Lassonde School of Engineering

Dept. of EECS Professor G. Tourlakis MATH1090 A. Problem Set No. 3 Posted: Oct. 31, 2023

Due: Nov. 24, 2023; by 2:00pm, in eClass.

Q: <u>How do I submit</u>?

A:

- (1) Submission must be a SINGLE standalone file to <u>eClass</u>. <u>Submission by email is not</u> <u>accepted</u>.
- (2) Accepted File Types: PNG, JPEG, PDF, RTF, MS WORD, OPEN OFFICE, ZIP
- (3) Deadline is strict, electronically limited.
- (4) MAXIMUM file size = 10MB

G. Tourlakis

Ś

Page 1

⁽⁵ POINTS Max for each question) Do all of the following:

All resolution proofs below MUST use the graphical technique. Minimise preprocessing. You lose marks if your preprocessing is so long that it solves the problem WITHOUT doing any resolution step.

- **1.** Use Resolution to prove $\vdash A \rightarrow \neg(\neg A \land \neg B)$.
- **2.** Use Resolution to prove, for any A, B, C, that $\vdash (A \rightarrow B) \rightarrow (C \rightarrow A) \rightarrow (C \rightarrow B)$.
- **3.** Use Resolution to prove, for any A, B, C, D, that

 $\vdash (A \lor B \lor C) \land (A \to D) \land (B \to D) \land (C \to D) \to D$

4. You are in Boolean Logic.

Define: Σ is satisfiable, by definition, if <u>some</u> state s makes <u>all</u> the wff in Σ true. If no such s exists then we call Σ <u>UN</u>satisfiable.

Prove that if a <u>finite</u> set of wff Σ is <u>unsatisfiable</u>, then $\Sigma \vdash \bot$.

5. Prove that for <u>any</u> object variables $\mathbf{x}, \mathbf{y}, \mathbf{z}$ we have the absolute theorem $\vdash \mathbf{x} = \mathbf{y} \rightarrow (\mathbf{y} = \mathbf{z}) \rightarrow (\mathbf{x} = \mathbf{z}).$

Hint. Use a **Hilbert** style proof using the axioms of equality.

- $\widehat{ \ } \underbrace{ \text{Do NOT use the Auxiliary Hypothesis Metatheorem in THIS Problem Set!} }_{ \sum}$
 - **6.** Prove that $\vdash A \rightarrow B$ implies $\vdash (\exists \mathbf{x})A \rightarrow (\exists \mathbf{x})B$.

Required Methodology. Use a **Hilbert** style proof and the metatheorem from class " $\vdash A \rightarrow B$ implies $\vdash (\forall \mathbf{x})A \rightarrow (\forall \mathbf{x})B$ ".

- 7. Prove Hilbert style, that $\vdash (\forall \mathbf{x})(A \to B) \to (\forall \mathbf{x})A \to (\exists \mathbf{x})B$.
- 8. Prove Hilbert style, that

$$\vdash (\forall \mathbf{x})(A \lor B \to C) \to \left((\forall \mathbf{x})(A \to C) \land (\forall \mathbf{x})(B \to C) \right)$$

G. Tourlakis