York University
Department of Electrical Engineering and Computer Science Lassonde School of Engineering
MATH 1090 A. FINAL EXAM - Solutions, December 19, 2023;
14:00-16:00
\section*{Professor George Tourlakis}

Boolean Logic 1. (3 MARKS) Suppose $\Gamma \vdash A$ and $\Gamma \vdash B$. Does it follow that $\Gamma \vdash A \equiv B$?
If yes, give an Equational proof.
If not, use Boolean Soundness to justify your "NO".
Post's theorem is NOT allowed. Hilbert proof is NOT allowed.

Answer. YES.
Proof:

$$
\begin{aligned}
& A \equiv B \\
& \Leftrightarrow\langle\text { Leib }+ \text { Red. } \top \text { META }(\Gamma \vdash A \equiv \top) ; \text { Denom: } \mathbf{p} \equiv B\rangle \\
& \top \equiv B \\
& \Leftrightarrow\langle\text { Red. } \top \text { THM }\rangle \\
& B \quad \text { Bingo! }
\end{aligned}
$$

Boolean Logic 2. (2 MARKS) If A is a wff, is (A) a wff too?
Prove the correctness of your answer using formula calculations.
Proof. Since A is a wff, there is a formula calculation \vdots

A
for A.
Here is why this calculation CANNOT be extended to a formula calculation for (A) :

There are TWO KINDS of steps possible where OVERALL BRACKETS ARE ADDED:

1. Using two previous STRINGS Q and R from the construction, OR
2. Using ONLY ONE previous STRING Q from the construction

Only case 2 . above applies here (where " Q " is " A ").
Case 2. with Q being A consists of the TWO sub-steps:

- must ADD the GLUE " \neg " in front of A and
- must ADD overall enclosing brackets around the result.

But " (A) " misses the " \neg ".
So, I CANNOT continue the calculation of A to obtain (A), meaning I cannot obtain (A) by a formula calculation -the above sub-steps being the only ones AVAILABLE to do so.

In other words, (A)-being impossible to appear in a formula calculation- is NOT a wff.

Boolean Logic 3. (5 Marks) Prove by Resolution:

$$
\vdash((X \rightarrow Y) \rightarrow X) \rightarrow X
$$

Caution: 0 Marks gained if any other technique is used. In particular, Post's theorem is NOT allowed.
(2) A proof by resolution

1) MUST use a graphical proof by contradiction, and
2) It cannot/must not be "preloaded" with a long Equational or Hilbert proof only to conclude with just ONE CUT.
Such a proof, IF correct, loses half the points.
Proof. By DThm I prove instead

$$
(X \rightarrow Y) \rightarrow X \vdash X
$$

By Proof By Contradiction I will do instead

$$
(X \rightarrow Y) \rightarrow X, \neg X \vdash \perp
$$

or (via " $\neg \mathrm{V}$ " twice)

$$
\begin{equation*}
\neg(\neg X \vee Y) \vee X, \neg X \vdash \perp \tag{1}
\end{equation*}
$$

I use resolution to prove (1):

Page 3

Predicate Logic 1. (3 MARKS) True or False and WHY - In the absence of a correct "WHY" the answer gets 0 MARKS:

For any formula A, we have $\vdash(\forall \mathbf{z})(\forall \mathbf{x})(\forall \mathbf{z})(A \vee \neg A)$.

Answer. True: $A \vee \neg A$ is a schema from Ax. 1 Group.
So EVERY partial Gen of it is an axiom, HENCE a theorem!
In particular, the partial Gen $(\forall \mathbf{z})(\forall \mathbf{x})(\forall \mathbf{z})(A \vee \neg A)$ is an axiom hence a theorem for all A !
ALTERNATIVELY, you may do this by a Hilbert proof, but the above is BETTER (indicates your deeper understanding of the Axioms).

1)	$A \vee \neg A$	\langle Axx. from Group 1\rangle
2)	$(\forall \mathbf{z})(A \vee \neg A)$	$\langle 1+$ Gen; OK: NO hyp! \rangle
3)	$(\forall \mathbf{x})(\forall \mathbf{z})(A \vee \neg A)$	$\langle 2+$ Gen; OK: NO hyp! \rangle
4)	$(\forall \mathbf{z})(\forall \mathbf{x})(\forall \mathbf{z})(A \vee \neg A)$	$\langle 3+$ Gen; OK: NO hyp! \rangle

Predicate Logic 2. (5 MARKS) Assume that \mathbf{x} does not occur in t and that $A[\mathrm{x}:=t]$ is defined.

Prove Equationally the \exists-version of the "one-point rule":

$$
\vdash(\exists \mathrm{x})(\mathrm{x}=t \wedge A) \equiv A[\mathbf{x}:=t]
$$

Limitations:

- A non-Equational proof will Max 0 points.
- Equational proofs will Max 3 points if the " \Leftrightarrow " symbol is omitted.
- Properly annotate WL, if used: In particular, you must check and acknowledge that the hypothesis of the rule is an absolute theorem.

Proof. In the proof that follows, as we have agreed in class/Notes, we will call $\vdash(\exists \mathbf{x}) A \equiv \neg(\forall \mathbf{x}) \neg A$ "Definition of E ".
NOTE that the 1-point rule proved in class (for \forall) under the exact same assumptions as stated in the 1st paragraph above is

$$
\begin{equation*}
\vdash(\forall \mathbf{x})(\mathbf{x}=t \wedge A) \equiv A[\mathbf{x}:=t] \tag{1}
\end{equation*}
$$

The proof of the E-version is below:

$$
\begin{aligned}
& (\exists \mathbf{x})(\mathbf{x}=t \wedge A) \\
\Leftrightarrow & \langle\text { Def. of } \mathrm{E}\rangle \\
& \neg(\forall \mathbf{x}) \neg(\mathbf{x}=t \wedge A) \\
\Leftrightarrow & \left\langle\mathrm{WL}+\text { Ax. } 1(\text { hence abs. thm }) ; \text { Denom: } \neg(\forall \mathbf{x}) \mathbf{p}^{1}\right\rangle \\
& \neg(\forall \mathbf{x})(\mathbf{x}=t \rightarrow \neg A) \\
\Leftrightarrow & \langle\mathrm{WL}+\text { 1-point rule for } \forall \text { (abs. thm!); Denom: } \neg \mathbf{p}\rangle \\
& \neg(\neg A[\mathbf{x}:=t) \\
\Leftrightarrow & \langle\neg \neg-\text { thm }\rangle \\
& A[\mathbf{x}:=t]
\end{aligned}
$$

[^0]Predicate Logic 3. (5 MARKS) You must use the technique of the "auxiliary hypothesis metatheorem" in the proof that you are asked to write here.
Any other proof (even IF correct) will MAX at 0 MARKS.

For any formulas A, B prove that

$$
\vdash(\exists x)(A \wedge B) \rightarrow(\exists x) A \wedge(\exists x) B
$$

Proof. By DThm prove instead

$$
(\exists x)(A \wedge B) \vdash(\exists x) A \wedge(\exists x) B
$$

1) $(\exists x)(A \wedge B) \quad\langle\mathrm{hyp}\rangle$
2) $A[x:=z] \wedge B[x:=z] \quad$ 〈aux. hyp for $1 ; z$ is fresh〉
3) $A[x:=z]$
$\langle 2+$ Post \rangle
4) $B[x:=z]$
$\langle 2+$ Post \rangle
5) $(\exists x) A$
$\langle 3+$ Dual Spec \rangle
6) $(\exists x) B$
$\langle 4+$ Dual Spec \rangle
7) $(\exists x) A \wedge(\exists x) B$
$\langle 5+6+$ Post \rangle

Predicate Logic 4. (5 MARKS) Use 1st-Order Soundness to prove that

$$
\begin{equation*}
\nvdash(\exists x) A \wedge(\exists x) B \rightarrow(\exists x)(A \wedge B) \tag{1}
\end{equation*}
$$

that is, $(\exists x) A \wedge(\exists x) B \rightarrow(\exists x)(A \wedge B)$ is NOT a theorem of predicate logic.

Hint. Use a countermodel for a simple instant of the wff in (1), where you chose appropriate atomic A and B.

Proof. I interpret each of A and B as atomic formulas of arithmetic. Namely,
A stands for $x>42$ and
B stands for $x<42$.
So the interpretation of the wff in (1) over $\mathfrak{D}=(\mathbb{N}, M)$ is

$$
\begin{align*}
\overbrace{(\exists x \in \mathbb{B}) x>42} & \wedge \tag{2}\\
& \rightarrow \overbrace{(\exists x \in \mathbb{N}) x<42}^{\mathrm{t}} \\
& \rightarrow \overbrace{(\exists x \in \mathbb{N})(x>42 \wedge x<42)}^{\mathrm{t}}
\end{align*}
$$

(2) being false (see \mathbf{t} / \mathbf{f} markings above) we have found a countermodel of a special case of the wff schema in (1). Said special case is NOT a theorem and thus the wff schema in (1) is not a theorem schema (because one of its instances - (2) - is NOT a theorem of arithmetic).

[^0]: ${ }^{1}$ Using Ax. 1 as " $\neg(X \wedge Y) \equiv X \rightarrow \neg Y$ " where " X " is "x $=t$ " and " Y " is " A ".

