MA2441.03

TAKE HOME EXAM

Dept. of Mathematics (Atkinson College)

Date: July 12, 1999

Due: July 19, 1999, In class, by 7:15pm

- 1. 10 MARKS Prove by resolution that
 - (i) $A \& (\neg B \rightarrow \neg A) \vdash B$, and

$$(\mathrm{ii}) \vdash (A \to B) \to ((B \to C) \to (A \to C))$$

Every tool used in your proof must be explicitly acknowledged.

2. 10 MARKS For the arbitrary formula A of first order logic prove syntactically with full annotation that

$$\vdash (\exists x)(\forall y)A \rightarrow (\forall y)(\exists x)A$$

- **3. 5 MARKS** Prove by induction on n that $5^n 4n 1$ is divisible by 16 for all n > 1.
- **4. 5 MARKS** Prove that if $2^n 1$ is a prime, then so is n.
- **5. 5 MARKS** Let us define inductively a set of strings over the set $\{0,1\}$ as the closure of $\mathcal{I} = \{\varepsilon\}$ (where ε denotes the EMPTY STRING) under the two *string* operations, \mathcal{F} :
 - (i) $x \mapsto x0$ and
 - (ii) $x \mapsto x1$.

Prove that $Cl(\mathcal{I}, \mathcal{F}) = \{0, 1\}^*$.

6. 5 MARKS Let $f: A \to B$ and $g: B \to C$ be *total* functions such that $g \cdot f$ is 1–1 and f is *onto*. Show that g *must* be 1–1 under the circumstances.

Recall that $g \cdot f$ means $f \circ g$

7. 5 MARKS You are *given* that it is impossible to have $A \in B \in A$ for any sets A, B. Under the circumstances, prove that, for any sets and/or atoms x, y, a, b,

$$\{x, \{x, y\}\} = \{a, \{a, b\}\} \text{ implies } x = a \& y = b$$