York University

Faculties of Pure and Applied Science, Arts, Atkinson
MATH 2090. Problem Set \#3. Posted February 8, 2002
Due in the Course Box. Monday, February 25, 2002

Section N

(2) In your proofs it is imperative to clearly state what tools you use (e.g.,

I WLUS, SLCS, MP, PSL, Monotonicity, Deduction Theorem, Weak Generalization, which axiom(s), etc.)

1. Recall from class that " $(\Sigma i \mid 0 \leq i<n: i)$ " means $\sum_{i<n} i$ and the latter is a function $f(n)$ of the variable n over \mathbb{N} given inductively by

$$
\begin{aligned}
f(0) & =0 \\
f(n+1) & =f(n)+n
\end{aligned}
$$

After this clarification/reminder do 12.4(b), p.242.
2. Also do from the text p.244-246:
$\{12.9,12.15,12.20\}$
(2) In problem 12.15 attach the intuitive meaning of number of elements to the symbol $\# A$, where A is a set (i.e., never mind the GS "axiom 11.12").

Conventions AND notation from class apply!
(a) Convert GS-assertions to "standard mathematical notation" before you start any proof.
(b) Do not use Peano formal axioms in any of the above proofs

Also do

Page 1

G. Tourlakis

- Prove, this time formally from Peano Axioms (see Web-posting),

$$
\mathrm{PA} \vdash(\forall x, y, z)(x+y)+z=x+(y+z)
$$

NB. " $(\forall x, y, z)$ " is a lazy way to write " $(\forall x)(\forall y)(\forall z) "$.
Hint. Do (simple) induction on z.

- Prove, formally from Peano Axioms

$$
\mathrm{PA} \vdash(\forall x) 0+x=x
$$

Hint. Caution! You do not have commutativity yet! Do (simple) induction on x.

- Now do simple induction on y to prove commutativity: Prove, formally from Peano Axioms

$$
\mathrm{PA} \vdash(\forall x, y) x+y=y+x
$$

Hint. Prove, formally from Peano Axioms, a (trivial) Lemma: PA \vdash $(\forall x) S x=x+S 0$. Then use associativity and previous problem.

