarrow C)$
$\langle 1+2+$ Post \rangle
