Lassonde School of Engineering

Dept. of EECS
Professor G. Tourlakis
MATH1090 A. Problem Set No 4 -SOLUTIONS
Posted: Dec. 13, 2023

In what follows, if I say "give a proof of $\vdash A$ " or "show $\vdash A$ " this means to give an Equational or Hilbert-style proof of A, unless some other proof style is required (e.g., Resolution).

Annotation is always required! Never-ever omit the " \Leftrightarrow " from an Equational proof!

1. (5 MARKS) Prove using 1st-Order Soundness (Required):

$$
\begin{equation*}
\nvdash((\forall \mathbf{x}) A \rightarrow(\forall \mathbf{x}) B) \rightarrow(\forall \mathbf{x})(A \rightarrow B) \tag{1}
\end{equation*}
$$

Proof. To show that the wff in (1) is NOT a theorem I will show that the wff following "ץ" is NOT valid.

Practically, to prove

$$
\begin{equation*}
\not \vDash((\forall \mathbf{x}) A \rightarrow(\forall \mathbf{x}) B) \rightarrow(\forall \mathbf{x})(A \rightarrow B) \tag{2}
\end{equation*}
$$

we do so for some simple wff A and B that we carefully choose in a familiar part of mathematics. So, if (2) is not valid for the special case then it is not valid, period!

As recommended in class/Notes I will take some appropriate ATOMIC special cases of A and B in an appropriate interpretation $\mathfrak{D}=(\mathbb{N}, \mathcal{M})$ where the interpretation is over \mathbb{N} and then show that the wff over \mathbb{N} (in (2') below) is \mathbf{f}.

The atomic choices (relative to \mathbb{N}) are " $x>0$ " for A and " $x>5$ " for B. Thus the wff-part in (2) interprets as

Thus $\left(2^{\prime}\right)$ is false and therefore (2) is established. (1) is proved.
It is a significant error (pushes the mark to zero) to take " A " in our interpretation one that has no free x.
Why? Because then $\vdash A \equiv(\forall x) A$ and we know that $\vdash(A \rightarrow(\forall x) B) \equiv$ $(\forall x)(A \rightarrow B)$.
2. (5 MARKS) Prove that IF we have

$$
\begin{equation*}
\vdash(\exists \mathbf{x}) A \rightarrow A[\mathbf{x}:=z] \tag{1}
\end{equation*}
$$

(z fresh), THEN we also have

$$
\begin{equation*}
\vdash(\exists \mathbf{x}) A \rightarrow(\forall \mathbf{x}) A \tag{2}
\end{equation*}
$$

Now also answer these three subsidiary questions:
(a) (2 MARKS) What does (2) say in words?
(b) (2 MARKS) Can you find a very simple specific example of a wff " A " over the natural numbers that makes (2) a non-theorem?

Prove that the wff you proposed $I S$ a non theorem!
(c) (2 MARKS) What can you conclude from (b) about the validity of (1)?

Proof. Given (1). Since $(\exists \mathbf{x}) A$ has no free \mathbf{z} (it is chosen to be fresh!) I obtain the following by \forall-Intro:

$$
\begin{equation*}
\vdash(\exists \mathbf{x}) A \rightarrow(\forall \mathbf{z}) A[\mathbf{x}:=z] \tag{1'}
\end{equation*}
$$

I now have the following short proof by the "variant theorem" (or, "bound var. renaming"):

$$
\begin{aligned}
& (\exists \mathbf{x}) A \rightarrow(\forall \mathbf{z}) A[\mathbf{x}:=z] \\
\Leftrightarrow & \langle\mathrm{WL}+\text { bound var. renaming; Denom: }(\exists \mathbf{x}) A \rightarrow \mathbf{p}\rangle \\
& (\exists \mathbf{x}) A \rightarrow(\forall \mathbf{x}) A[\mathbf{x}]
\end{aligned}
$$

The above Equational proof and (1') together establish (2).
Now the subsidiary questions:
(a) (2) says "if $A(\mathbf{x})$ is true for SOME \mathbf{x}-value, then it is true for ALL x-values!!!" (This cannot be possibly right!)
(b) Take $x=0$ (over \mathbb{N}) for " A ". Then (2) says:

$$
\vdash(\exists x) x=0 \rightarrow(\forall x) x=0
$$

Page 3
G. Tourlakis

NOTE that

$$
\overbrace{(\exists x \in \mathbb{N}) x=0}^{\mathrm{t}} \rightarrow \overbrace{(\forall x \in \mathbb{N}) x=0}^{\mathbf{f}}
$$

By 1st-Order Soundness, $\left(2^{\prime}\right)$ is an invalid statement (because theoremhood of the wff in $\left(2^{\prime}\right)$ requires that $\left(2^{\prime \prime}\right)$ is true).

So (2) is not a theorem schema EITHER because we have shown a special instance - $\left(2^{\prime}\right)$ - which is not.
(c) IF (1) is valid (that is, it truthfully IS a theorem) then -as we proved- so is (2).
We also proved that (2) is NOT a theorem; just now, in (b) above. This contradiction invalidates (1):

So (1) does NOT state a theorem!

MATH1090A Problem Set No 4 －Solutions Nov．－Dec． 2023
3．（5 MARKS）Use the \exists elimination technique－Required－to show，for any A and B ，

$$
\vdash(\exists \mathbf{x})(A \equiv \neg A) \rightarrow B
$$

Proof．

By DThm it suffices to prove

$$
\begin{equation*}
(\exists \mathbf{x})(A \equiv \neg A) \vdash B \tag{1}
\end{equation*}
$$

instead．
1）$\quad(\exists \mathrm{x})(A \equiv \neg A) \quad\langle\mathrm{hyp}\rangle$
2）$A[\mathbf{x}:=\mathbf{z}] \equiv \neg A[\mathbf{x}:=\mathbf{z}] \quad\langle$ aux．hyp for $1 ; \mathbf{z}$ fresh for $(\exists \mathbf{x}) A, B\rangle$
3）B
$\langle 2+$ Post \rangle
（1）does NOT tautologically imply（3）！The wff in（1）is Prime，so I can make it \mathbf{t} or \mathbf{f} as I please．It is NOT therefore－Boolean－speaking－ unsatisfiable（meaning＂NOT always false＂）！So，I cannot conclude that （1）tautologically implies（3）．
I can DO so with（2）as lis of $\models_{\text {taut }}$ ，because（2）IS unsatisfiable！
4.
(4 MARKS) Prove

$$
\begin{equation*}
\vdash(\forall x)(\forall y) x=y \rightarrow(\forall y) y=y \tag{1}
\end{equation*}
$$

Proof.

1) $(\forall y) y=y \quad\langle\mathbf{A x 5}$ (partial Gen. of) \rangle
2) $(\forall x)(\forall y) x=y \rightarrow(\forall y) y=y \quad\langle 1+$ Post \rangle
(1 MARK) Also explain precisely why (1) is NOT an instance of Ax2.
Answer. The lhs (left of " \rightarrow ", that is) in the wff of (1) is

$$
\begin{equation*}
(\forall x) \overbrace{((\forall y) x=y)}^{A} \tag{2}
\end{equation*}
$$

Using (2) as the lhs of Ax2 needs THE rhs

$$
\begin{equation*}
A[x:=y] \tag{3}
\end{equation*}
$$

in order to obtain $(\forall y) y=y$. But this substitution is illegal and aborts because y is captured by $(\forall y)$ if we insist to go ahead with it.

