MA 2441.03

Problem Set No. 4. (Relations, Functions; More on Induction)

Dept. of Computer Science and Mathematics (Atkinson College)

Date: June 14, 1999Due: June 28, 1999

- 1. Prove that the composition of two 1-1 correspondences is a 1-1 correspondence.

 Reminder. There are three issues to address.
- **2.** (a) Prove that if a *total* relation R on a set A is *symmetric* and *transitive*, then it is also *reflexive*.
 - (b) By an appropriate example show that the assumption on totalness is essential
- **3.** Let S denote the set of strings over $\Sigma = \{1, 2, 3, +, \times, (,)\}$ defined as the closure of $\mathcal{I} = \{1, 2, 3\}$ under the operations $x, y \mapsto (x + y)$ and $x, y \mapsto (x \times y)$ for all strings x and y.
 - (a) Prove that every string x in S has equal numbers of "(" and ")" symbols in it.
 - (b) Prove the following claim for every $x \in S$: If x = y * z—where "*" denotes concatenation—and iff $\varepsilon \neq y \neq x$, then y contains more "("-symbols than ")"-symbols.
- **4.** Let S be the set of strings over $\Sigma = \{0, 1\}$ obtained as the *closure* of $\mathcal{I} = \{01\}$ † under a single operation on strings: $x \mapsto 0x1$ for all strings x.

Prove that $S = \{0^n 1^n : n \ge 1\}$, where v^n for a string v means $\underbrace{v * \cdots * v}_{n \text{ copies of } v}$ for any n > 1.

Reminder. There are two directions (\subseteq and \supseteq).

[†] This is not a typo. \mathcal{I} contains a single string: 01.