Lassonde School of Engineering

Dept. of EECS
Professor G. Tourlakis
MATH1090 A. Problem Set No 4
Posted: Nov. 25, 2022
Due: Dec. 6, 2023; by 5:00pm, in eClass, "Assignment

$$
\# 4 "
$$

Q: How do I submit?

A:
(1) Submission must be ONLY ONE file
(2) Accepted File Types: PDF, RTF, MS WORD, ZIP
(3) Deadline is strict, electronically limited.
(4) MAXIMUM file size $=10 \mathrm{MB}$
(2) It is worth remembering (from the course outline):

The homework must be each individual's own work. While consultations with the instructor, tutor, and among students, are part of the learning process and are encouraged, nevertheless, at the end of all this consultation each student will have to produce an individual report rather than a copy (full or partial) of somebody else's report.

The concept of "late assignments" does not exist in this course.

In what follows, if I say "give a proof of $\vdash A$ " or "show $\vdash A$ " this means to give an Equational or Hilbert-style proof of A, unless some other proof style is required (e.g., Resolution).

Annotation is always required! Never-ever omit the " \Leftrightarrow " from an Equational proof!'

1. (5 MARKS) Prove using 1st-Order Soundness (Required):

$$
\nvdash((\forall \mathbf{x}) A \rightarrow(\forall \mathbf{x}) B) \rightarrow(\forall \mathbf{x})(A \rightarrow B)
$$

2. (5 MARKS) Prove that IF we have

$$
\begin{equation*}
\vdash(\exists \mathbf{x}) A \rightarrow A[\mathbf{x}:=z] \tag{1}
\end{equation*}
$$

(\mathbf{z} fresh), THEN we also have

$$
\begin{equation*}
\vdash(\exists \mathbf{x}) A \rightarrow(\forall \mathbf{x}) A \tag{2}
\end{equation*}
$$

Now also answer these three subsidiary questions:
(a) (2 MARKS) What does (2) say in words?
(b) (2 MARKS) Can you find a very simple example of a wff " A " over the natural numbers that makes (2) a non-theorem?

Prove that the wff you proposed $I S$ a non theorem!
(c) (2 MARKS) What can you conclude from (b) about the validity of (1)?
3. (5 MARKS) Use the \exists elimination technique -Required- to show, for any A and B

$$
\vdash(\exists \mathbf{x})(A \equiv \neg A) \rightarrow B
$$

4.

(4 MARKS) Prove $\vdash(\forall x)(\forall y) x=y \rightarrow(\forall y) y=y$.
(1 MARK) Also explain precisely why the above is NOT an instance of Ax2.

Page 2

G. Tourlakis

