MA2441 3.0. Problem Set No. 5. (On Logic) Dept. of Mathematics (Atkinson College)

Date: June 28, 1999 **Due:** July 12, 1999

Please note: The Final Take-Home Exam will be handed out in class, on Monday, July 12, 1999. Don't miss it!

It will be due (in class—by 7:15pm) on July 19, 1999 (there will be absolutely no extensions).

1. Prove by a *syntactic* argument that if $\vdash A \to B$, then $\vdash (\forall x)A \to (\forall x)B$ for any formulas A and B.

Proof.

- (1) $A \to B$ (proved without nonlogical axioms—by assumption)
- (2) $(\forall x)(A \rightarrow B)$ ((1) + generalization; OK to do this since (1) was obtained w/o nonlog. axioms)
- (3) $(\forall x)(A \to B) \to ((\forall x)A \to (\forall x)B)$ (proved w/o nonlog. axioms—from class)
 - $(4) (\forall x) A \rightarrow (\forall x) B$ $((2) + (3) + \text{Modus Ponens}) \square$
- 2. Using resolution prove the most general rule of "proof by cases", namely:

$$A \rightarrow B, C \rightarrow D \vdash A \lor C \rightarrow B \lor D$$

A proof-by-truth table will not be accepted in this exercise.

Proof. Using the Deduction Theorem, we need to show

$$A \rightarrow B, C \rightarrow D, A \lor C \vdash B \lor D$$

that is, find a contradiction in $\neg A \lor B$, $\neg C \lor D$, $A \lor C$, $\neg (B \lor D)$. Here it goes:

3. Prove by a syntactic argument that if x is not free in B, then

$$\vdash (\forall x) A \lor B \longleftrightarrow (\forall x) (A \lor B) \tag{i}$$

for any wff A and B.

Proof. (\rightarrow direction): We split this into two "cases", namely " $(\forall x)A$ " and "B": Thus, we show first

$$\vdash (\forall x)A \to (\forall x)(A \lor B) \tag{ii}$$

So,

- (1) $A \to A \lor B$ (logical axiom—a tautology!)
- (2) $(\forall x)A \to (\forall x)(A \vee B)$ (by (1) and problem 1). Done.

We also need

$$\vdash B \to (\forall x)(A \lor B) \tag{iii}$$

So,

- (3) $B \to A \lor B$ (logical axiom—a tautology!)
- (4) $(\forall x)B \to (\forall x)(A \lor B)$ (by (3) and problem 1).

Now, by generalization, $B \vdash (\forall x)B$ since x is not free in B.

By the DThm, again, $\vdash B \to (\forall x)B$, hence $\vdash B \leftrightarrow (\forall x)B$ by $\vdash (\forall x)B \to B$ (specialization).

This discussion, and the Leibniz rule, yield

(5) $B \to (\forall x)(A \lor B)$ from (4).

Equipped with (ii) and (iii) we conclude the proof of (i) [\rightarrow direction] as follows:

By problem 2,

$$(\forall x)A \to (\forall x)(A \lor B), B \to (\forall x)(A \lor B) \vdash (\forall x)A \lor B \to (\forall x)(A \lor B) \lor (\forall x)(A \lor B)$$
(6)

Since the premises in (6) have been proved without nonlog. axioms, so is the conclusion, and hence by Leibniz and the tautology $C \lor C \leftrightarrow C$, we have (i) (\rightarrow direction).

 $(\leftarrow \text{ direction})$: By DThm, prove $(\forall x)(A \lor B) \vdash (\forall x)A \lor B$.

- (a) $(\forall x)(A \lor B)$ (the "let" [hypothesis])
- (b) $(\forall x)(\neg B \to A)$ ((a) + Leibniz rule)
- (c) $(\forall x) \neg B \rightarrow (\forall x) A$ (from (b). See steps (2)–(4) in problem 1)
- (d) $\neg B \rightarrow (\forall x)A$ ((c) + Leibniz; recall: $\neg B$ has no free x)
- (e) $(\forall x)A \vee B$ ((d) + tautological implication). \square

A simpler proof uses Leibniz on

$$\vdash (\forall x)(A \to B) \leftrightarrow (A \to (\forall x)B)$$

[†]The actual steps for that, (required!) are: $B \vdash B$ since (DThm) this is the same as $\vdash B \to B$ which is correct (tautology). Take now the set of premises, "S", to be $\{B\}$. Thus, from $S \vdash B$ and the assumption on $x, S \vdash (\forall x)B$.

where A has no free x.

There is a catch: We had not covered in class the \rightarrow direction of the above, so if you went that way, you should have proved that direction yourselves!

- 4. True or False? Give reasons.
 - (a) A propositional variable *must* have an *intrinsic* true or false meaning. FALSE. We can assign arbitrary values (true/false) to propositional variables.
 - (b) Propositional variables can *only* denote mathematical formulas that contain no variables (e.g., $(\forall x)x = 4$ and 1 = 2 1 are OK, but x = 5 and x < y are not). **FALSE. Propositional variables can denote any** atomic formula and any formula such as $((\forall x)A)$ or $((\exists x)A)$.
 - (c) Propositional Calculus studies the properties of "propositions". FALSE. It studies the properties of the connectives.
- **5.** Which of the following are "predicates"? Which are "atomic formulas"? Explain. Use class-notes since the text is in error here!
 - (a) $x \in y$ ATOMIC (since " \in " is a predicate of arity 2, and x,y are terms).
 - (b) x=y ATOMIC (since "=" is a predicate of arity 2, and x,y are terms).
 - $(c) \in A$ predicate (symbol) of set theory.
 - (d) = A predicate (symbol) of Logic.
 - (e) P, where P(x) stands for " $x > 3 \& (\exists y)x = y^2$ " **A (defined) predicate (symbol).**
 - (f) P(x) above. ATOMIC (since "P" is a predicate of arity 1, and x is a term).