York University
 Department of Electrical Engineering and Computer Science Lassonde School of Engineering
 MATH 1090A. MID TERM, October 25, 2023; SOLUTIONS Professor George Tourlakis

Question 1. (3 MARKS) Prove that NO wff is the empty string λ by showing it contains AT LEAST ONE symbol from the Boolean alphabet.
The proof must be by analysing either formula constructions, or by the recursive definition of formulas.

Proof.
(a) By formula construction/calculation.

Well, a wff is a string that appears by itself on a line of a formula calculation.
What do we legally write on such a line? ONE of the following:

- An atomic wff, such as \perp, \top, p. By inspection, none of these is λ.
- A string $(\neg B)$ licensed by the fact that we wrote the string B earlier. But this contains, for example $\neg-$ also "(" and ")"- so it too is not λ.
- A string $(B \circ C)$-where $\circ \in\{\wedge, \vee, \rightarrow, \equiv\}$ - licensed by the fact that we wrote the strings B and C earlier. But this string, this wff, contains, for example \circ-but also "(" and ")"- so it too is not λ.

So, none of the strings I may EVER write in a step of a formula calculation can be λ. THUS, no wff can be λ as a wff is precisely a string I may write in a step of a formula calculation! In short, no wff can be λ
(b) By recursive formula definition.

Show that any wff A is $\neq \lambda$.
Well, A is one of the following three:

- \perp, \top, \mathbf{p}. Each of them $\neq \lambda$.
- ($\neg B)$. NOT λ ! Contains, say, " \neg " (no quotes).
- $(B \circ C)$. NOT λ ! Contains, say, "o" (no quotes).

Question 2. (4 MARKS) Give an Equational proof of $\vdash A \rightarrow B \equiv A \wedge B \equiv A$.
(2) Any other proof will max 0 marks.

Proof.

$$
\begin{gathered}
A \rightarrow B \\
\Leftrightarrow \quad\langle\text { axiom }\rangle \\
A \vee B \equiv B \\
\Leftrightarrow \quad\langle\text { GR axiom }\rangle \\
A \wedge B \equiv A
\end{gathered}
$$

Question 3. (5 MARKS) Give an Equational proof of the following:

$$
\vdash A \vee B \equiv(A \rightarrow \perp) \rightarrow B
$$

(2) Any other proof maxes to zero!

Proof.

$$
\begin{array}{ll}
A \vee B & \\
\Leftrightarrow & \langle\text { Leib+double neg; Denom: } \mathbf{p} \vee B\rangle \\
\neg \neg A \vee B & \\
\Leftrightarrow & \langle\neg \vee-\text { thm }\rangle \\
\neg A \rightarrow B & \\
\Leftrightarrow & \text { Leib+thm; Denom: } \mathbf{p} \rightarrow B\rangle \\
(\neg A \vee \perp) \rightarrow B & \text { Comment: this "obvious" step I had omitted; I should get " } 3 / 5 \text { "" in my old proof! :) } \\
\Leftrightarrow & \langle\text { Leib+ } \neg \vee \text {-hm; Denom: } \mathbf{p} \rightarrow B\rangle \\
(A \rightarrow \perp) \rightarrow B &
\end{array}
$$

Question 4. (a) (4 MARKS) For any A and B prove the following via an Equational Proof.

$$
\vdash A \wedge \neg A \rightarrow B
$$

Any other proof maxes to a zero.

Proof.

```
        \(A \wedge \neg A \rightarrow B\)
\(\Leftrightarrow\langle\neg \vee\)-thm \(\rangle\)
    \(\neg(A \wedge \neg A) \vee B\)
\(\Leftrightarrow\langle\) deMorgan + Leib; Denom: \(\neg \mathbf{p} \vee B\rangle\)
    \(\neg \neg(\neg A \vee A) \vee B\)
\(\Leftrightarrow \quad\langle\) double neg + Leib; Denom: \(\mathbf{p} \vee B\rangle\)
    \((\neg A \vee A) \vee B\)
\(\Leftrightarrow\langle\) Red. T METAthm + axiom + Leib; Denom: \(\mathbf{p} \vee B\rangle\)
        \(\top \vee B\) bingo!
```

(b) (2 MARKS) Use a Hilbert style proof AND the above result to prove

$$
A \wedge \neg A \vdash B
$$

Any other proof maxes to a zero.
Proof.
(1) $\quad A \wedge \neg A \quad\langle$ hyp \rangle
(2) $A \wedge \neg A \rightarrow B \quad\langle$ thm in subquestion (a) \rangle
(3) $B \quad\langle 1+2+$ modus ponens (MP) \rangle

Extra blank "overflow" page for answers

